Что такое поступательное и вращательное движение
Поступательное и вращательное движение
Вы будете перенаправлены на Автор24
Существует пять видов движения твердого тела:
Первые два называются простейшими движениями твердого тела. Остальные виды движений можно представить как комбинацию основных движений.
Поступательным называется такое движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается, оставаясь параллельной своему начальному направлению.
Любое прямолинейное движение является поступательным. Однако поступательное движение не следует смешивать с прямолинейным. При поступательном движении тела траектории его точек могут быть любыми кривыми линиями.
Рис.1 Поступательное криволинейное движение кабин колеса обзора
Свойства поступательного движения определяются следующей теоремой: при поступательном движении все точки тела описывают одинаковые (при наложении совпадающие) траектории и имеют в каждый момент времени одинаковые по модулю и направлению скорости и ускорения.
Из теоремы следует, что поступательное движение твердого тела определяется движением какой-нибудь одной из его точки. Следовательно, изучение поступательного движения тела сводится к задаче кинематике точки.
Заметим, что понятие о скорости и ускорении тела имеют смысл только при поступательном движении. Во всех остальных случаях точки тела, движутся с разными скоростями и ускорениями, и термины «скорость тела» или «ускорение тела» для этих движений теряют смысл.
Вращательным движением абсолютно твердого тела вокруг неподвижной оси называется такое его движение, при котором все точки тела движутся в плоскостях, перпендикулярных к неподвижной прямой, называемой осью вращения, и описывают окружности, центры которых лежат на этой оси.
Рисунок 2. Угол поворота тела
При вращательном движении абсолютно твердого тела вокруг неподвижной оси углы поворота радиуса-вектора различных точек тела одинаковы.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 17 11 2021
Поступательное и вращательное движение
Урок 12. Физика 10 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Поступательное и вращательное движение»
Ещё в самом начале курса мы упомянули, что полное описание движения тела является достаточно сложной задачей, если не пользоваться идеализированными моделями такого движения. Одна из таких моделей —поступательное движение — это такое движение, при котором каждая точка тела двигается одинаково.
В этом случае, тело должно быть абсолютно твердым. Например, движение камня или ядра можно назвать поступательным. Движение мяча же, нельзя назвать поступательным, поскольку он немного деформируется в процессе движения.
Очевидно, что движение различных точек этого тела описывается совершенно по-разному. Кроме того, само тело состоит не из однородного материала, поэтому, его ни в коем случае нельзя считать абсолютно твердым. Более подробно деформации и действия сил мы рассмотрим в разделе «динамика».
Поступательное движение тела является самым простым, поскольку, чтобы описать движение тела, достаточно описать движение одной из его точек. Как правило, описывают движение центра тяжести тела.
Строго говоря, если движение тела не является поступательным, то нельзя говорить о скорости или об ускорении тела, поскольку каждая из точек этого тела имеет разную скорость и разное ускорение. Однако, во многих случаях, эти скорости и ускорения настолько мало отличаются друг от друга, что этим можно пренебречь.
Например, поступательным движением можно считать движение поезда на прямых участках, движение колеса обозрения или движение различных поршней.
Примеры поступательного движения
Другой тип движения — это вращательное движение, с которым мы частично познакомились, на прошлом уроке.
Вращательным движением твердого тела называется такое движение, при котором все точки тела двигаются по окружности. При этом, центры этих окружностей лежат на одной прямой, которая называется осью вращения.
Пожалуй, один из самых очевидных примеров такого движения — это вращение Земли вокруг своей оси. Точки Земли двигаются по окружности, причем, вокруг определенной оси. Вместе с этим, движение Земли, строго говоря, нельзя назвать поступательным, поскольку очевидно, что магма внутри Земли двигается совсем не так, как земная кора, например. Но, опять же, в космических масштабах, этим обстоятельством можно пренебречь.
С характеристиками вращательного движения мы уже познакомились: это угловая скорость, период и частота.
Любое движение абсолютно твердого тела можно представить, как сумму поступательного и вращательного движения. Например, если мы примем стальной шар за абсолютно твердое тело и покатим его, то его движение любой его точки можно представить, как сумму поступательного и вращательного движения. Таким образом, точки шара будут двигаться по спирали.
В качестве ещё одного примера можно снова привести движение Земли. Как вы знаете, Земля вращается вокруг Солнца. Но само Солнце двигается по направлению к звезде Вега.
В итоге, Земля совершает витки по спирали. Таким образом, движение земли в космическом пространстве можно представить, как сумму движения Земли вокруг Солнца и движения Солнца к Веге.
Необходимо отметить, что в данном примере, мы упростили движение Солнца, поскольку в действительности оно, конечно, двигается не по прямой, а по определенной орбите.
Примеры решения задач.
Задача 1. Находясь на колесе обозрения, вы заметили, что совершили пол-оборота за 3 минуты. Другой человек, находящийся на этом же колесе обозрения, заметил, что он прошёл расстояние, равное 90 м. Найдите радиус, угловую и линейную скорость колеса обозрения.
В первую очередь, обратим внимание на то, что мы можем считать поступательным движение колеса. А, значит, то, что заметили вы, применимо и к другому человеку, находящемся на этом колесе. И наоборот: его наблюдения тоже могут быть использованы вами. Ведь каждая точка колеса проходит одинаковое расстояние.
Задача 2. Металлический шест начинает двигаться по прямой с постоянным ускорением , при этом вращаясь вокруг своего центра. Длина шеста составляет 4 м, а скорость вращения равна 2 рад/с. Найдите модуль линейной скорости крайней точки после поворота на
.
Поступательное и вращательное движение
Всего получено оценок: 180.
Всего получено оценок: 180.
Механика – наука о движении тел и взаимодействии между ними. Любые, самые сложные движения тел можно представить в виде суммы простейших движений – поступательных и вращательных. Рассмотрим определение поступательного и вращательного движения, а также их особенности.
Поступательное и вращательное движение
При решении задачи описания механического движения твердого тела достаточно часто выясняется, что все его точки движутся по одинаковым траекториям, или разницей между движением различных точек можно пренебречь. Например, при свободном падении тела траектории всех его точек будут представлять прямые линии, направленные вниз. Если мы рассмотрим годовое вращение Земли вокруг Солнца, то, в связи с суточным вращением разные точки Земного шара будут иметь немного различные траектории, однако этой разницей в абсолютном большинстве случаев можно пренебречь и описывать движение Земли как одной материальной точки.
Движение, при котором все точки твердого тела движутся по одинаковым траекториям, или разницей в траекториях можно пренебречь, называется поступательным.
Другой вариант движения – это движение, при котором траектории точек тела различны. Поскольку тело твердое (то есть, взаимное расположение точек тела не меняется), разница траекторий означает, что тело меняет свое положение в пространстве. Такое движение может быть достаточно сложным, однако, его всегда можно представить, как сумму движений, при котором траектории точек тела представляют собой дуги окружностей.
Движение, при котором траектории точек тела представляют собой окружности или дуги окружностей (или отклонением от этих дуг можно пренебречь), называется вращательным. Примерами вращательного движения является движение колес и шестерен машин и механизмов, вращение Земли и других небесных тел, а также многое другое.
Общее и различие
При решении задач механики необходимо четко представлять, в чем схожесть и различие между поступательным и вращательным движениями.
Общие черты заключаются в самом понятии движения. Поступательное и вращательное движение твердого тела – это изменение координат точек тела с течением времени. Независимо от вида движений все точки тела всегда имеют некоторые координаты в Системе Отсчета, некоторую скорость и некоторое ускорение.
Параметры поступательного и вращательного движений неодинаковы, но аналогичны. Вместо координаты для описания вращения используется угол поворота, скорость и ускорение для вращения являются угловыми.
Однако, если поступательное движение описывается относительно только принятых координатных осей, то для вращательного движения учитывается еще одна ось, относительно которой совершается вращение. Следствием этого является необходимость учитывать расстояние до этой оси (радиус вращения), а также невозможность описания вращательного движения с помощью только одной координаты. Вращение всегда требует двух или трех координат.
Еще одна особенность вращательного движения – невозможность движения без ускорения. Даже если вращение происходит с постоянной угловой скоростью, и угловое ускорение равно нулю, мгновенная скорость материальной точки постоянно меняет направление, а значит, такое движение происходит с ускорением, которое называется центростремительным.
Рис. 3. Аналогия величин для поступательного и вращательного движения.
Что мы узнали?
Любые движения тел могут быть описаны суммой простейших поступательных и вращательных движений. Поступательное движение – это движение, при котором траектории всех точек тела одинаковы. Вращательное движение – это движение, при котором траектории точек тела представляют собой окружности (или дуги окружностей) с центрами, лежащими на одной прямой (в одной точке для двумерного случая).
Поступательное и вращательное движение
Поступательное и вращательное движение
Наиболее простое движение тела — такое, при котором все точки тела движутся одинаково, описывая одинаковые траектории. Такое движение называется поступательным. Мы получим этот тип движения, двигая лучинку так, чтобы она все время оставалась параллельной самой себе. траектории могут быть как прямыми так и кривыми линиями.
Поступательно движется игла швейной машины, поршень в цилиндре паровой машины или двигателя внутреннего сгорания, кузов автомашины (но не колеса!) при езде по прямой дороге и т. д.
Другой простой тип движения — это вращательное движение тела, или вращение. При вращательном движении все точки тела движутся по окружностям, центры которых лежат на прямой. Эту прямую называют осью вращения. Окружности лежат в параллельных плоскостях, перпендикулярных к оси вращения. Точки тела, лежащие на оси вращения, остаются неподвижными. Вращение не является поступательным движением: при вращении оси.
Траектория путь перемещение скорость ускорение определение
Линию, вдоль которой движется материальная точка, называют траекторией. Длину траектории называют путем. Единица пути — метр.
Путь = скорость* время. S=v*t.
Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называется перемещением (s). Перемещение — величина векторная. Единица перемещения — метр.
Скорость — векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка времени.
Формула скорости имеет вид v = s/t. Единица скорости — м/с
Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Формула для вычисления ускорения: a=(v-v0)/t; Единица ускорения – метр/(секунда в квадрате).
Составляющие ускорения тангенциальное и нормальное ускорения
Тангенциальное ускорение направлено по касательной к траектории
Нормальное ускорение направлено по нормали к траектории
Тангенциальное ускорение характеризует изменение скорости по величине. Если скорость по величине не изменяется, то тангенциальная составляющая равна нулю, а нормальная составляющая ускорения равна полному ускорению.
Нормальное ускорение характеризует изменение скорости по направлению. Если направление скорости не изменяется, движение происходит по прямолинейной траектории.
В общем случае полное ускорение:
Итак, нормальная составляющая вектора ускорения
быстрота изменения со временем направления касательной к траектории. Она тем больше (
), чем больше искривлена траектория и чем быстрее перемещается частица по траектории.
4)Угловой путь
Угловой путь – это элементарный угол поворота:
,
.
Радиан – это угол, который вырезает на окружности дугу, равную радиусу.
Направление углового пути определяется правилом правого винта: если головку винта вращать в направлении движения точки по окружности, то поступательное движение острия винта укажет направление .
Угловая скорость (средняя и мгновенная)
Средняя угловая скорость – это физическая величина, численно равная отношению углового пути к промежутку времени:
,
.
Мгновенная угловая скорость – это физическая величина, численно равная изменения пределу отношения углового пути к промежутку времени при стремлении данного промежутка к нулю, или является первой производной углового пути по времени:
,
.
Законы Ньютона
Первый закон Ньютона
По сути, этот закон постулирует инерцию тел, что сегодня кажется очевидным. Но это было далеко не так на заре исследования природы. Аристотель вот утверждал, что причиной всякого движения является сила, т. е. движения по инерции для него не существовало. [источник?]
Второй закон Ньютона
Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и её ускорением.
Второй закон Ньютона утверждает, что
в инерциальной системе отсчета (ИСО) ускорение, которое получает материальная точка, прямо пропорционально приложенной силе и обратно пропорционально массе. |
При подходящем выборе единиц измерения этот закон можно записать в виде формулы:
где — ускорение тела;
— сила, приложенная к телу;
Или в более известном виде:
Если на тело действуют несколько сил, то второй закон Ньютона записывается:
В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется в общем виде: скорость изменения импульса точки равна действующей на неё силе.
где — импульс (количество движения) точки;
— производная по времени.
Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта.
Третий закон Ньютона
Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе — на первое с силой
. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.
Тела действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль одной и той же прямой, равными по модулю и противоположными по направлению: |
Выводы
Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса. Далее, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U( | r1 − r2 | ). Тогда возникает закон сохранения суммарной механической энергии взаимодействующих тел:
Законы Ньютона являются основными законами механики. Из них могут быть выведены все остальные законы механики.
Теорема Штейнера
Теорема Штейнера — формулировка
Согласно теореме Штейнера, установлено, что момент инерции тела при расчете относительно произвольно оси соответствует сумме момента инерции тела относительно такой оси, которая проходит через центр масс и является параллельной данной оси, а также плюс произведение квадрата расстояния между осями и массы тела, по следующей формуле (1):
Где в формуле принимаем соответственно величины: d – расстояние между осями ОО1║О’O1’;
J0 – момент инерции тела, рассчитанный относительно оси, что проходит сквозь центр масс и будет определяться соотношением (2):
Например, для обруча на рисунке момент инерции относительно оси O’O’, равен
Момент инерции прямого стержня длиной , ось перпендикулярна стержню и проходит через его конец.
10) момент импульса закон сохранения момента импульса
Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:
Рис.1
Моментом импульса относительно неподвижной оси z называется скалярная величина Lz, равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса Lz не зависит от положения точки О на оси z.
(1)
и направлен по оси в сторону, определяемую правилом правого винта.
Зако́н сохране́ния моме́нта и́мпульса Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел, которая остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.
Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.
В упрощённом виде: , если система находится в равновесии.
Динамика твердого тела
Вращение вокруг неподвижной оси. Момент импульса твердого тела относительно неподвижной оси вращения равен
Направление проекции совпадает с направлением т.е. определяется по правилу буравчика. Величина
называется моментом инерции твердого тела относительно Продифференцировав , получим
Это уравнение называют основным уравнением динамики вращательного движения твердого тела вокруг неподвижной оси. Вычислим еще кинетическую энергию вращающегося твердого тела:
и работу внешней силы при повороте тела:
Плоское движение твердого тела. Плоское движение есть суперпозиция поступательного движенияцентра масс и вращательного движения в системе центра масс (см. разд. 1.2). Движение центра масс описываетсявторым законом Ньютона и определяется результирующей внешней силой (уравнение (11)).Вращательное движение в системе центра масс подчиняется уравнению (39), в котором надо учитывать только реальные внешние силы, так как момент сил инерции относительно центра масс равен нулю (аналогично моменту сил тяжести, пример 1 из разд. 1.6). Кинетическая энергия плоского движения равна уравнение
Момент импульса относительно неподвижной оси, перпендикулярной плоскости движения, вычисляется по формуле (см. уравнение
где
— плечо скорости центра масс относительно оси, а знаки определяются выбором положительного направления вращения.
Движение с неподвижной точкой. Угловая скорость вращения, направленная вдоль оси вращения, меняет свое направление как в пространстве, так и по отношению к самому твердому телу. Уравнение движения
которое называют основным уравнением движения твердого тела с неподвижной точкой, позволяетузнать, как изменяется момент импульса Так как вектор
в общем случае не параллелен вектору
то для
замыкания уравнений движения надо научиться связывать эти величины друг с другом.
Гироскопы. Гироскопом называют твердое тело, быстро вращающееся относительно своей оси симметрии. Задачу о движении оси гироскопа можно решать в гироскопическом приближении: оба вектора направлены вдоль оси симметрии. Уравновешенный гироскоп (закрепленный в центре масс) обладает свойством безынерционно
его ось перестает двигаться, как только исчезает внешнее воздействие (
обращается в нуль). Это позволяет использовать гироскоп для сохранения ориентации в пространстве.
На тяжелый гироскоп (рис. 12), у которого центр масс смещен на расстояние от точки закрепления действует момент силы тяжедти, направленный перпендикулярно
Так как
то
и ось гироскопа совершают регулярное вращение вокруг вертикальной оси (прецессия гироскопа).
Конец вектора вращается по горизонтальной окружности радиусом
а с угловой скоростью
Угловая скорость прецессии не зависит от угла наклона оси а.
Зако́ны сохране́ния — фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.
· Закон сохранения энергии
· Закон сохранения импульса
· Закон сохранения момента импульса
· Закон сохранения массы
· Закон сохранения электрического заряда
· Закон сохранения лептонного числа
· Закон сохранения барионного числа
· Закон сохранения чётности
Момент силы
Моментом силы относительно оси вращения называется физическая величина, равная произведению силы на ее плечо.
Момент силы определяют по формуле:
Плечом силы называется кратчайшее расстояние от линии действия силы до оси вращения тела.
Момент силы характеризует вращающее действие силы. Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу надо приложить,
За единицу момента силы в СИ принимается момент силы в 1 Н, плечо которой равно 1м — ньютон-метр (Н • м).
Твердое тело, способное вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М,, вращающей его по часовой стрелке, равен моменту силы М2, вращающей его против часовой стрелки:
Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние I между силами, которое называется плечом пары, независимо от того, на какие отрезки и /2 разделяет положение оси плечо пары:
M = Fll + Fl2=F(l1 + l2) = Fl.
13.Кинетическая энергия вращающегося тела. |
Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек, на которые это тело можно мысленно разбить:
Если тело вращается вокруг неподвижной оси z с угловой скоростью
Сопоставив (6.4.1) и (6.4.2), можно увидеть, что момент инерции тела I является мерой инертности при вращательном движении, так же как масса m – мера инерции при поступательном движении.
Здесь Ic – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции. Работа момента сил. Работа силы. Работа момента сил, действующего на тело, вращающееся вокруг неподвижной оси Механические колебания. Колеба́ния — повторяющийся в той или иной степени во временипроцесс изменения состояний системы. Колебания почти всегда связаны с попеременным превращением энергии одной формы проявления вдругую форму. Отличие колебания от волны. Колебания различной физической природы имеют много общих закономерностей и тесно взаимосвязаны cволнами. Поэтому исследованиями этих закономерностей занимается обобщённая теория колебаний иволн. Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, так сказать, «местные» преобразования энергии. Характеристики колебаний Амплитуда Промежуток времени Период колебаний Маятник мат физ пруж . Пружинный маятник — это груз массой m, который подвешен на абсолютно упругой пружине и совершает гармонические колебания под действием упругой силы F = –kx, где k — жесткость пружины. Уравнение движения маятника имеет вид Из формулы (1) вытекает, что пружинный маятник совершает гармонические колебания по закону х = Асоs(ω0t+φ) с циклической частотой Формула (3) верна для упругих колебаний в границах, в которых выполняется закон Гука, т. е. если масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, используя (2) и формулу потенциальной энергии предыдущего раздела, равна 2. Физический маятник — это твердое тело, которое совершает колебания под действием силы тяжести вокруг неподвижной горизонтальной оси, которая проходит через точку О, не совпадающую с центром масс С тела (рис. 1). Рис.1 Если маятник из положения равновесия отклонили на некоторый угол α, то, используя уравнение динамики вращательного движения твердого тела, момент M возвращающей силы где J — момент инерции маятника относительно оси, которая проходит через точку подвеса О, l – расстояние между осью и центром масс маятника, Fτ ≈ –mgsinα ≈ –mgα — возвращающая сила (знак минус указывает на то, что направления Fτ и α всегда противоположны; sinα ≈ α поскольку колебания маятника считаются малыми, т.е. маятника из положения равновесия отклоняется на малые углы). Уравнение (4) запишем как идентичное с (1), решение которого (1) найдем и запишем как: Из формулы (6) вытекает, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω0 и периодом где введена величина L=J/(ml) — приведенная длина физического маятника. Точка О’ на продолжении прямой ОС, которая отстоит от точки О подвеса маятника на расстоянии приведенной длины L, называетсяцентром качаний физического маятника (рис. 1). Применяя теорему Штейнера для момента инерции оси, найдем т. е. ОО’ всегда больше ОС. Точка подвеса О маятника и центр качаний О’ имеют свойство взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса будет новым центром качаний, и при этом не изменится период колебаний физического маятника. 3. Математический маятник — это идеализированная система, состоящая из материальной точки массой m, которая подвешена на нерастяжимой невесомой нити, и которая колеблется под действием силы тяжести. Хорошее приближение математического маятника есть небольшой тяжелый шарик, который подвешен на длинной тонкой нити. Момент инерции математического маятника где l — длина маятника. Поскольку математический маятник есть частный случай физического маятника, если предположить, что вся его масса сосредоточена в одной точке — центре масс, то, подставив (8) в (7), найдем выражение для периода малых колебаний математического маятника Сопоставляя формулы (7) и (9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Значит, приведенная длина физического маятника — это длина такого математического маятника, у которого период колебаний совпадает с периодом колебаний данного физического маятника. Гар. колебания и харак. Колебаниями называются движения или процессы, характеризующиеся определенной повторяемостью во времени. Колебательные процессы имеют широкое распространение в природе и технике, например качание маятника часов, переменный электрический ток и т. Д Простейшим типом колебаний являются гармонические колебания — колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса). Гармонические колебания некоторой величины s описываются уравнением вида Определенные состояния системы, которая совершает гармонические колебания, повторяются через промежуток времени Т, имеющий название период колебания, за который фаза колебания получает приращение (изменение) 2π, т. е. Величина, обратная периоду колебаний, т. е. число полных колебаний, которые совершаются в единицу времени, называется частотой колебаний. Сопоставляя (2) и (3), найдем Единица частоты — герц (Гц): 1 Гц — частота периодического процесса, во время которого за 1 с совершается один цикл процесса. Амплитуда колебаний Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия. Затух. колеб и их хар Затухающие колебания Затуханием колебаний называется постепенное уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой. Собственные колебания без затухания – это идеализация. Причины затухания могут быть разные. В механической системе к затуханию колебаний приводит наличие трения. В электромагнитном контуре к уменьшению энергии колебаний приводят тепловые потери в проводниках, образующих систему. Когда израсходуется вся энергия, запасенная в колебательной системе, колебания прекратятся. Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю. В новых обозначениях дифференциальное уравнение затухающих колебаний имеет вид: Это линейное дифференциальное уравнение второго порядка. Частота затухающих колебаний: В любой колебательной системе затухание приводит к уменьшению частоты и соответственно увеличению периода колебаний. Период затухающих колебаний: Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее: Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении. Амплитуда затухающих колебаний: Амплитуда затухающих колебаний – величина не постоянная, а изменяющаяся со временем тем быстрее, чем больше коэффициент β. Поэтому определение для амплитуды, данное ранее для незатухающих свободных колебаний, для затухающих колебаний надо изменить. При небольших затуханиях амплитудой затухающих колебаний называется наибольшее отклонение от положения равновесия за период. Изменение амплитуды затухающих колебаний происходит по экспоненциальному закону: Пусть за время τ амплитуда колебаний уменьшится в «e » раз («е» – основание натурального логарифма, е ≈ 2,718). Тогда, с одной стороны, Вынужденные колеб. Волны и их характеристика Волна́ — возбуждение среды, распространяющееся в пространстве и времени или в фазовом пространстве с переносом энергии и без переноса массы По своему характеру волны подразделяются на: По признаку распространения в пространстве: стоячие, бегущие. По характеру волны: колебательные, уединённые (солитоны). По типу волн: поперечные, продольные, смешанного типа. По законам, описывающим волновой процесс: линейные, нелинейные. По свойствам субстанции: волны в дискретных структурах, волны в непрерывных субстанциях. По геометрии: сферические (пространственные), одномерные (плоские), спиральные. Характеристики волн Временна́я и пространственная периодичности временная периодичность — скорость изменения фазы с течением времени в какой-то заданной точке, называемую частотой волны Временная и пространственная периодичности взаимосвязаны. В упрощённом виде для линейных волн эта зависимость имеет следующий вид: где c — скорость распространения волны в данной среде. Интенсивность волны Для характеристики интенсивности волнового процесса используют три параметра: амплитуда волнового процесса, плотность энергии волнового процесса и плотность потока энергии. Термодинамические системы В термодинамике изучаются физические системы, состоящие из большого числа частиц и находящиеся в состоянии термодинамического равновесия или близком к нему. Такие системы называются термодинамическими системами. Единицей измерения числа частиц в термодинамической системе обычно служит число Авогадро[3] (примерно 6·10^23 частиц на моль вещества), дающее представление, о величинах какого порядка идёт речь. Термодинамическое равновесие — состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура,давление, объём, энтропия) в условиях изолированности от окружающей среды. Термодинамические параметры Различают экстенсивные параметры состояния, пропорциональные массе системы: объём, внутренняя энергия, энтропия, энтальпия, энергия Гиббса, энергия Гельмгольца (свободная энергия), и интенсивные параметры состояния, не зависящие от массы системы: давление, температура, концентрация, магнитная индукция и др. Законы идеального газа Эту формулу называют уравнением изотермы. Графически зависимость p от V для различных температур изображена на рисунке. Графически зависимость V от T для различных давлений изображена на рисунке. Перейдя от температуры в шкале Цельсия к абсолютной температуре
|