Что такое потери холостого хода
Потери холостого хода трансформаторов
Необходимо было переоборудовать одну из квартир в нашем доме под офис ТСЖ. По рекомендациям было принято решение обратиться в Энерджи.
Я-мама трех дочек. С переездом в новую квартиру в Москве столкнулись с проблемой, как разместить троих детей в одной комнате и при этом.
Моя детская мечта, обзавестись своим большим домом, и вот этот момент наступил! Мы с мужем начали думать над проектом, как все будет, что.
С женой решили переехать и заняться строительством нового дома. Понадобилась помощь в проектировании инженерных систем. Долго искали.
Заказывала дизайн-проект проект, для квартиры с инженерными проектами в комплекте. Сама не хотела ничего подобного делать и вообще в этом.
Давно с мужем мечтали о загородном доме. Купили участок с домом, но дизайн интерьера в нем нам совсем не нравился, мы решили сделать ремонт.
После приобретения квартиры столкнулись с необходимостью ремонта. По совету знакомых мы обратились в ENERGY-SYSTEM. В минимально сжатые.
Срочно понадобился проект перепланировки загородного дома. Перебрала кучу компаний, но везде дорого, либо не успевают сделать в назначенный.
Родители на свадьбу подарили нам трехкомнатную квартиру. Но сама квартира была в таком ужасном состоянии, что я даже не знала с чего начать.
Решила открыть частную стоматологию, о которой мечтала с детства. Взяла в аренду помещение, нужен был дизайн-проект, обратилась в Энерджи.
Что такое потери холостого хода трансформатора
Любые потери энергии могут приводить к перерасходу материалов и топлива, что приводит к значительному увеличению стоимости энергоресурсов. Чтобы потери не приводили к серьезным финансовым затратам, на трансформаторах должны периодически проводиться профилактические и электроизмерительные работы, которые позволяют своевременно выявить любые проблемы и неполадки в работе оборудования.
Самой распространенной причиной проблем в работе трансформаторов являются потери холостого хода. Холостым ходом называется один из режимов работы прибора, в процессе которого выделенное питание подается на одну обмотку устройства, в то время как остальные обмотки разомкнуты. Потери холостого хода трансформатора – это любые утечки и потери, возникающие во время такого режима работы оборудования. Утечки обязательно возникают при номинальных уровнях частоты, напряжения и других параметров электрической энергии. Потери холостого хода сказываются на качестве электроснабжения, о чем следует помнить при создании проектов реконструции электрики в домах и на других объектах.
Пример проекта технического отчета нежилого помещения
Потери в работе трансформатора
В режиме работы холостого хода устройства могут возникать различные утраты мощности. Чаще всего такие проблемы бывают связаны с магнитными потерями мощности в стальных элементах устройства, с потерями на первичной обмотке, а также с проблемами в изоляции оборудования.
Утечки, возникающие из-за проблем в изоляции, принято называть диэлектрическими. Такие неполадки возникают только на оборудовании, работающем на высоких частотах. Для стандартного силового оборудования, работающего со стандартной частотой, потери из-за изоляции не отличаются высокими характеристиками, а потому даже не берутся в расчет при исследовании трансформаторов специалистами. Утечки мощности на первичной обмотке могут отличаться большей величиной, но даже они не превышают 1% от величины потерь холостого хода.
Наиболее важной долей утечек и электрических потерь являются магнитные потери. Все магнитные потери в трансформаторах можно разделить на две большие группы: потери от вихревых токов и от гистерезиса. Потери от гистерезиса в современных трансформаторах обычно составляют не более 20-25%. Это обусловлено тем, что в современном оборудовании принято использовать высококачественную электротехническую сталь. Более 75% потерь на трансформаторах происходит из-за вихревых токов.
Качество стали
Чтобы правильно определить процентные потери из-за различных магнитных причин при нормальной работе трансформаторного оборудования, специалистам обязательно нужно будет учитывать характеристики электротехнической стали, используемой в устройстве. Для проведения измерений нужно учесть также технологические особенности магнитной системы, массу, методику производства стальных пластин и другие ее характеристики.
Все факторы, влияющие на потери трансформатора можно разделить на две группы: конструктивную и техническую. К конструктивной группе факторов принято относить форму, размеры и используемую методику крепежа металлических пластин, способ их прессовки, особенности обработки стержней и т.д. Технологическими факторами называют методику резки стальных пластин, используемые технологии для удаления заусенцев на них, методику отжига, материал лакировки и т.д.
Достаточно распространенными причинами потерь на трансформаторах являются ошибки при производстве элементов такого оборудования, а также ошибки в ходе сборки трансформаторного устройства.
Согласно нормам ГОСТа, правильно собранный трансформатор должен иметь уровень реальных потерь с отклонением не более 5% от расчетного уровня потерь, указанного в технической документации.
На что сказываются потери и от чего они зависят
В процессе транспортировки электрической энергии от объектов производства до конечного потребителя происходят серьезные потери. Объем потерь при транспортировке может составлять до 18%, причем, большая часть этих потерь приходится именно на трансформаторное оборудование.
Объем потерь обязательно должен учитываться проектировщиками при создании систем электрического потребления. От потерь будет зависеть себестоимость электрической энергии, стоимость обслуживания и ремонта электрического оборудования.
До середины XX века для производства трансформаторов использовалась сталь горячей прокатки, которая отличалась низкими техническими характеристиками. В 50-х годах прошлого столетия такую сталь начали постепенно заменять металлом холодной прокатки с зерновой структурой. Основным достоинством более современной стали являлся более высокий уровень магнитной проницаемости, а потому и большая эффективность трансформаторного оборудования в целом.
С тех пор и до наших дней технологии производства холоднокатаной стали постоянно улучшались и сегодня параметры таких материалов еще больше улучшились.
В настоящее время уровень потерь холостого хода трансформаторного оборудования значительно снизился за счет применения более современной и функциональной стали, улучшения конструкции магнитных систем и модернизации сердечников.
Если рассматривать особенности современной стали, используемой для создания пластин, то ее положительные свойства связаны с тем, что с течением времени производители улучшали ориентацию доменов, уменьшали толщину стальных листов при производстве. Кроме того, очистка доменов сегодня осуществляется за счет лазерной обработки, что также сказывается на технических характеристиках конечных изделий. Занимающиеся измерениями и выбором трансформаторного оборудования специалисты должны знать отличия трансформаторов от автотрансформаторов.
Причины потерь холостого хода
Сегодня используются масляные и сухие трансформаторные приборы. До недавнего времени, масляные трансформаторы были более распространены, но они имеют ряд серьезных недостатков, к примеру, низкую пожаробезопасность и сложность размещения, потому сегодня сухие трансформаторы используются гораздо чаще.
Среди основных причин потерь холостого хода в различных устройствах можно выделить следующие факторы:
Это лишь самые основные причины потерь холостого хода, с которыми специалисты сталкиваются чаще всего. Существуют и другие факторы, из-за которых величина потерь холостого хода может превышать допустимые пределы, из-за чего вырастет себестоимость эксплуатации электрических систем. Для определения причин потерь на отдельном трансформаторе, собственнику потребуется заказать услуги профессиональных электроизмерений.
Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости услуг электролаборатории.
Определение холостого хода трансформатора
Трансформаторы представляют собой сложное оборудование, которое предназначено для изменения параметров тока в цепи. Они могут повышать или понижать напряжение электричества в соответствии с требованиями потребителей.
В оборудовании при работе определяются некоторые потери мощности. Поэтому не вся электроэнергия, которая поступила на первичную обмотку, доходит к потребителю. При этом греется трансформатор (магнитопривод, обмотки и прочие детали). В различных конструкциях этот показатель неодинаков.
Холостой ход трансформатора позволяет определить токовые потери. Эта методика применяется в сочетании с определением напряжения в режиме короткого замыкания трансформатора. Этот процесс называется опытом агрегата. Он выполняется по определенной схеме.
Общее устройство и виды
Чтобы понять, что такое опыт холостого хода различных трансформаторов, необходимо рассмотреть, что собой представляет подобное оборудование.
Основные типы
Трансформаторами называются машины неподвижного типа, которые работают благодаря электрическому току. Они меняют входное напряжение. Существует несколько видов подобных аппаратов:
Чаще всего в энергетическую цепь требуется подключение силового трансформатора. Они могут иметь две или более обмоток. Аппарат может быть однофазный (бытовая сеть) или многофазный (промышленная сеть).
Особенности установок
Отдельно выделяются автотрансформаторы. В них есть только одна совмещенная обмотка. Также бывает сварочный аппарат. Они имеют определенную сферу применения.
В однофазном и многофазном оборудовании может устанавливаться различная номинальная мощность. Она может определяться в диапазоне от 10 до 1000 кВА и более. Маломощные однофазные и многофазные приборы могут быть в диапазоне до 10 кВА. Средние разновидности будут иметь мощность 20 кВА, 250 кВА, 400 кВА, 630 кВА и т. д. Если же этот показатель больше 1000 кВА, это установка высокой мощности.
Методология проведения опыта
Потери холостого хода трансформатора определяются при создании определенного режима. Для этого прекращается снабжение током всех обмоток. Они остаются разомкнутыми. После этого производится снабжение цепей электричеством. Оно определяется только на первом контуре. Аппаратура должна работать под напряжением, которое устанавливается при его производстве производителем.
Через первичный контур силовой, сварочной или прочей установки протекают токи, которые носят название ХХ. Их величина равняется не более 3-9% от заданного производителем показателя. При этом на обмотке вторичного контура электричество отсутствует. На первичном контуре ток производит магнитный поток. Он пересекает витки обеих обмоток. При этом возникает ЭДС самоиндукции на контуре первичном и взаимоиндукции – на обмотке вторичного типа.
Например, напряжение холостого хода сварочного трансформатора небольшой и средней мощности представляет собой ЭДС взаимоиндукции.
Подход к проведению измерений
Замер потерь холостого хода может производиться в двух аспектах. Их называют потерями в стали и меди. Второй показатель говорит о рассеивании тепла в обмотках (они начинают греться). В процессе проведения опыта этот показатель очень мал. Поэтому им пренебрегают.
Данные о потере тока холостого хода трансформатора представляются в виде таблицы. В ней рассчитаны параметры для стали определенных сортов и толщины. Ток холостого хода трансформатора рассматривается в аспекте мощности, которая создается в магнитом потоке и именуется потерей в стали. Она затрачивается на нагрев листов из специального сплава. Они изолируются друг от друга лаковым покрытием. При создании таких магнитоприводов не используется метод сварки.
Суть измерения
Если по какой-то причине нарушается изоляционный слой между пластинами магнитопривода, между ними возрастают вихревые токи. При этом система начинает нагреваться. Лаковый слой постепенно разрушается. Потери при работе установки возрастают, его эксплуатационные характеристики ухудшаются.
В таком случае потери мощности в стали увеличиваются. При проведении расчетов этих характеристик в режиме холостого хода можно выявить возникшие нарушения в работе агрегата. Именно по этой причине производится соответствующий расчет.
Коэффициент трансформации
При определении работы установки применяется такое понятие, как коэффициент трансформации. Его формула представлена далее:
Отсюда следует, что напряжение на вторичном контуре будет определяться соотношением количества витков. Чтобы иметь возможность регулировать выходное электричество, в конструкцию установки вмонтирован специальный прибор. Он переключает число витков на первичном контуре. Это анцапфа.
Для проведения опыта на холостом ходу регулятор ставится в среднее положение. При этом измеряется коэффициент.
Однофазные приборы
Для проведения представленного опыта, при использовании понижающего или повышающего бытового агрегата, в расчет берется представленный коэффициент. При этом используют два вольтметра. Первый прибор подключается к первичной обмотке. Соответственно второй вольтметр подсоединяется к вторичному контуру.
Входное сопротивление измерительных приборов должно соответствовать номинальным характеристикам установки. Она может работать в понижающем или повышающем режиме. Поэтому при необходимости провести ремонтные работы, на нем измеряют не только подачу низкого, но и высокого напряжения.
Трехфазные приборы
Для трехфазных агрегатов в ходе проведения опыта исследуются показатели на всех контурах. При этом потребуется применять сразу 6 вольтметров. Можно использовать один прибор, который будет подключаться поочередно ко всем точкам измерения.
Если установленное производителем значение на первичной обмотке превышает 6 кВ, на нее подают ток 380 В. При измерении в высоковольтном режиме нельзя определить показатели с требуемым классом точности. Поэтому замер производят в режиме низкого напряжения. Это безопасно.
Применение коэффициента
В процессе проведения измерения анцапфу перемещают во все установленные производителем положения. При этом замеряют коэффициент трансформации. Это позволяет определить наличие в витках замыкания.
Если показания по фазам будут иметь разброс при замерах больше, чем 2%, а также их снижение в сравнении с предыдущими данными, это говорит об отклонениях в работе агрегата. В первом случае в системе определяется короткое замыкание, а во втором – нарушение изоляции обмоток. Агрегат не может при этом работать правильно.
Такие факты требуют подтверждения. Например, это может быть измерение сопротивления. Влиять на увеличение разброса показателей коэффициента могут возрастание сопротивления между контактами анцапфы. При частом переключении возникает такая ситуация.
Измерение тока
При опытном измерении тока холостого хода мастер применяет амперметры. Их необходимо подсоединять к первичной обмотке последовательно. Напряжение в контуре должно равняться номинальному значению.
Если проводится исследование работы трехфазного промышленного агрегата, замер выполняет для всех фаз одновременно или последовательно. При этом испытания производятся только для установок от 1000 кВА.
Измерение потерь
Потери в магнитоприводе замеряют исключительно при использовании мощной установки. При этом можно брать для расчетов пониженное напряжение, которое подключено к первичному контуру через ваттметр. Это прямой метод измерения.
При учете показателей вольтметра или амперметра потребуется умножить их мощности друг на друга. Это косвенный метод. При этом результат имеет определенную погрешность. Искажение происходит из-за невозможности учесть при таком расчете коэффициент мощности. Это конус угла, который образуется в векторной схеме между напряжением и током. В режиме холостого хода между ними появляется угол 90º.
Применение ваттметра
Ваттметр позволяет произвести замер с учетом коэффициента мощности. Это дает возможность получить более точный результат. Расчет выполняется по следующей формуле:
Далее необходимо создать на основе полученного результата векторную диаграмму. По каждой фазе учитываются установленные потери. Для этого чаще всего строится таблица. При этом используется схема, которая изначально применялась производителем при создании оборудования.
Полученный результат не подлежит сравнению с нормативами. Показатели сравнивают только с характеристиками предыдущих проверок. Если потери с течением времени только возрастают, это говорит о нарушении изоляции пластин магнитопривода или появлении иных нарушений. Обратить этот процесс невозможно.
Проведение замеров холостого хода позволяет оценить состояние аппаратуры, а также определить потребность в необходимости планового или аварийного ремонта. Поэтому регулярные испытания позволяют правильно спланировать работу установки, предотвратить ее непредвиденное отключение.
Интересное видео: Описание основ работы трансформатора.
Понятие потерь холостого хода трансформатора и как их определить, формулы и таблицы
В результате энергопотерь происходит перерасход средств и материалов. Из-за этого электричество дорожает. Чтобы справиться с этой проблемой, стараются вовремя выявлять неполадки и предотвращать свои в работе. Негативно на работу устройства влияют потери на холостом ходу трансформатора. Для устранения данной проблемы постоянно разрабатываются новые методики.
Понятие холостого хода трансформатора
Когда у трансформатора наблюдается выделенное питание одной обмотки, а другие пребывают в разомкнутом состоянии. Этот процесс приводит к утечке энергии, что и называют потерями холостого хода. Его развитие происходит под влиянием ряда внешних и внутренних факторов.
Мощность трансформатора не используется в полной мере, а часть энергии утрачается по причине некоторых магнитных процессов, особенностями первичной обмотки и изоляционного слоя. Последний вариант влияет при использовании приборов, функционирующих на повышенной частоте.
Какие факторы влияют на потери
Современные трансформаторы в условиях полной нагрузки достигают 99% КПД. Но устройства продолжают совершенствовать, пытаясь снизить утрату энергии, которая практически равны сумме потерь холостого хода, возникающих под влиянием разнообразных факторов.
Изоляция
Если на стягивающих шпильках установлена плохая изоляция или ее недостаточно, возникает замкнутый накоротко контур. Это один из главных факторов данной проблемы трансформатора. Поэтому процессу изоляции следует уделять больше внимания, используя для этих целей качественные специализированные материалы.
Вихревые токи
Развитие вихревых токов связано с течением магнитного потока по магнитопроводу. Их особенность в перпендикулярном направлении по отношению к потоку. Чтобы их уменьшить, магнитопровод делают из отдельных элементов, предварительно изолированных. От толщины листа и зависит вероятность появления вихревых токов, чем она меньше, тем ниже риск их развития, приводящего к меньшим потерям мощности.
Чтобы уменьшить вихревые токи и увеличить электрическое сопротивление стали, в материал добавляют различные виды присадок.
Они улучшают свойства материала и позволяют снизить риск развития неблагоприятных процессов, плохо отражающихся на работе устройства.
Гистерезис
Как и переменный ток, магнитный поток также меняет свое направление. Это говорит о поочередном намагничивании и перемагничивании стали. Когда ток меняется от максимума до нуля, происходит размагничивание стали и уменьшение магнитной индукции, но с определенным опозданием.
При перемене направления тока кривая намагничивания формирует петлю гистерезиса. Она отличается в разных сортах стали и зависит от того, какие максимальные показатели магнитной индукции материал может выдержать. Петля охватывает мощность, которая постепенно перерасходуется на процесс намагничивания. При этом происходит нагревание стали, энергия, проводимая по трансформатору, превращается в тепловую и рассеивается в окружающую среду, то есть, она тратится зря, не принося никакой пользы всем пользователям.
Характеристики электротехнической стали
Для трансформаторов используют преимущественно холоднокатаную сталь. Но показатель потерь в ней зависит от того, насколько качественно собрали устройство, соблюдались ли все правила в ходе производственного процесса.
Для уменьшения потерь можно также немного добавить сечения проводам на обмотке. Но это не выгодно с финансовой точки зрения, ведь придется использовать больше магнитопровода и других важных материалов. Поэтому размер обмоточных проводов меняют редко. Пытаются найти другой, более экономичный способ решения этой проблемы.
Перегрев
В процессе работы трансформатора его элементы могут нагреваться. В этих условиях устройство не способно нормально выполнять свои функции. Все зависит от скорости этого процесса. Чем выше нагрев, тем быстрее прибор перестанет выполнять свои прямые функции и понадобится капитальный ремонт и замена определенных деталей.
В первичной обмотке
Если электрический ток по проводнику замыкается, то высокая вероятность утечки электрической энергии. Размер потерь зависит от величины тока в проводнике и его сопротивления, а также от показателя нагрузок, возлагаемых на прибор.
Как определить потери
Этот процесс можно измерить, воспользовавшись мощной установкой. Формула включает такие действия: необходимо умножить показатели их мощности друг на друга. При использовании этого способа необходимо учитывать наличие определенных погрешностей. Искажение связано с тем, что коэффициент мощности учесть точно нельзя. Этот показатель называют конус игла. Он достаточно важен для работы устройства.
Таблица потерь силовых трансформаторов по справочным данным в зависимости от номинала
Чаще всего проблема утечки электроэнергии связана с движением вихревых токов и перемагничиванием. Под влиянием этих факторов нагревается магнитопровод, который обуславливает основную часть потерь холостого хода независимо от тока нагрузки. Развитие этого процесса происходит независимо от того, в каком режиме функционирует устройство.
Постепенно, под влиянием определенных факторов могут меняться эти показатели в сторону значительного увеличения.
Мощность кВа | Напряжение ВН/НН, кВ | Потери холостого хода Вт |
250 | 10/0,4 | 730 |
315 | 10/0,4 | 360 |
400 | 10/0,4 | 1000 |
500 | 10/0,4 | 1150 |
630 | 10/0,4 | 1400 |
800 | 10/0,4 | 1800 |
1000 | 10/0,4 | 1950 |
Проверка устройства в режиме ХХ
Для этого выполняют такие действия:
После получения показаний всех приборов выполняют расчеты, которые помогут в вычислении. Чтобы получить нужные данные, необходимо показатели первой обмотки разделить на вторую. С применением данных опыта ХХ с результатами короткозамкнутого режима определяют, насколько полно устройство выполняет свои действия.
Особенности режима ХХ в трехфазном трансформаторе
На функционирование трехфазного трансформатора в таком режиме влияют отличия в подключении обмоток: первичная катушка в виде треугольника и вторичная в форме звезды. Ток способствует созданию собственного потока.
Трехфазный ток в виде группы однофазных имеет такие особенности: замыкание ТГС магнитного потока происходит в каждой фазе за счет сердечника. Если напряжение будет постепенно увеличиваться, то в изоляции возникнет пробой и электроустановка рано или поздно выйдет из строя.
Если в трансформаторе используется бронестержневая магнитная система, то в нем можно наблюдать развитие похожих процессов.
Примеры определения потерь ХХ на реальных моделях
Чтобы определить показатель потерь в течение года на трансформаторе типа ТНД мощностью в 16МВА, необходимо воспользоваться эмпирической формулой:
Вывод
Энергопотери в условиях холостого хода трансформатора связаны с магнитными потерями, потерями в первичной обмотке и изоляционном слое. Для снижения этого показателя до сих пор ведутся работы, несмотря на то, что КПД современных трансформаторов в условиях повышенной нагрузки составляет 99%.
Для снижения показателя утечки энергии необходимо снизить влияние провоцирующих факторов. Чтобы добиться этого, постоянно усовершенствуют технологию создания устройств, используют только прочные материалы, проверяя их экспериментальным путем.