Что такое правильная четырехугольная призма
Что такое призма: определение, элементы, виды, варианты сечения
В данной публикации мы рассмотрим определение, основные элементы, виды и возможные варианты сечения призмы. Представленная информация сопровождается наглядными рисунками для лучшего восприятия.
Определение призмы
Призма – это геометрическая фигура в пространстве; многогранник с двумя параллельными и равными гранями (многоугольниками), а другие грани при этом являются параллелограммами.
На рисунке ниже представлен один из самых распространенных видов призмы – четырехугольная прямая (или параллелепипед). Другие разновидности фигуры рассмотрены в последнем разделе данной публикации.
Элементы призмы
Развёртка призмы – разложение всех граней фигуры в одной плоскости (чаще всего, одного из оснований). В качестве примера – для прямоугольной прямой призмы:
Примечание: свойства призмы представлены в отдельной публикации.
Варианты сечения призмы
Примечание: другие варианты сечения не так распространены, поэтому отдельно на них останавливаться не будем.
Виды призм
Рассмотрим разновидности фигуры с треугольным основанием.
Призма и ее элементы. Свойства правильной четырехугольной призмы
Призма является достаточно простой геометрической объемной фигурой. Тем не менее у некоторых школьников при определении ее основных свойств возникают проблемы, причина которых, как правило, связана с неправильно используемой терминологией. В данной статье рассмотрим, какие призмы бывают, как они называются, а также подробно охарактеризуем правильную четырехугольную призму.
Призма в геометрии
Вам будет интересно: Холю и лелею. Что значит лелеять и холить?
Элементы призмы и теорема Эйлера
Поскольку рассматриваемая объемная фигура представляет собой полиэдр, то есть образована набором пересекающихся плоскостей, то она характеризуется некоторым количеством вершин, ребер и граней. Все они являются элементами призмы.
В середине XVIII века швейцарский математик Леонард Эйлер установил связь между количеством основных элементов полиэдра. Эта связь записывается следующей простой формулой:
Для любой призмы справедливо это равенство. Приведем пример его использования. Предположим, имеется правильная четырехугольная призма. Она изображена на рисунке ниже.
Видно, что число вершин для нее равно 8 (по 4 для каждого четырехугольного основания). Число сторон, или граней составляет 6 (2 основания и 4 боковых прямоугольника). Тогда количество ребер для нее будет равно:
Все их можно посчитать, если обратится к тому же рисунку. Восемь ребер лежат в основаниях, а четыре ребра перпендикулярны этим основаниям.
Полная классификация призм
С этой классификацией важно разобраться, чтобы впоследствии не путаться в терминологии и использовать правильные формулы для вычисления, например, площади поверхности или объема фигур.
Для любой призмы произвольной формы можно выделить 4 признака, которые ее будут характеризовать. Перечислим их:
Из всех этих пунктов хотелось бы остановиться подробнее на последнем. Прямая призма также называется прямоугольной. Связано это с тем, что для нее параллелограммы являются прямоугольниками в общем случае (в некоторых случаях они могут быть квадратами).
Для примера на рисунке выше изображена пятиугольная вогнутая прямоугольная, или прямая фигура.
Правильная четырехугольная призма
Основание этой призмы представляет собой правильный четырехугольник, то есть квадрат. Выше на рисунке уже было показано, как выглядит эта призма. Помимо двух квадратов, которые ее ограничивают сверху и снизу, она также включает 4 прямоугольника.
Обозначим сторону основания правильной четырехугольной призмы буквой a, длину ее бокового ребра обозначим буквой c. Эта длина также является высотой фигуры. Тогда площадь всей поверхности этой призмы выразится формулой:
S = 2*a2 + 4*a*c = 2*a*(a + 2*c)
Учитывая введенные обозначения для длин сторон, запишем формулу для объема рассматриваемой фигуры:
То есть объем вычисляется как произведение площади квадратного основания на длину бокового ребра.
Фигура куб
Все знают эту идеальную объемную фигуру, но мало кто задумывался, что она представляет собой правильную четырехугольную призму, сторона которой равна длине стороны квадратного основания, то есть c = a.
Для куба формулы полной площади поверхности и объема примут вид:
Призмы
Основные определения и свойства призм. Теорема Эйлера
Утверждение 1. Каждый из n четырехугольников
Для остальных четырехугольников доказательство проводится аналогично.
Это утверждение непосредственно вытекает из утверждения 1.
Замечание 1. В случае, когда не требуется делать специальных уточнений,
боковые грани и основания призмы называют гранями призмы
совокупность всех граней призмы (всех боковых граней и оснований) называют полной поверхностью призмы,
n – угольные призмы называют призмами.
Доказательство. Заметим, что у n – угольной призмы 2n вершин, n боковых граней, 2 основания, 2n ребер основания и n боковых ребер. Следовательно, у n – угольной призмы (n + 2) грани и 3n ребер.
то теорема Эйлера доказана.
Замечание 2. С различными формулами для вычисления объема призмы и площадей боковой и полной поверхности призмы можно ознакомиться в разделе «Формулы для объема, площади боковой поверхности и площади полной поверхности призмы».
Замечание 3. С определением сечения призмы и способами построения сечений призмы ожно ознакомиться в разделе «Сечения призмы. Перпендикулярные сечения призмы».
Виды призм. Прямые и наклонные призмы. Правильные призмы
Существует следующая классификация призм.
Замечание 4. Все боковые грани прямой призмы являются прямоугольниками. Высота прямой призмы равна длине бокового ребра.
Определение 9. Правильной призмой называют прямую призму, основаниями которой служат правильные многоугольники.
Определение 10. Диагональю призмы называют отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.
Примеры призм. Треугольные призмы. Четырехугольные призмы.
Параллелепипеды
Призма | Рисунок | Свойства | |
Наклонная треугольная призма | |||
Правильная треугольная призма | |||
Наклонная четырехугольная призма | |||
Прямая четырехугольная призма | |||
Правильная четырехугольная призма | |||
Прямоугольный параллелепипед |
Наклонная треугольная призма |
ABС – произвольный треугольник.
ABСD – произвольный четырехугольник.
Свойства:
Наклонная четырехугольная призма, все грани которой паралллелограммы.
Противоположные грани параллелепипеда равны.
Все грани прямоугольного параллелепипеда являются прямоугольниками.
Свойства:
Правильный параллелепипед, у которого все грани равные квадраты.
У куба все ребра равны и попарно перпендикулярны.
Высота куба равна длине ребра.
Правильная четырехугольная призма
Элементы правильной четырехугольной призмы
Свойства правильной четырехугольной призмы
Формулы для правильной четырехугольной призмы
Указания к решению задач
При решении задач на тему «правильная четырехугольная призма» подразумевается, что:
Правильная призма — призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат. (см. выше свойства правильной четырехугольной призмы)
Задача.
Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√( ( 12√2 ) 2 + 14 2 ) = 22 см
Задача
Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.
Решение.
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:
a 2 + a 2 = 5 2
2a 2 = 25
a = √12,5
Высота боковой грани (обозначим как h) тогда будет равна:
h 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5
Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания
Четырехугольная призма
Это означает, что если бы вместо четырехугольников основания были, например, треугольниками (как в треугольной призме), у нас было бы три боковые грани.
Элементы четырехугольной призмы
Элементами четырехугольной призмы являются:
Виды четырехугольной призмы
Можно выделить два типа четырехугольной призмы:
Четырехугольная призма также может быть прямой или наклонной, как мы видим на рисунке ниже:
Площадь и объем квадратной призмы
Чтобы лучше понять характеристики четырехугольной призмы, мы можем рассчитать следующие измерения:
Если мы сталкиваемся с правильной четырехугольной призмой, основания представляют собой квадраты, площадь которых равна длине стороны (L) в квадрате.
Кроме того, боковые грани представляют собой прямоугольники, поэтому их площадь рассчитывается путем умножения длины их непрерывных сторон. Теперь, если мы внимательно посмотрим на рисунок, одна из сторон будет высотой призмы (h), а другая будет совпадать со стороной основания (L). Таким образом, мы умножаем площадь каждого прямоугольника на четыре, чтобы найти всю боковую площадь:
Следовательно, площадь правильной четырехугольной призмы будет:
Пример четырехугольной призмы
Предположим, у нас есть правильная четырехугольная призма со стороной 9 метров в основании. Также высота многогранника составляет 16 метров. Какова площадь и периметр фигуры?
Чтобы найти объем, мы сначала вычисляем площадь основания, которая будет квадратом стороны, а затем умножаем на высоту:
- Что такое сервис esp
- Что такое озокерит лечение