Что такое правильное рассуждение

Рассуждение

Правильность рассуждения

Правила построения рассуждений

Целью познания рассуждения является получение истинных знаний. Чтобы получить такие знания с помощью рассуждений, надо, во-первых, иметь истинные предпосылки, а во-вторых, правильно их сочетать, рассуждать по законам логики. При использовании ложных посылок допускают фактических ошибок, а при нарушении законов логики, правил построения соображений делают логические ошибки. Фактических ошибок, как и логических, конечно, надо избегать, что не всегда удается. Что касается логических, то человек высокой интеллектуальной культуры может избежать этих ошибок, поскольку давно уже сформулированы основные законы логически правильного мышления, правила построения рассуждений и даже осмысленно типичные ошибки в рассуждениях.

Как грамматика изучает формы слов и их сочетаний в предложении, абстрагируясь от конкретного содержания языковых выражений, так и логика исследует формы мысли и их сочетаний, отвлекаясь от конкретного содержания этих мыслей.

Чтобы выявить форму мысли или рассуждения, их необходимо формализовать.

Формализация позволяет выявить общие структуры мнений, сформулировать на этой основе общие законы и правила рассуждения, благодаря чему можно изменить любое содержательное рассуждение, фрагмент текста или даже целый текст соответствующей системой формул.

Основные формы рассуждения

Структура рассуждения

Этот процесс состоит из деулювання суждения или логического вывода. Человек с уже сформированными навыками правильного рассуждения должен уметь правильно организовывать данные, выбирать и применять подходящие методы анализа, оценки и синтеза. Для того чтобы эффективно проанализировать и оценить данные, независимо от того, в какой форме (док должна находить связь между фактами и обобщениями, общепринятыми ценностями и личными мнениями. Способности и навыки рассуждать также включают в себя поиск, классификацию и использование знаний при поиске решения проблемкилькох составляющих: толкование, применение, анализ, синтез и оценка знания. Чтобы эффективно проанализировать и оценить данные, независимо от того, в какой форме (док должна находить связь между фактами и обобщениями, общепринятыми ценностями и личными мнениями. Человек должен уметь правильно организовывать данные, выбирать и применять подходящие методы анализа. Человеку необходимо ставить релевантные вопросы.

Эти вопросы традиционные: кто? что? где? когда? и почему? Любой из навыками сформированного логического рассуждения, использует также и критическое мышление, и умственные способности для оценки данных. Эти навыки мышления и умственные способности включают в себя сравнение и противопоставление, причинно-следственные связи, разработку альтернативных решений, демонстрацию связи между понятиями, определение главного, отделения фактов от мнений, выявление несовместимых понятий, умение поставить себя на место другого. Эти умения показывают не только то, что тот или иной человек знает, но и дают дополнительную информацию о ее внутреннем мире.Люди, обладающие этими качествами, способные самостоятельно принимать решения по сложным вопросам.

Виды суждений

Уже на этом уровне можно выделить следующие виды суждений:

В живом языке суждение выражается повествовательным предложением или словосочетанием. Вопросительные предложения (кроме риторических), а также предложения с одного слова вроде «Вечерело», «Холоднишало» не являются суждениями, ибо они не несут в себе развернутого утвердительного смысловой нагрузки.

Источник

Искусство логики: как научиться правильно рассуждать

Мы рассуждаем каждый день. Наши знания о мире рождаются в процессе рассуждений. Да и вся наша жизнь — следствие тех решений, которые мы принимаем в результате рассуждений. Важность рассуждений верна на всех уровнях человеческой деятельности: начиная от того, как ученые строят сложнейшие научные теории или экономисты оценивают выгоду и риски потенциальных инвестиций — и заканчивая расследованием, с кем по ночам переписывается ваша бывшая девушка. Но что значит «рассуждать правильно»? Для ответа на этот вопрос существует специальная наука — логика.

Логика: бытовое и точное значение

Значение термина «логика» слишком размылось в повседневной речевой практике, а ведь на деле логика — одна из старейших наук. Долгое время она воспринималась как инструмент для правильного научного познания. Корпус посвященных логике работ Аристотеля — создателя первой логической теории — называли термином «органон» («инструмент» на древнегреческом).

В основном логику изучают на математических и философских факультетах, а также на факультетах, где занимаются компьютерными науками и всем, что связано с созданием искусственного интеллекта (здесь ее изучают наиболее фундаментально).

Но не обязательно быть математическим гением, чтобы заниматься логикой. Она берет свое начало в философии и до сих пор остается одной из самых активно развивающихся именно философских наук — несмотря на то, что на определенном этапе своей долгой истории обогатилась значительным числом математических методов.

Что такое правильное рассуждение. Смотреть фото Что такое правильное рассуждение. Смотреть картинку Что такое правильное рассуждение. Картинка про Что такое правильное рассуждение. Фото Что такое правильное рассуждение

Так что логика — одна из важнейших гуманитарных дисциплин, которая входит в образовательные стандарты и по многим другим специальностям в высших учебных заведениях: юриспруденция, психология, политология, журналистика, социология, история, лингвистика и т. д.

Чем занимается логика как наука

Логика изучает, какие рассуждения правильные, а какие нет. Кроме того, в ней вырабатываются критерии правильного рассуждения, то есть она может рассказать как надо рассуждать. Почти все используемые нами рассуждения уже давно классифицированы и изучены профессиональными логиками. Известны границы применимости многих методов, изучена степень правдоподобности различных видов рассуждений. Все это систематизировано, но большинство людей абсолютно не владеет этими знаниями.

Как логика смотрит на обобщения

Вы возвращаетесь вечером домой, по дороге вспоминаете, что у вас закончилось молоко и идете в ближайший супермаркет. Перед вами — большой холодильник, все полки которого заставлены бутылками с молоком. Вы подходите к полкам и начинаете выбирать.

Допустим, что там две такие полки и на них выставлено в общей сложности сорок бутылок. Обычно мы ищем максимально свежее молоко, то есть такое, у которого дата производства максимально приближена к дню покупки.

Если сегодня 20-е число, а вы достаете одну бутылку и видите, что оно было произведено 18-го, то достаете другую бутылку — и опять 18-е. «Наверное, на второй полке может быть посвежее», — и вы берете бутылку со второй полки — 17-е число, еще одну — 17-е, еще — 18-е. Потом вы протягиваете руку вглубь полки и достаете еще одну бутылку, и она тоже произведена 18-го числа. После этого вы, скорее всего, сделаете вывод, что молоко, которое произвели 18-го числа — это самое свежее молоко из представленных и пойдете на кассу с ним.

Этот пример иллюстрирует применение не самого достоверного рассуждения: так называемой неполной индукции. Ваш вывод о том, что молоко, произведенное 18-го числа — самое свежее из представленных, носит лишь вероятностный характер, поскольку вы не перебрали все бутылки, а осуществили вывод, основываясь только на некоторой минимальной выборке, которую посчитали достаточной, после чего совершили так называемое индуктивное обобщение. И даже если вы оказались правы, и там действительно не было более свежего молока, это неважно. Само рассуждение, сам способ, при помощи которого вы пришли к такому заключению, считается логикой ненадежным.

Что такое правильное рассуждение. Смотреть фото Что такое правильное рассуждение. Смотреть картинку Что такое правильное рассуждение. Картинка про Что такое правильное рассуждение. Фото Что такое правильное рассуждение

Это весело и забавно, когда речь идет о выборе молока в магазине, но так ли это весело и забавно, когда люди, используя похожие рассуждения, анализируют результаты каких-нибудь экономических реформ и на этом основании планируют новые или выявляют общественное мнение по какому-то важному вопросу?

Каждый раз, когда по телевизору или в интернете вы натыкаетесь на результаты очередного социологического опроса, скажем, с выводом «россияне считают, что США представляют для них угрозу», — вы имеете дело с результатом такой же индукции, которая основана точно не на мнении всех россиян, и, более того, не на мнении большинства россиян. В подобных исследованиях количество участников вообще не играет почти никакой роли. Эти рассуждения основаны на характере той выборки людей, которые проходят данный опрос; в качестве основания принимается их возраст, пол, род деятельности, сексуальная ориентация и всё, что угодно. Само число участников зачастую в сотни тысяч раз меньше, чем реальное число россиян. Чтобы в этом убедиться, достаточно открыть любой отчет по статистике.

А теперь вы можете сравнить степень правдоподобности такого метода рассуждений и того, как полученные таким способом результаты влияют на общественное мнение, циркулируя в топах информационных агентств, новостных лент и т. п. Именно поэтому логику и стоит изучать.

Главные правила логики

Самое главное — осознать, что существует два основных вида рассуждений: одни из них — самые надежные, а другие — не очень. Первые называют дедуктивными рассуждениями, вторые — правдоподобными. Как ни парадоксально, обычные люди почему-то больше предпочитают использовать правдоподобные, а не дедуктивные рассуждения.

Есть ряд дедуктивных рассуждений, которые просто необходимо усвоить.

1. Условно-категорические умозаключения

К условно-категорическому типу рассуждений относятся два правильных: modus ponens и modus tollens.

Modus ponens. Такое рассуждение имеет следующую структуру:

Логиков интересует именно сама структура этих рассуждений, в реальности же они не всегда предстают перед нами именно в таком обличии и могут принимать разные языковые и риторические формы. На человеческом языке оно может выглядеть так:

«если сборная России выиграет у Испании, то я сделаю татуировку»;

«сборная России выиграла у Испании» — значит «я сделаю татуировку».

Modus tollens. Это рассуждение выглядит так:

«если сборная России выиграет у Испании, то я сделаю татуировку»,

«я не сделал татуировку» — значит «сборная России не выиграла у Испании».

Оно может выглядеть и немного по-другому: «если А, то B» — значит «если не-B, то не-А». В таком виде его называют «контрапозицией».

Что такое правильное рассуждение. Смотреть фото Что такое правильное рассуждение. Смотреть картинку Что такое правильное рассуждение. Картинка про Что такое правильное рассуждение. Фото Что такое правильное рассуждение

Вот для примера на недавнем Международном экономическом форуме в Санкт-Петербурге во время панельной дискуссии Алексей Кудрин использовал упомянутый modus tollens для демонстрации того, что антироссийские санкции — один из существенных факторов, влияющих на темп экономического роста российской экономики, притом что правительство ставит достаточно амбициозные задачи по его увеличению. Кудрин замечает: «Сейчас после последней волны санкций их влияние увеличилось примерно до 0,5 % ВВП. Здесь мы тоже должны видеть, что наши задачи и планы уменьшаются вот такими внешнеполитическими рисками». В рамках этой реплики можно реконструировать пресловутую «контрапозицию», благодаря которой Кудрин пришел к такому мнению: если экономические санкции применяются в отношении к России, то рост ее экономики снижается; следовательно, если экономическая политика направлена на увеличение экономического роста, то экономические санкции не должны применяться в отношении к России. И правильно сделал!

Очень часто многие из нас ошибаются и используют следующие неправильные условно-категорические рассуждения:

«если А, то B»; «B», следовательно, «А». И «если А, то B»; «не-А», следовательно, «не-B».

В качестве примера можно привести ошибочное рассуждение Алексея Венедиктова во время выпуска его программы «Особое мнение», в рамках которого он дискутировал с Ксенией Собчак. В этом фрагменте Собчак рассказывает о том, какие реформы судебной власти она будет проводить в случае своей победы на президентских выборах. В ответ на это Венедиктов утверждает, что после этого выступления электорат в лице «судей и членов их семей» не проголосует за Собчак.

Рассуждение Венедиктова можно реконструировать в следующем виде: «если Ксения Собчак выступает с привлекательными для избирателей предложениями, то эти избиратели проголосуют за Собчак»; «Собчак выступает не с привлекательными для избирателей предложениями», следовательно, «эти избиратели за нее не проголосуют».

На первый взгляд может показаться, что это рассуждение не противоречит никакой логике, однако это не так.

Дело в том, что дедуктивные рассуждения имеют существенную характеристику, которая и делает их очень надежными: в них из истинных посылок с необходимостью следует истинное заключение. Другими словами, для правильного дедуктивного рассуждения не существует такой ситуации, при которой его посылки окажутся истинными, а заключение — ложным. Для того типа рассуждения, которое в данном случае использует Венедиктов, такая ситуация с истинными посылками и ложным заключением существует.

Чтобы в этом удостовериться, нам нужно привести контрпример. Например, вот две посылки: «если сборная России выиграет у Хорватии, то я сделаю татуировку», «сборная России не выиграла у Хорватии» — из этих двух посылок совершенно не следует, что «я не сделал татуировку», поскольку я мог сделать эту татуировку совершенно по другим причинам: из гордости за ногу Акинфеева, из сожаления за его правую руку, которая чуть было не отбила один из одиннадцатиметровых ударов и т. п. Действительно, обе посылки являются истинными высказываниями, однако заключение в таком случае оказывается ложным.

У многих могут возникнуть сомнения, выдержат ли подобную проверку на вшивость уже упомянутые правильные типы рассуждений: modus ponens и modus tollens. Что ж, попробуйте подобрать к ним контрпримеры (в логике есть более точные и удобные методы для проверки правильности рассуждений, но, к сожалению, их невозможно рассмотреть в рамках этой статьи).

2. Сведение к абсурду и рассуждение «от противного»

В логике существуют и другие способы рассуждений: это так называемые непрямые умозаключения. Среди них есть две классные техники, они называются «сведение к абсурду» и «доказательство от противного» (они фактически представляют собой одно и то же).

Сведение к абсурду. Мы хотим опровергнуть некоторое утверждение «А». Вооружившись техникой «сведения к абсурду», мы должны предположить, что утверждение «А» является истинным — и затем стараться использовать какие-то рассуждения, чтобы продемонстрировать, что это предположение приводит к противоречию. Если нам удается прийти к противоречию, значит, наше исходное предположение было неверным. Таким образом, мы опровергаем утверждение «А».

Доказательство «от противного». Оно строится немного иначе: первоначальной целью является не опровергнуть «А», а обосновать «А». Для достижения этой цели сначала предполагается, что «А» является ложным, а дальше всё то же самое: выводится противоречие, которое позволяет обосновать неправильность исходного предположения.

Люди частенько используют эти две техники рассуждения. Рассмотрим например метод «от противного».

Что такое правильное рассуждение. Смотреть фото Что такое правильное рассуждение. Смотреть картинку Что такое правильное рассуждение. Картинка про Что такое правильное рассуждение. Фото Что такое правильное рассуждение

Будем считать, что вы допрашиваете подозреваемого в убийстве человека. Преступление было совершено при помощи пистолета, который был найден в квартире у подозреваемого.

Как изучить логику

К сожалению, число хороших учебников по логике, которые нацелены на широкую аудиторию и написаны простым для всех языком, очень мало. Зачастую этот «простой для всех язык» сразу сказывается на качестве теоретической составляющей.

Учебники либо доступные и некачественные — либо очень специализированные, но качественные. В такой ситуации лучше сделать выбор в пользу вторых, потому что главное — это качество образования:

Что касается интернет-ресурсов, то здесь тоже надо быть избирательными, однако есть и очень ценные экспонаты. Серия видеороликов, созданных силами БФУ им. И. Канта совместно со специалистами из других российских научных и учебных центров:

В открытом доступе лежат полноформатные видеозаписи курса лекций по дедуктивной логике, который периодически читается на философском факультете МГУ. Там есть специальная практика под названием «межфакультетский курс»: преподаватели на разных факультетах предлагают свои учебные курсы, на которые в соответствии со своим выбором записываются студенты с других факультетов. Это очень интересная практика, которая стимулирует появление учебных курсов на доступном для студентов разных направленностей языке.

Кроме того, существуют различные открытые научно-популярные мероприятия, например ежегодный Фестиваль науки, который проходит в том числе и на философском факультете МГУ, где логическая проблематика всегда представлена. Приходите, интересуйтесь и спрашивайте.

Логика научит вас точнее выражать свои мысли, и это в целом скажется на вашем стиле общения с людьми и умении разбираться в людях.

Когда вы начнете требовать от людей такой же точности, то обнаружите, что далеко не все способны общаться подобным образом. Но если вы увидите человека, который может грамотно излагать свои мысли и вести корректную полемику, то это многое скажет вам об уровне его логической культуры — да и вообще о личности в целом.

Источник

Что такое правильное рассуждение

Слово «логика» употребляется довольно часто, но в разных значениях.

Нередко говорят о логике событий, логике характера и т.п. В этих случаях имеется в виду определенная последовательность и взаимозависимость событий или поступков, наличие в них некоторой общей линии.

Слово «логика» употребляется также в связи с процессами мышления. Так, мы говорим о логичном и нелогичном мышлении, имея в виду присутствие или отсутствие таких его свойств, как последовательность, доказательность и т.п.

В третьем смысле «логика» является именем особой науки о мышлении, называемой также формальной логикой.

Трудно найти более многогранное и сложное явление, чем человеческое мышление. Оно изучается многими науками, и логика – одна из них. Ее предмет – логические законы и логические операции мышления. Принципы, устанавливаемые логикой, необходимы, как и все научные законы. Мы можем не осознавать их, но вынуждены следовать им.

Формальная логика – наука о законах и операциях правильного мышления.

Основной задачей логики является отделение правильных способов рассуждения (выводов, умозаключений) от неправильных.

Правильные выводы называются также обоснованными, последовательными или логичными.

Рассуждение представляет собой определенную, внутренне обусловленную связь утверждений. От нашей воли зависит, на чем остановить свою мысль. В любое время мы можем прервать начатое рассуждение и перейти к другой теме. Но если мы решим провести его до конца, то сразу же попадем в сети необходимости, стоящей выше нашей воли и желаний. Согласившись с одними утверждениями, мы вынуждены принять и те, что из них следуют, независимо от того, нравятся они нам или нет, способствуют нашим целям или, напротив, препятствуют им. Допустив одно, мы тем самым автоматически лишаем себя возможности утверждать другое, несовместимое с уже допущенным.

Если мы убеждены, что все жидкости упруги, мы должны признать также, что вещества, не являющиеся упругими, не относятся к жидкостям. Убедив себя, что каждое водоплавающее существо обязательно дышит жабрами, мы исключаем из разряда водоплавающих дышащих легкими – китов и дельфинов.

В чем источник этой логической необходимости? Что именно следует считать несовместимым с принятыми уже утверждениями и что должно приниматься вместе с ними? Из размышления над этими вопросами и выросла особая наука о мышлении – логика. Отвечая на вопрос «что из чего следует?», она отделяет правильные способы рассуждения от неправильных и систематизирует первые.

Правильным является следующий вывод, использовавшийся в качестве стандартного примера еще в Древней Греции:

Все люди смертны; Сократ – человек; следовательно, Сократ смертен.

Первые два высказывания – это посылки вывода, третье – его заключение.

Правильным будет, очевидно, и такое рассуждение:

Всякий металл электропроводен; натрий – металл; значит, натрий электропроводен.

Сразу же можно заметить сходство данных двух выводов, но не в содержании входящих в них утверждений, а в характере связи этих утверждений между собою. Можно даже почувствовать, что с точки зрения правильности эти выводы совершенно идентичны: если правильным является один из них, то таким же будет и другой, и притом в силу тех же самых оснований.

Еще один пример правильного вывода, связанного со знаменитым опытом Фуко:
Если Земля вращается вокруг своей оси, маятники, качающиеся на ее поверхности, постепенно изменяют плоскость своих колебаний; Земля вращается вокруг своей оси; значит, маятники на ее поверхности постепенно изменяют плоскость своих колебаний.
Как протекает это рассуждение о Земле и маятниках? Сначала устанавливается условная связь между вращением Земли и изменением плоскости колебания маятников. Затем констатируется, что Земля действительно вращается. Из этого выводится, что маятники в самом деле постепенно изменяют плоскость своих колебаний. Это заключение вытекает с какой-то принудительной силой. Оно как бы навязывается всем, кто принял посылки рассуждения. Именно поэтому можно было бы сказать также, что маятники должны изменять плоскость своих колебаний, с необходимостью делают это.

Схема данного рассуждения проста: если есть первое, то есть второе; имеет место первое; значит, есть и второе.

Принципиально важным является то, что, о чем бы мы ни рассуждали по такой схеме – о Земле и маятниках, о человеке или химических элементах, о мифах или богах, рассуждение останется правильным.

Чтобы убедиться в этом, достаточно подставить в схему вместо слов «первое» и «второе» два утверждения с любым конкретным содержанием.

Изменим несколько данную схему и будем рассуждать так: если есть первое, то имеется второе; имеет место второе; значит, есть и первое.

Если идет дождь, земля мокрая; земля мокрая; следовательно, идет дождь.

Этот вывод, очевидно, неправилен. Верно, что всякий раз, когда идет дождь, земля мокрая. Но из этого условного утверждения и того факта, что земля мокрая, вовсе не вытекает, что идет дождь. Земля может оказаться мокрой и без дождя, ее можно намочить, скажем, из шланга, она может быть мокрой после таяния снега и т.д.

Еще один пример рассуждения по последней схеме подтвердит, что она способна приводить к ложным заключениям:
Если у человека повышенная температура – он болен; человек болен; значит, у него повышенная температура.
Однако такое заключение не вытекает с необходимостью: люди с повышенной температурой действительно больны, но далеко не у всех больных такая температура.

Отличительная особенность правильного вывода заключается в том, что от истинных посылок он всегда ведет к истинному заключению.

Этим объясняется тот огромный интерес, который логика проявляет к правильным выводам. Они позволяют из уже имеющегося знания получать новое знание, и притом с помощью «чистого» рассуждения, без всякого обращения к опыту, интуиции и т.п. Правильное рассуждение как бы разворачивает и конкретизирует наши знания. Оно дает стопроцентную гарантию успеха, а не просто обеспечивает ту или иную – быть может, и высокую – вероятность истинного заключения.

Если посылки, или хотя бы одна из них, являются ложными, правильное рассуждение может давать в итоге как истину, так и ложь. Неправильные рассуждения могут от истинных посылок вести как к истинным, так и к ложным заключениям. Никакой определенности здесь нет. С логической необходимостью заключение вытекает только в случае правильных, обоснованных выводов.

Логика занимается, конечно, не только связями утверждений в правильных выводах, но и другими проблемами. В числе последних – смысл и значение выражений языка, различные отношения между понятиями, определение понятий, вероятностные и статистические рассуждения, софизмы и парадоксы и др. Но главная и доминирующая тема формальной логики – это, несомненно, анализ правильности рассуждения, исследование «принудительной силы речей», как говорил основатель этой науки – древнегреческий философ и логик Аристотель.

2. ЛОГИЧЕСКАЯ ФОРМА

Формальная логика, как уже говорилось, отделяет правильные способы рассуждения от неправильных и систематизирует первые.

Самым общим образом форму рассуждения можно определить как способ связи входящих в это рассуждение содержательных частей.

Основной принцип формальной логики предполагает – и это следует специально подчеркнуть, что каждое наше рассуждение, каждая мысль, выраженная в языке, имеет не только определенное содержание, но и определенную форму. Предполагается также, что содержание и форма отличаются друг от друга и могут быть разделены. Содержание мысли не оказывает никакого влияния на правильность рассуждений, и поэтому от него следует отвлечься. Для оценки правильности мысли существенной является лишь ее форма. Ее необходимо выделить в чистом виде, чтобы затем на основе такой «бессодержательной» формы решить вопрос о правильности рассматриваемого рассуждения.

Как известно, все предметы, явления и процессы имеют как содержание, так и форму. Наши мысли не являются исключением из этого общего правила. То, что они обладают определенным, меняющимся от одной мысли к другой содержанием, известно каждому. Но мысли имеют также форму, что обычно ускользает от внимания.

Смысл понятия логической формы лучше всего раскрыть на примерах.

Сравним два высказывания:

«Все вороны – птицы»,
«Все шахматисты – гроссмейстеры».

Этот простой пример хорошо показывает одну из особенностей подхода формальной логики к анализу рассуждений – его высокую абстрактность.

В самом деле, все началось с очевидной мысли, что утверждения о воронах, которые являются птицами, и о шахматистах, сплошь являющихся гроссмейстерами, совершенно различны. И если бы не цели логического анализа, на этом различии мы и остановились бы, не увидев ничего общего между высказываниями «Все вороны – птицы» и «Все шахматисты – гроссмейстеры».

Отвлечение от содержания и выявление формы привело нас, однако, к прямо противоположному мнению: рассматриваемые высказывания имеют одну и ту же логическую форму и, следовательно, они полностью совпадают. Начав с мысли о полном различии высказываний, мы пришли к выводу об абсолютной их тождественности.

Рассмотрим далее два более сложных высказывания:

«Если число делится на 2, то оно четное»,
«Если сейчас ночь, то сейчас темно».

Для выявления логической формы этих высказываний подставим вместо их содержательных компонентов слова «первое» и «второе», не несущие конкретного содержания. В результате получим, что оба эти высказывания имеют одну и ту же логическую форму:

Это и есть логическая форма данных сложных высказываний.

Легко понять, что такое пространственная форма. Скажем, форма здания характеризует не то, из каких элементов оно сложено, а только то, как эти элементы связаны друг с другом. Здание одной и той же формы может быть и кирпичным, и железобетонным.

Достаточно просты также многие непространственные представления о форме. Говорят, например, о форме классического романа, предполагающего постепенную завязку действия, кульминацию и, наконец, развязку. Все такие романы, независимо о их содержания, сходны в своей форме, способе связи содержательных частей.

В сущности, не намного более сложным для понимания является и понятие логической формы. Наши мысли слагаются из некоторых содержательных частей, как здание из кирпичей, блоков, панелей и т.п. Эти «кирпичики» мысли определенным образом связаны друг с другом. Способ их связи и представляет собой форму мысли.

3. ДЕДУКЦИЯ И ИНДУКЦИЯ

Умозаключение – это логическая операция, в результате которой из одного или нескольких принятых утверждений (посылок) получается новое утверждение – заключение (следствие).

В дедуктивном умозаключении эта связь опирается на логический закон, в силу чего заключение с логической необходимостью вытекает из принятых посылок. Как уже отмечалось, отличительная особенность такого умозаключения в том, что оно от истинных посылок всегда ведет к истинному заключению.

К дедуктивным относятся, например, такие умозаключения:

Если данное число делится на 6, то оно делится на 3.
Данное число делится на 6. Данное число делится на 3.

Если гелий металл, он электропроводен.
Гелий не электропроводен. Гелий не металл.

Черта, отделяющая посылки от заключения, заменяет слово «следовательно».

В индуктивном умозаключении связь посылок и заключения опирается не на закон логики, а на некоторые фактические или психологические основания, не имеющие чисто формального характера. В таком умозаключении заключение не следует логически из посылок и может содержать информацию, отсутствующую в них. Достоверность посылок не означает поэтому достоверности выведенного из них индуктивно утверждения. Индукция дает только вероятные, или правдоподобные, заключения, нуждающиеся в дальнейшей проверке.

Примерами индукции могут служить рассуждения:

Аргентина является республикой; Бразилия – республика; Венесуэла – республика;
Эквадор – республика.
Аргентина, Бразилия, Венесуэла, Эквадор – латиноамериканские государства. Все латиноамериканские государства являются республиками.

Италия – республика; Португалия – республика; Финляндия – республика;
Франция – республика.
Италия, Португалия, Финляндия, Франция – западноевропейские страны. Все западноевропейские страны являются республиками.

Индукция не дает полной гарантии получения новой истины из уже имеющихся. Максимум, о котором можно говорить, это определенная степень вероятности выводимого утверждения. Так, посылки и первого и второго индуктивного умозаключения истинны, но заключение первого из них истинно, а второго – ложно. Действительно, все латиноамериканские государства – республики; но среди западноевропейских стран имеются не только республики, но и монархии, например, Англия, Бельгия и Испания.

Рассуждения, ведущие от знания о части предметов к общему знанию обо всех предметах определенного класса, – это типичные индукции, поскольку всегда остается вероятность того, что обобщение окажется поспешным и необоснованным (Платон – философ; Аристотель – философ; значит, все люди – философы).

Нельзя вместе с тем отождествлять дедукцию с переходом от общего к частному, а индукцию – с переходом от частного к общему. Дедукция – это логический переход от одной истины к другой, индукция – переход от достоверного знания к вероятному. К индуктивным умозаключениям относятся не одни обобщения, но и уподобления, или аналогии, заключения о причинах явлений и др.

Дедукция играет особую роль в обосновании утверждений. Если рассматриваемое положение логически следует из уже установленных положений, оно обосновано и приемлемо в той же мере, что и последние. Это – собственно логический способ обоснования утверждений, использующий чистое рассуждение и не требующий обращения к наблюдению, интуиции и т.д.

Подчеркивая важность дедукции в процессе обоснования, не следует, однако, отрывать ее от индукции или недооценивать последнюю. Почти все общие положения, включая, конечно, и научные законы, являются результатом индуктивного обобщения. В этом смысле индукция – основа нашего знания. Сама по себе она не гарантирует его истинности и обоснованности. Но она порождает предположения, связывает их с опытом и тем самым сообщает им определенное правдоподобие, более или менее высокую степень вероятности. Опыт – источник и фундамент человеческого знания. Индукция, отправляющаяся от того, что постигается в опыте, является необходимым средством его обобщения и систематизации.

Дедукция – это выведение заключений, столь же достоверных, как и принятые посылки.

В обычных рассуждениях дедукция только в редких случаях предстает в полной и развернутой форме. Чаще всего мы указываем не все используемые посылки, а лишь некоторые из них. Общие утверждения, о которых можно предполагать, что они хорошо известны, как правило, опускаются. Не всегда явно формулируются и заключения, вытекающие из принятых посылок. Сама логическая связь, существующая между исходными и выводимыми утверждениями, лишь иногда отмечается словами, подобными «следовательно» и «значит».

Нередко дедукция является настолько сокращенной, что о ней можно только догадываться. Восстановить ее в полной форме, с указанием всех необходимых элементов и их связей бывает нелегко.

Проводить дедуктивное рассуждение, ничего не опуская и не сокращая, обременительно. Человек, указывающий все предпосылки своих заключений, создает впечатление какого-то педанта. И вместе с тем всякий раз, когда возникает сомнение в обоснованности сделанного вывода, следует возвращаться к самому началу рассуждения и воспроизводить его в возможно более полной форме. Без этого трудно или даже просто невозможно обнаружить допущенную ошибку.

Многие литературные критики полагают, что Шерлок Холмс был «списан» А.Конан-Дойлом с профессора медицины Эдинбургского университета Джозефа Белла. Последний был известен как талантливый ученый, обладавший редкой наблюдательностью и отлично владевший методом дедукции. Среди его студентов был и будущий создатель образа знаменитого детектива.
Однажды, рассказывает в своей автобиографии Конан-Дойл, в клинику пришел больной, и Белл спросил его:
– Вы служили в армии?
– Так точно! – став по стойке смирно, ответил пациент.
– В горно-стрелковом полку?
– Так точно, господин доктор!
– Недавно ушли в отставку?
– Так точно!
– Были сержантом?
– Так точно! – лихо ответил больной.
– Стояли на Барбадосе?
– Так точно, господин доктор!
Студенты, присутствовавшие при этом диалоге, изумленно смотрели на профессора. Белл объяснил, насколько просты и логичны его выводы.
Этот человек, проявив при входе в кабинет вежливость и учтивость, все же не снял шляпу. Сказалась армейская привычка. Если бы пациент был в отставке длительное время, то давно усвоил бы гражданские манеры. В осанке властность, по национальности он явно шотландец, а это говорит за то, что он был командиром. Что касается пребывания на Барбадосе, то пришедший болен элефантизмом (слоновостью) – такое заболевание распространено среди жителей тех мест.
Здесь дедуктивное рассуждение чрезвычайно сокращено. Опущены, в частности, все общие утверждения, без которых дедукция была бы невозможной.

Введенное ранее понятие «правильное рассуждение (умозаключение)» относится только к дедуктивному умозаключению. Лишь оно может быть правильным или неправильным. В индуктивном умозаключении вывод не связан логически с принятыми посылками. Поскольку «правильность» – это характеристика логической связи между посылками и заключением, а индуктивным умозаключением данная связь не предполагается, такое умозаключение не может быть ни правильным, ни неправильным. Иногда на этом основании индуктивные рассуждения вообще не включаются в число умозаключений.

4. ИНТУИТИВНАЯ ЛОГИКА

Под интуитивной логикой обычно понимают интуитивные представления о правильности рассуждений, сложившиеся стихийно в процессе повседневной практики мышления.

Интуитивная логика, как правило, успешно справляется со своими задачами в повседневной жизни, но совершенно недостаточна для критики неправильных рассуждений. Правильно ли рассуждает человек, когда говорит: «Если бы барий был металлом, он проводил бы электрический ток; барий проводит электрический ток; следовательно, он металл?». Чаще всего на основе логической интуиции отвечают: правильно, барий металл, и он проводит ток. Этот ответ, однако, неверен. Логическая правильность, как гласит теория, зависит только от способа связи утверждений. Она не зависит от того, истинны используемые в выводе утверждения или нет. Хотя все три утверждения, входящие в рассуждение, верны, между ними нет логической связи. Рассуждение построено по неправильной схеме: «Если есть первое, то есть второе; второе есть; значит, есть и первое». Такая схема от истинных исходных положений может вести не только к истинному, но и к ложному заключению, она не гарантирует получения новых истин из имеющихся. В рассуждении: «Если у человека повышенная температура, он болен; человек болен; следовательно, у него повышенная температура» обе посылки могут быть истинными, а заключение ложным: многие болезни протекают без повышения температуры. Другой пример: «Если бы шел дождь, земля была бы мокрой; но дождя нет; значит, земля не мокрая». Это рассуждение интуитивно обычно оценивается как правильное, но достаточно небольшого рассуждения, чтобы убедиться, что это не так. Верно, что в дождь земля всегда мокрая; но если дождя нет, из этого вовсе не следует, что она сухая: земля может быть просто полита или быть мокрой после таяния снега. Рассуждение опять-таки идет по неправильной схеме: «Если первое, то второе; но первого нет; значит, нет и второго». Эта схема может привести от истинных посылок к ошибочному заключению: «Если человек художник, он рисует; человек рисует; значит, человек художник». Эти простые примеры показывают, что логика, усвоенная стихийно, даже в обычных ситуациях может оказаться ненадежной.

Обычно мы применяем логические законы, не задумываясь о них, нередко не подозревая о самом их существовании. Но бывает, что использование даже простой схемы сталкивается с известными трудностями.

Эксперименты, проводившиеся психологами с целью сопоставления мышления людей разных культур, наглядно показывают, что чаще всего причина трудностей в том, что схема рассуждения, его форма не выделяется в чистом виде. Вместо этого для решения вопроса о правильности рассуждения привлекаются не относящиеся к делу содержательные соображения. Обычно они связаны с какой-то конкретной ситуацией.

Вот как описывают ход одного из экспериментов, проводившихся в Африке, М.Коул и С.Скрибнер в книге «Культура и мышление».

Здесь очевидная ошибка. У испытуемого нет общего представления о логической правильности вывода. Чтобы дать ответ, он стремится опереться на какие-то факты, а когда экспериментатор отказывается помочь ему в поисках таких фактов, сам придумывает их.

Еще пример из этого же исследования.

Испытуемый имеет в виду скорее всего каких-то конкретных людей или просто выдумал их. Первую посылку задачи он отбросил и заменил ее другим утверждением: люди не сердятся на других людей. Затем он ввел в задачу новые данные, касающиеся поведения Флюмо и Йакпало. Ответ испытуемого на экспериментальную задачу был неправилен. Но он был результатом вполне логичных рассуждений на основе новых посылок.

Для анализа задачи, поставленной в первом эксперименте, переформулируем ее так, чтобы были выявлены логические связи утверждений: «Если ест паук, то ест и олень; если ест олень, то ест и паук; паук ест; следовательно, олень тоже ест». Здесь три посылки. Вытекает ли из двух («Если ест паук, олень также ест» и «Паук ест») заключение «Олень ест?». Конечно. Рассуждение идет по упоминавшейся уже схеме: «Если есть первое, то есть второе; есть первое; значит, есть второе». Она представляет собой логический закон. Правильность этого рассуждения не зависит, разумеется, от того, происходит ли все в лесу, присутствовал ли при этом испытуемый и т.п.

Несколько сложнее схема, по которой идет рассуждение во второй задаче: «Если Флюмо или Йакпало пьют сок тростника, староста деревни сердится. Флюмо не пьет сок тростника. Йакпало пьет сок тростника. Сердится ли староста деревни?» Отвлекаясь от конкретного содержания, выявляем схему рассуждения: «Если есть первое или второе, то есть третье; первого нет, но есть второе; следовательно, есть третье». Эта схема является логическим законом, и, значит, рассуждение правильно. Схема близка указанной ранее схеме: «Если есть первое, то есть второе; есть первое; следовательно, есть второе». Различие только в том, что в качестве «первого» в более сложном рассуждении указываются две альтернативы, одна из которых тут же исключается.

Навык правильного мышления не предполагает каких-либо теоретических знаний, умения объяснить, почему что-то делается именно так, а не иначе. К тому же сама интуитивная логика, как правило, беззащитна перед лицом критики.

Усвоение языка есть одновременно и усвоение общечеловеческой, не зависящей от конкретных языков, логики. Без нее, как и без грамматики, нет, в сущности, владения языком. В дальнейшем стихийно сложившееся знание грамматики систематизируется и шлифуется в процессе школьного обучения. На логику же специального внимания обычно не обращается, ее совершенствование остается стихийным процессом. Нет поэтому ничего странного в том, что, научившись на практике последовательно и доказательно рассуждать, человек затрудняется ответить, какими принципами он при этом руководствуется. Почувствовав сбой в рассуждении, он оказывается, как правило, не способным объяснить, какая логическая ошибка допущена. Это под силу только теории логики.

5. НЕКОТОРЫЕ СХЕМЫ ПРАВИЛЬНЫХ РАССУЖДЕНИЙ

В правильном рассуждении заключение вытекает из посылок с логической необходимостью, и общая схема такого рассуждения представляет собой логический закон.

Логические законы лежат, таким образом, в основе логически совершенного мышления. Рассуждать логически правильно – значит рассуждать в соответствии с законами логики.

Число схем правильного рассуждения (логических законов) бесконечно. Многие известны нам из практики рассуждения. Мы применяем их интуитивно, не отдавая себе отчета, что в каждом правильно проведенном умозаключении мы используем тот или иной логический закон.

Вот некоторые, наиболее часто используемые, схемы.

Если есть первое, то есть второе; есть первое; следовательно, есть второе. Эта схема позволяет от утверждения условного высказывания и утверждения его основания перейти к утверждению следствия. По этой схеме протекает, в частности, рассуждение: «Если лед нагревают, он тает; лед нагревают; значит, он тает».

Это логически корректное движение мысли иногда путается со сходным, но логически неправильным ее движением от утверждения следствия условного высказывания к утверждению его основания: «Если есть первое, то есть второе; есть второе; значит, есть первое». Последняя схема не является логическим законом, от истинных посылок она может привести к ложному заключению. Скажем, идущее по этой схеме рассуждение «Если человеку восемьдесят лет, он стар; человек стар; следовательно, человеку восемьдесят лет» ведет к ошибочному заключению, что старику ровно восемьдесят лет.

Если есть первое, то есть второе; но второго нет; значит, нет первого. Посредством этой схемы от утверждения условного высказывания и отрицания его следствия осуществляется переход к отрицанию основания высказывания. Например: «Если наступает день, то становится светло; но сейчас не светло; следовательно, день не наступил». Иногда эту схему смешивают с логически некорректным движением мысли от отрицания основания условного высказывания к отрицанию его следствия: «Если есть первое, есть и второе; но первого нет; значит, нет и второго».

Если есть первое, то есть второе; следовательно, если нет второго, то нет и первого. Эта схема позволяет, используя отрицание, менять местами высказывания. К примеру, из высказывания «Если есть гром, есть также молния» получается высказывание «Если нет молнии, то нет и грома».

Есть по меньшей мере или первое или второе; но первого нет; значит, есть второе. Например: «Бывает день или ночь; сейчас ночи нет; следовательно, сейчас день».

Либо имеет место первое, либо второе; есть первое; значит, нет второго. Посредством этой схемы от утверждения двух взаимоисключающих альтернатив и установления того, какая из них присутствует, осуществляется переход к отрицанию другой альтернативы. Например: «Достоевский родился либо в Москве, либо в Петербурге; он родился в Москве; значит, неверно, что он родился в Петербурге». В американском вестерне «Хороший, плохой и злой» Бандит говорит: «Запомни, Однорукий, что мир делится на две части: тех, кто держит револьвер, и тех, кто копает. Револьвер сейчас у меня, так что бери лопату». Это рассуждение также опирается на рассматриваемую схему.

Неверно, что есть и первое, и второе; следовательно, нет первого или нет второго; Есть первое или есть второе; значит, неверно, что нет первого и нет второго. Эти и близкие им схемы позволяют переходить от утверждений с союзом «и» к утверждениям с союзом «или», и наоборот. Используя данные схемы, от утверждения «Неверно, что сегодня ветер и дождь» можно перейти к утверждению «Неверно, что сегодня ветер или неверно, что сегодня дождь» и от утверждения «Амундсен или Скотт был первым на Южном полюсе» перейти к утверждению «Неверно, что ни Амундсен, ни Скотт не является первым человеком, побывавшим на Южном полюсе».

Таковы некоторые схемы правильного рассуждения. В дальнейшем эти и другие схемы будут рассмотрены более детально и представлены с использованием специальной логической символики.

6. ТРАДИЦИОННАЯ И СОВРЕМЕННАЯ ЛОГИКА

История логики охватывает около двух с половиной тысячелетий. «Старше» формальной логики, пожалуй, только философия и математика.

В длинной и богатой событиями истории развития логики отчетливо выделяются два основных этапа. Первый – от древнегреческой логики до возникновения во второй половине прошлого века современной логики. Второй – с этого времени до наших дней.

Кант не заметил, что еще с XVII в. стали назревать предпосылки для научной революции в логике. Именно в это время получила ясное выражение идея представить доказательство как вычисление, подобное вычислению в математике.

Эта идея связана главным образом с именем немецкого философа и математика Г.Лейбница (1646-1716). По Лейбницу, вычисление суммы или разности чисел осуществляется на основе простых правил, принимающих во внимание только форму чисел, а не их смысл. Результат вычисления однозначно предопределяется этими, не допускающими разночтения правилами, и его нельзя оспорить. Лейбниц мечтал о времени, когда умозаключение будет преобразовано в вычисление. Когда это случится, споры, обычные между философами, станут так же невозможны, как невозможны они между вычислителями. Вместо спора они возьмут в руки перья и скажут: «Будем вычислять».

Идеи Лейбница не оказали, однако, заметного влияния на его современников. Энергичное развитие логики началось позже, в XIX в.

Немецкий математик и логик Г.Фреге (1848-1925) в своих работах стал применять формальную логику для исследования оснований математики. Фреге был убежден, что «арифметика есть часть логики и не должна заимствовать ни у опыта, ни у созерцания никакого обоснования». Пытаясь свести математику к логике, он реконструировал последнюю. Логическая теория Фреге – провозвестник всех нынешних теорий правильного рассуждения.

Идея сведения всей чистой математики к логике была подхвачена английским логиком и философом Б.Расселом (1872-1970). Но последующее развитие логики показало неосуществимость этой грандиозной по своему замыслу попытки. Она привела, однако, к сближению математики и логики и к широкому проникновению плодотворных методов первой во вторую.

В России в конце прошлого – начале нынешнего века, когда научная революция в логике набрала силу, ситуация была довольно сложной. И в теории, и в практике преподавания господствовала так называемая «академическая логика», избегавшая острых проблем и постоянно подменявшая науку логику невнятно изложенной методологией науки, истолкованной к тому же по заимствованным и устаревшим образцам. И тем не менее были люди, стоявшие на уровне достижений логики своего времени и внесшие в ее развитие важный вклад. Прежде всего это доктор астрономии Казанского университета, логик и математик П.С.Порецкий. Сдержанное общее отношение к математической логике, разделявшееся многими русскими математиками, во многом осложнило его творчество. Часть своих работ он вынужден был опубликовать за границей. Но его идеи оказали в конечном счете существенное влияние на развитие алгебраически трактуемой логики как в нашей стране, так и за рубежом. Порецкий первым в России начал читать лекции по современной логике, о которой он говорил, что это «по предмету своему есть логика, а по методу математика». Исследования Порецкого продолжают оказывать стимулирующее влияние на развитие алгебраических теорий логики и в наши дни.

Одним из первых (еще в 1910 г.) сомнения в неограниченной приложимости логического закона противоречия, о котором пойдет речь далее, высказал логик Н.А.Васильев. «Предположите, – говорил он, – мир осуществленного противоречия, где противоречия выводились бы, разве такое познание не было бы логическим?» Васильев, подобно Ломоносову, наряду с научными статьями, писал порой и стихи. В них своеобразно преломлялись его логические идеи, в частности идея воображаемых (возможных) миров:

. Мне грезится безвестная планета,
Где все идет иначе, чем у нас.

Известный русский физик П.Эренфест первым высказал гипотезу о возможности применения современной ему логики в технике. В 1910 г. он писал:

«Символическая формулировка дает возможность «вычислять» следствия из таких сложных систем посылок, в которых при словесном изложении почти или совершенно невозможно разобраться. Дело в том, что в физике и технике действительно существуют такие сложные системы посылок. Пример: пусть имеется проект схемы проводов автоматической телефонной станции. Надо определить: 1) будет ли она правильно функционировать при любой комбинации, могущей встретиться в ходе деятельности станции; 2) не содержит ли она излишних усложнений. Каждая такая комбинация является посылкой, каждый маленький коммутатор есть логическое «или-или», воплощенное в эбоните и латуни; все вместе – система чисто качественных (сети слабого тока, поэтому не количественных) «посылок», ничего не оставляющая желать в отношении сложности и запутанности. Следует ли при решении этих вопросов раз и навсегда удовлетвориться рутинным способом преобразования на графике? Правда ли, что, несмотря на существование уже разработанной алгебры логики, своего рода «алгебра распределительных схем» должна считаться утопией?»

В дальнейшем гипотеза Эренфеста получила воплощение в теории релейно-контактных систем.

В общем, оглядываясь на историю распространения логики, можно сказать, что лучшие русские логики всегда стремились стоять на уровне современных им мировых теорий и концепций, органически чуждаясь всякого рода логического сектантства и сепаратизма.

Одна из характерных черт этих методов – широкое использование разнообразных символов вместо слов и выражений обычного языка. Символы применял в ряде случаев еще Аристотель, а затем и все последующие логики. Однако теперь в использовании символики был сделан качественно новый шаг. В логике стали использоваться специально построенные языки, содержащие только специальные символы и не включающие ни одного слова обычного разговорного языка.

Широкое использование символических средств послужило основанием того, что, новую логику стали называть символической. Названия «математическая логика» и «символическая логика», обычно употребляемые и сейчас, обозначают одно и то же – современную формальную логику. Она занимается тем же, чем всегда занималась логика – исследованием правильных способов рассуждения.

7. СОВРЕМЕННАЯ ЛОГИКА И ДРУГИЕ НАУКИ

Математическая логика возникла, в сущности, на стыке двух столь разных наук, как философия, или точнее – философская логика, и математика. И тем не менее, взаимосвязь новой логики с философией не только не оборвалась, но, напротив, парадоксальным образом даже окрепла. Обращение к философии является необходимым условием прояснения логикой своих оснований. С другой стороны, использование в философии понятий, методов и аппарата современной логики несомненно способствует более ясному пониманию самих философских понятий, принципов и проблем.

Тесная связь современной логики с математикой придает особую остроту вопросу о взаимных отношениях этих двух наук. Среди многих точек зрения, высказывавшихся по этому поводу, были и две крайних, ведущих в общем-то к тому же самому конечному результату – объединению математики и логики в единую научную дисциплину, сведению их в одну науку.

Согласно Г.Фреге, Б.Расселу и их последователям, математика и логика – это всего лишь две ступени в развитии той же самой науки. Математика может быть полностью сведена к логике, и такое чисто логическое обоснование математики позволит установить ее истинную и наиболее глубокую природу. Этот подход к обоснованию математики получил название логицизма.

Однако в целом логицизм оказался утопической концепцией. Математика не сводима к логике, поскольку для построения математики необходимы аксиомы, устанавливающие существование в реальности определенных объектов. Но такие аксиомы имеют уже внелогическую природу.

Другой формой объединения математики и логики в одну науку было объявление математической, или современной, логики одним из разделов современной математики. Многие математики и сейчас еще считают главной – если не единственной – задачей математической логики уточнение понятия математического доказательства.

Тенденция включать математическую логику в число математических дисциплин и видеть в ней только теорию математического доказательства является, конечно, ошибочной. На самом деле задачи логики гораздо шире. Она исследует основы всякого правильного рассуждения, а не только строгого математического доказательства, и ее интересует связь между посылками и следствиями в любых областях рассуждения и познания.

Современная логика тесно связана также с кибернетикой – наукой о закономерностях управления процессами и системами в любых областях: в технике, в живых организмах, в обществе. Основоположник кибернетики, американский математик Н.Винер не без оснований подчеркивал, что само возникновение кибернетики было бы немыслимо без математической логики. Автоматика и электронно-вычислительная техника, применяемые в кибернетике, были бы невозможны без использования алгебры логики – этого возникшего первым раздела современной логики. В управляющих системах, применяемых в кибернетике, значительное место занимают релейно-контактные схемы, моделирующие логические операции. Описание таких операций, даваемое логикой, способствует детальному анализу логического строения мысли и открывает поразительные перспективы автоматизации логических процессов.

Помимо кибернетики современная логика находит широкие приложения и во многих других областях науки и техники.

Что такое правильное рассуждение. Смотреть фото Что такое правильное рассуждение. Смотреть картинку Что такое правильное рассуждение. Картинка про Что такое правильное рассуждение. Фото Что такое правильное рассуждение ОГЛАВЛЕHИЕ Что такое правильное рассуждение. Смотреть фото Что такое правильное рассуждение. Смотреть картинку Что такое правильное рассуждение. Картинка про Что такое правильное рассуждение. Фото Что такое правильное рассуждение >>> Библиотека Фонда содействия развитию психической культуры (Киев)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *