Что такое правильные многогранники определение
Правильные многогранники. Часть 1. Трёхмерие
Введение. Постановка вопроса.
В школьной программе, к сожалению, сферическую геометрию и геометрию Лобачевского не изучают. Тем временем, их изучение совместно с Евклидовой геометрией, позволяет глубже понять происходящее с объектами. Например, понять связь правильных многогранников с разбиениями сферы, разбиениями плоскости Евклида и разбиениями плоскости Лобачевского.
Знания геометрии пространств постоянной кривизны помогает подниматься над трёхмерием и выявлять многогранники в пространствах размерности 4 и выше. Вопросы нахождения многогранников, нахождения разбиений пространств постоянной кривизны, вывода формулы двугранного угла правильного многогранника в n-мерном пространстве — так тесно переплетены, что выносить всё это в название статьи оказалось проблематично. Пусть в центре внимания будут, всем понятные, правильные многогранники, хотя они не только результат всех выводов, но и, одновременно, инструмент для постижения пространств высших размерностей и равномерно искривлённых пространств.
Для тех кто не знает (забыл) сообщаю (напоминаю), что в привычном нам трёхмерном Евклидовом пространстве всего пять правильных многогранников:
1. Тетраэдр: | 2. Куб: | 3. Октаэдр: | 4. Додекаэдр: | 5. Икосаэдр: |
В трёхмерном пространстве правильным многогранником называется выпуклый многогранник, у которого все вершины равны между собой, все рёбра равны между собой, все грани равны между собой и грани являются правильными многоугольниками.
Правильный многоугольник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между собой равны.
Вершины равны между собой означает, что количество рёбер и количество граней подходящих к каждой вершине одинаковое и подходят они под одинаковыми углами, в каждой вершине.
Оказывается, правильные многогранники удобно обозначать их символом Шлефли
В такой записи наши многогранники получат обозначения:
1. Тетраэдр <3, 3>,
2. Куб <4, 3>,
3. Октаэдр <3, 4>,
4. Додекаэдр <5, 3>,
5. Икосаэдр <3, 5>
Например, <4, 3>— куб имеет 4 угольные грани, в каждой вершине сходится по 3 таких грани.
У октаэдра <3, 4>наоборот, грани 3 угольные, сходятся по 4 штуки в вершине.
Таким образом символ Шлефли полностью определяет комбинаторное строение многогранника.
Почему правильных многогранников всего 5? Может быть их больше?
Чтобы сполна дать ответ на этот вопрос, нужно сначала получить интуитивное представление о геометрии на сфере и на плоскости Лобачевского. Тем у кого такого представления ещё нет постараюсь дать необходимые объяснения.
Сфера
1. Что такое точка на сфере? Думаю, что всем интуитивно понятно. Мысленно не сложно представить точку на сфере.
2. Что такое отрезок на сфере? Берём две точки и соединяем их кратчайшим расстоянием на сфере, получится дуга, если смотреть на сферу со стороны.
3. Если продолжить этот отрезок в обе стороны, то он замкнётся и получится окружность. При этом плоскость окружности содержит центр сферы, это следует из того, что две исходные точки мы соединили кратчайшим, а не произвольным, расстоянием. Это со стороны она выглядит, как окружность, а в терминах сферической геометрии это прямая, так как была получена из отрезка, продолжением до бесконечности в обе стороны.
4. И, наконец, что такое треугольник на сфере? Берём три точки на сфере и соединяем их отрезками.
По аналогии с треугольником можно нарисовать произвольный многоугольник на сфере. Для нас принципиально важно свойство сферического треугольника, заключающееся в том, что сумма углов у такого треугольника больше 180 градусов, к которым мы привыкли в Евклидовом треугольнике. Более того, сумма углов у двух различных сферических треугольников различна. Чем больше треугольник, тем БОЛЬШЕ у него сумма углов.
Соответственно, появляется 4-й признак равенства треугольников на сфере — по трём углам: два сферических треугольника равны между собой, если у них соответствующие углы равны.
Для простоты саму сферу проще не рисовать, тогда треугольник будет выглядеть немного раздутым:
Сферу ещё называют пространством постоянной положительной кривизны. Кривизна пространства как раз и приводит к тому, что кратчайшим расстоянием является дуга, а не привычный нам прямолинейный отрезок. Отрезок как бы искривляется.
Лобачевский
Теперь, когда мы познакомились с геометрией на сфере, понять геометрию на гиперболической плоскости, открытую великим русским учёным Николаем Ивановичем Лобачевским, будет тоже не сложно, так как тут всё происходит аналогично сфере, только «наизнанку», «наоборот». Если дуги на сфере мы проводили окружностями, с центром внутри сферы, то теперь дуги надо проводить окружностями с центром за пределами сферы.
Приступим. Плоскость Лобачевского будем представлять в интерпретации Пуанкаре II (Жюль Анри́ Пуанкаре́, великий французский учёный), эту интерпретацию геометрии Лобачевского ещё называют диском Пуанкаре.
1. Точка в плоскости Лобачевского. Точка — она и в Африке точка.
2. Отрезок на плоскости Лобачевского. Соединяем две точки линией по кратчайшему расстоянию в смысле плоскости Лобачевского.
Кратчайшее расстояние строится следующим образом:
Надо провести окружность ортогональную диску Пуанкаре, через заданные две точки (Z и V на рисунке). Центр этой окружности будет находиться всегда за пределами диска. Дуга соединяющая исходные две точки будет кратчайшим расстоянием в смысле плоскости Лобачевского.
3. Убрав вспомогательные дуги, получим прямую E1 — H1 в плоскости Лобачевского.
Точки E1, H1 «лежат» на бесконечности плоскости Лобачевского, вообще край диска Пуанкаре — это всё бесконечно удалённые точки плоскости Лобачевского.
4. И наконец, что такое треугольник в плоскости Лобачевского? Берём три точки и соединяем их отрезками.
По аналогии с треугольником, можно нарисовать произвольный многоугольник на плоскости Лобачевского. Для нас принципиально важно свойство гиперболического треугольника, заключающееся в том, что сумма углов у такого треугольника всегда меньше 180 градусов, к которым мы привыкли в Евклидовом треугольнике. Более того, сумма углов у двух различных гиперболических треугольников различна. Чем больше треугольник по площади, тем МЕНЬШЕ у него сумма углов.
Соответственно, тут тоже имеет место 4-й признак равенства гиперболических треугольников — по трём углам: два гиперболических треугольника равны между собой, если у них соответствующие углы равны.
Для простоты сам диск Пуанкаре иногда можно не рисовать, тогда треугольник будет выглядеть немного «усохшим», «сдутым»:
Плоскость Лобачевского (и вообще пространство Лобачевского любой размерности) ещё называют пространством постоянной ОТРИЦАТЕЛЬНОЙ кривизны. Кривизна пространства как раз и приводит к тому, что кратчайшим расстоянием является дуга, а не привычный нам прямолинейный отрезок. Отрезок как бы искривляется.
Правильные разбиения двумерной Сферы и правильные трёхмерные многогранники
Всё сказанное про сферу и плоскость Лобачевского относится к двумерию, т.е. поверхность сферы — двумерна. Какое это имеет отношению к трёхмерию, указанному в заголовке статьи? Оказывается, каждому трёхмерному правильному Евклидову многограннику взаимно однозначно соответствует своё разбиение двумерной сферы. Лучше всего это видно на рисунке:
Чтобы из правильного многогранника получить разбиение сферы, нужно описать вокруг многогранника сферу. Вершины многогранника окажутся на поверхности сферы, соединив эти точки отрезками на сфере (дугами), получим разбиение двумерной сферы на правильные сферические многоугольники. Для примера сделана видео демонстрация как икосаэдр соответствует разбиению сферы на сферические треугольники и обратно, как разбиение сферы на сферические треугольники, сходящиеся по пять штук в вершине, соответствует икосаэдру.
Чтобы по разбиению сферы построить многогранник, соответствующие дугам вершины разбиения нужно соединить обычными, прямолинейными, Евклидовыми отрезками.
Соответственно символ Шлефли икосаэдра <3, 5>— трёхугольники, сходящиеся по пять штук в вершине, задаёт не только структуру этого многогранника, но и структуру разбиения двумерной сферы. Аналогично и с другими многогранниками, их символы Шлефли задают и структуру соответствующих разбиений. Более того, разбиения плоскости Евклида и плоскости Лобачевского на правильные многоугольники, тоже можно задавать символом Шлефли. Например, <4, 4>— четырёхугольники, сходящиеся по четыре — это всем привычная нам тетрадь в клеточку, т.е. это разбиение плоскости Евклида на квадраты. А есть ли другие разбиения плоскости Евклида? Увидим дальше.
Построение разбиений двумерной сферы, плоскости Евклида и плоскости Лобачевского
Для построения разбиений двумерных пространств постоянной кривизны (таково общее название этих трёх пространств) нам потребуется элементарная школьная геометрия и знание того, что сумма углов сферического треугольника больше 180 градусов (больше Пи), что сумма углов гиперболического треугольника меньше 180 градусов (меньше Пи) и что такое символ Шлефли. Обо всём об этом уже сказано выше.
Итак, возьмём произвольный символ Шлефли
Рассмотрим правильный p1 угольник, проведём отрезки, соединяющие его центр и вершины. Получим p1 штук равнобедренных треугольника (на рисунке показан только один такой треугольник). Сумму углов каждого из этих треугольников обозначим за t и выразим t через пи и коэффициент лямда.
Тогда если лямда = 1, то треугольник Евклидов, т.е. находится в Евклидовой плоскости, если лямда в интервале (1, 3), то это значит, что сумма углов больше пи и значит этот треугольник сферический (не трудно представить, что при увеличении сферического треугольника в пределе получается окружность с тремя точками на ней, в каждой точке угол треугольника получается равным пи, а в сумме 3*пи. Это объясняет верхнюю границу интервала = 3). Если же лямда в интервале (0, 1), то треугольник гиперболический, так как сумма углов у него меньше пи (т.е. меньше 180 градусов). Коротко это можно записать так:
Не трудно посчитать, что:
С другой стороны, для сходимости в вершине p2 штук (т.е. целого числа) таких же многоугольников нужно, чтобы
Приравнивая выражения для 2*бетта, найденные из условия сходимости и из многоугольника:
Получили уравнение которое показывает какое из трёх пространств разбивает фигура заданная своим символом Шлефли
Решение этого уравнения заключается в переборе всех возможных значений для p1, p2 больших либо равных 3 и вычислении значения лямда. Если оно получится равным 1, то
Откуда видно, что:
1. Сфере соответствует всего 5 решений, когда лямда больше 1 и меньше 3, они выделены зелёным цветом в таблице. Это: <3, 3>— тетраэдр, <3, 4>— октаэдр, <3, 5>— икосаэдр, <4, 3>— куб, <5, 3>— додекаэдр. Их картинки были представлены в начале статьи.
2. Разбиениям Евклидовой плоскости соответствует всего три решения, когда лямда = 1, они выделены синим цветом в таблице. Вот как выглядят эти разбиения.
3. И наконец, все остальные комбинации
ПРАВИЛЬНЫЕ МНОГОГРАННИКИ
тела Платона,- выпуклые многогранники, все грани к-рых
суть одинаковые правильные многоугольники и все многогранные углы при вершинах правильные и равные (рис. 1a-1д).
В евклидовом пространстве Е 3 существуют пять П. м., данные о к-рых приведены в табл. 1, где символ Шлефли (см. Многогранника группа).обозначает П. м. с p-угольными гранями и q-гранными углами.
Двойственными многогранниками и наз. такие, к-рые переходят друг в друга при полярном преобразовании относительно вписанной
Табл. 2.-Правильные многогранники в Е 4
Число двумерных граней
Число трехмерных граней
В пространстве E 4 существуют шесть П. м., данные о к-рых приведены в табл. 2.
Если под многоугольником понимать плоские замкнутые ломаные (хотя бы и самопересекающиеся), то можно указать еще 4 невыпуклых (звездчатых) П. м. (тела Пуансо).
Табл. 3.-П р а в и л ь н ы е (невыпуклые) многогранники в Е 3
Малый звездчатый додекаэдр
Большой звездчатый додекаэдр
Лит.:[1] Энциклопедия элементарной математики, кн. 4- Геометрия, М., 196IJ; 12] Люстерник Л. А., Выпуклые фигуры и многогранники, М., 1956; [3] Шклярский Д. О., Ченцов Н. Н., Яглом И. М., Избранные задачи и теоремы элементарной математики, ч. 3, М., 1954; [4] Соxeter Н. S. М., Regular polytopes, 3 ed., N.Y., 1973.
Полезное
Смотреть что такое «ПРАВИЛЬНЫЕ МНОГОГРАННИКИ» в других словарях:
Правильные многогранники — Додекаэдр Правильный многогранник, или Платоново тело это выпуклый многогранник с максимально возможной симметрией. Многогранник называется правильным, если: он выпуклый все его грани являются равными правильными многоугольниками в каждой его… … Википедия
Правильные многомерные многогранники — Правильный n мерный многогранник многогранники n мерного евклидова пространства, которые являются наиболее симметричными в некотором смысле. Правильные трёхмерные многогранники называются также платоновыми телами. Содержание 1 Определение 2 … Википедия
Многогранники — Многогранник поверхность составленная из многоугольников, а также тело ограниченное такой поверхностью. Содержание 1 Три варианта определения 2 Вариации и обобщения 3 Использование … Википедия
Полуправильные многогранники — многогранники, все грани которых суть правильные многоугольники нескольких разных наименований, а многогранные углы при вершинах конгруэнтны. Существует 13 определённых типов П. м. и две бесконечные серии. См. Многогранник … Большая советская энциклопедия
Полуправильные многогранники — или Архимедовы тела выпуклые многогранники, обладающие двумя свойствами: Все грани являются правильными многоугольниками двух или более типов (если все грани правильные многоугольники одного типа, это правильный многогранник); Для любой пары… … Википедия
ПОЛУПРАВИЛЬНЫЕ МНОГОГРАННИКИ — тела Архимеда, выпуклые многогранники, все грани к рых суть правильные многоугольники, а многогранные углы конгруэнтны или симметричны. Данные о П. м. приведены в таблице, где В число вершин, Р число ребер, Г число граней, Г k. число nk угольных… … Математическая энциклопедия
Многогранник — Многогранники (правильные выпуклые): 1 тетраэдр; 2 куб; 3 октаэдр; 4 додекаэдр; 5 икосаэдр. МНОГОГРАННИК, поверхность, состоящая из многоугольников (граней) таких, что каждая сторона любого из них есть одновременно сторона другого многоугольника… … Иллюстрированный энциклопедический словарь
МНОГОГРАННИК — часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого… … Энциклопедия Кольера
Многогранник — в трёхмерном пространстве, совокупность конечного числа плоских многоугольников, такая, что каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного), называемого смежным с первым (по этой стороне); от… … Большая советская энциклопедия
Правильный многогранник — Додекаэдр Правильный многогранник или платоново тело это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией … Википедия
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Урок № 16. Правильные многогранники
Перечень вопросов, рассматриваемых в теме:
Правильный многогранник – выпуклый многогранник, все грани которого равные правильные многоугольники и в каждой его вершине сходится одно и то же число ребер.
Правильный тетраэдр – многогранник, составленный из четырех равносторонних треугольников.
Правильный октаэдр – многогранник, составленный из восьми равносторонних треугольников.
Правильный икосаэдр – многогранник, составленный из двадцати равносторонних треугольников.
Куб (гексаэдр) – многогранник, составленный из шести квадратов.
Правильный додекаэдр – многогранник, составленный из двенадцати правильных пятиугольников.
Точки А и А1 называются симметричными относительно точки О, если О – середина отрезка АА1.
Точки А и А1 называются симметричными относительно прямой а, если прямая а проходит через середину отрезка АА1 и перпендикулярна этому отрезку.
Точки Аи А1 называются симметричными относительно плоскости α, если плоскость α проходит через середину отрезка АА1 и перпендикулярна этому отрезку.
Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры.
Потоскуев Е.В., Звавич Л. И. Геометрия. 11кл.: учеб. Для классов с углубл. И профильным изучением математики общеобразоват. Учреждений – М.: Дрофа, 2009. – 368 с.: ил. (128 с. – 131 с.)
Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы : учеб. Для общеобразоват. организаций : базовый и углубл. уровни – М.: Просвещение, 2014. – 255 с. (68 с. – 73 с.)
Открытые электронные ресурсы:
Многогранники.ru – сайт о создании моделей многогранников из бумаги https://www.mnogogranniki.ru/
Теоретический материал для самостоятельного изучения
Также нам уже знаком правильный тетраэдр.
Заметьте, что правильный тетраэдр и правильная треугольная пирамида – это различные многогранники!
Напомним, что пирамида называется правильной, если в основании лежит правильный многоугольник, а основание высоты совпадает с центром многоугольника. Таким образом, в правильной треугольной пирамиде боковые ребра равны друг другу, но могут быть не равны ребрам основания пирамиды, а в правильном тетраэдре все ребра равны.
Правильных многогранников существует всего 5. Перечислим их.
Правильный тетраэдр – многогранник, составленный из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников, значит сумма плоских углов при каждой вершине равна 180.
Правильный октаэдр – многогранник, составленный из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников, значит, сумма плоских углов при каждой вершине равна 240.
Куб (гексаэдр) – многогранник, составленный из шести квадратов. Каждая вершина куба является вершиной трех квадратов, значит, сумма плоских углов при
каждой вершине равна 270.
Правильный икосаэдр – многогранник, составленный из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников, значит, сумма плоских углов при каждой равна 300.
Рисунок 4 – Правильный икосаэдр
Правильный додекаэдр – многогранник, составленный из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников, значит, сумма плоских углов при каждой равна 324.
Рисунок 5 – Правильный додекаэдр
Докажем, что правильных многогранников существует ровно 5, то есть что не существует правильного многогранника, гранями которого являются правильные n-угольники при n≥6.
По этой причине каждая вершина правильного многогранника может быть вершиной либо трех, либо четырех, либо пяти равносторонних треугольников, либо трех квадратов, либо трех правильных пятиугольников.
Симметрия в пространстве
Одно из интересных свойств правильных многогранников – это элементы симметрии.
Прежде чем мы их выделим давайте определим симметрию в пространстве.
Вам уже знакома симметрия из курса планиметрии. Там мы рассматривали фигуры симметричные относительно прямой и точки. В стереометрии же рассматривают симметрию относительно точки, прямой и плоскости.
Будем говорить, что точки А и А1 симметричны относительно точки О (рис. 6), если О – середина отрезка АА1. В таком случае О будет являться центром симметрии и будет симметрична сама себе.
Рисунок 6 – Центральная симметрия
Точки А и А1 называются симметричными относительно прямой а, если прямая а проходит через середину отрезка АА1 и перпендикулярна к этом отрезку (рис. 7). Прямая а называется осью симметрии, а каждая ее точка считается симметричной самой себе.
Рисунок 7 – Осевая симметрия
Точки АА1 называются симметричными относительно плоскости α, если плоскость α проходит через середину отрезка АА1 и перпендикулярна к этому отрезку (рис. 8). Плоскость α называется плоскостью симметрии, а каждая ее точка считается симметричной самой себе.
Точка (прямая, плоскость) называется центром (осью, плоскостью) симметрии фигуры, если каждая точка фигуры симметрична относительно нее некоторой точке той же фигуры.
Если фигура имеет центр (ось, плоскость) симметрии, то говорят, что она обладает центральной (осевой, зеркальной) симметрией.
Рисунок 8 – Зеркальная симметрия
Рисунок 9 – Элементы симметрии куба
Примером фигуры, обладающей и центральной, и осевой и зеркальной симметрией является куб (рис. 9).
Фигура может иметь один или несколько центров (осей, плоскостей) симметрии. Так, например, у куба один центр симметрии и несколько осей и плоскостей симметрии.
В геометрии центр, ось и плоскость симметрии многогранника называют элементами симметрии многогранников.
С симметрией мы часто можем встретиться в природе, архитектуре, быту.
Например, многие кристаллы имеют центр ось или плоскость симметрии.
Многие здания симметричны относительно плоскости. Примером такого здания является здание Московского государственного университета.
Рисунок 10 – Здание Московского государственного университета
Примеры и разбор решения заданий тренировочного модуля
№1 Выберите неверные утверждения
1) правильный додекаэдр состоит из 8 правильных треугольников
2) тетраэдр имеет 4 грани
3) гексаэдр состоит из шести параллелограммов
4) правильный октаэдр состоит из правильных пятиугольников
Утверждение под номером 1 неверно, так как название «додекаэдр» с греческого означает «двенадцать граней». В действительности, додекаэдр состоит из двенадцати правильных пятиугольников.
Утверждение 2 верно. Тетраэдр с греческого означает 4 грани и состоит тетраэдр из 4-х треугольников.
Гексаэдр, он же куб состоит из квадратов, которые в свою очередь являются параллелограммами, поэтому утверждение 3 верно.
С греческого «октаэдр» означает 8 граней, состоять в таком случае из пятиугольников он не может. Октаэдр состоит из восьми треугольников. Утверждение 4 неверно.
№ 2 Установите соответствие между правильными многогранниками и их развертками.
1) 2)
3)
4)
5) 6)
7) 8)
9) 10)
Для выполнения этого задания необходимо понять, из каких многоугольников составлен многогранник.
Итак, куб состоит из квадратов. Единственная развертка, состоящая из квадратов это развертка под номером 6. Проверить себя можно и мысленно сложив из развертки кубик.
Многогранник под номером 2 – тетраэдр, состоит из четырех треугольников. Поэтому ему будет соответствовать развертка под номером 7. Мысленно сложите из развертки тетраэдр.
Октаэдр состоит из 8 треугольников, в этом несложно убедиться исходя из изображения. Развертка под номером 8 как раз состоит из 8 треугольников.
Многогранник под номером 4 состоит также из треугольников, а единственная развертка, состоящая из треугольников, осталась под номером 10. Попробуйте вырезать такую развертку из бумаги и собрать свой икосаэдр!
Многогранник под номером 5 состоит из пятиугольников. Оставшаяся развертка 9 тоже состоит из пятиугольников. Осталось проверить, что количество совпадает.