Что такое предел измерения термометра
§ 7. Измерительные приборы. Цена деления. Точность измерений
На рисунке 39 изображены три линейки с одинаковыми верхними пределами (25 см). Но эти линейки измеряют длину с различной точностью. Наиболее точные результаты измерений дает линейка 1, менее точные — линейка 3. Что же такое точность измерений и от чего она зависит? Для ответа на эти вопросы рассмотрим сначала цену деления шкалы прибора.
Цена деления — это значение наименьшего деления шкалы прибора.
Полученное значение и будет ценой деления шкалы прибора. Обозначим ее буквой С.
C1 = 1 см : 10 дел = 0,1 см/дел
C2 = 1 см : 5 дел = 0,2 см/дел
C3 = 1 см : 2 дел = 0,5 см/дел
Точно так же можно определить и цену деления шкалы мензурок 1 и 2 (рис. 40). Цена деления шкалы мензурки 1:
Цена деления шкалы мензурки 2:
Измерим один и тот же объем мензуркой 1 и мензуркой 2. Исходя из показаний шкалы объем воды в мензурке 1:
V = 35 мл.
Из показаний шкалы мензурки 2:
V = 37 мл.
Понятно, что точнее измерен объем воды мензуркой 2, цена де- ления которой меньше (1 мл/дел
Глава вторая. Измерение температуры
2-2. ТЕРМОМЕТРЫ РАСШИРЕНИЯ
Физическое свойство тел изменять свой объем в зависимости от нагрева широко используется для измерения температуры. На этом принципе основано устройство жидкостных стеклянных и дилатометрических термометров, которые появились очень давно и послужили для создания первых температурных шкал.
а) Основные свойства жидкостных термометров
Жидкостные термометры, изготовляемые из стекла, являются местными показывающими приборами. Они состоят из резервуара с жидкостью, капиллярной трубки, присоединенной к резервуару и закрытой с противоположного конца, шкалы и защитной оболочки. Приращение в капилляре термометра столбика жидкости ∆h (мм) при нагреве резервуара от температуры t1 до t2 определяется по формуле:
Разность средних температурных коэффициентов αж и αс в уравнении (2-3) называется средним температурным коэффициентом видимого расширения αв жидкости в стекле, т. е.
б) Устройство ртутных термометров
Конечный предел измерения, ограничиваемый температурой размягчения стеклянной оболочки термометра, достигается при помощи искусственного повышения точки кипения ртути С этой целью у термометров для измерения высоких температур пространство капилляра над ртутью, из которого предварительно удален воздух, заполняется инертным газом при давлении свыше 2 МПа. Термометры с верхним пределом шкалы до 100 °С иногда газом не заполняются, и капилляр их находится под вакуумметрическим давлением.
Согласно выражению (2-3) чувствительность ртутных термометров зависит от размеров резервуара и капилляра. Чем больше резервуар и меньше внутреннее сечение капилляра, тем заметнее изменение высоты ртутного столбика, т. е. тем более чувствителен термометр и меньше цена деления его шкалы. Однако большой размер резервуара увеличивает инерционность прибора, что снижает качество последнего при измерении переменной температуры.
Основная погрешность ртутных термометров зависит от диапазона показаний и цены деления шкалы, с увеличением которых она возрастает.
Вследствие небольшого отклонения видимого коэффициента расширения ртути в стекле при изменении температуры ртутные термометры имеют почти равномерную шкалу.
Ртутные термометры изготовляются двух видов: с вложенной шкалой и палочные (рис. 2-1)
Палочный термометр состоит из резервуара 1, соединенного с толстостенным капилляром 2 наружным диаметром 6-8 мм. Шкала термометра нанесена непосредственно на поверхности капилляра в виде насечки по стеклу. Палочные термометры являются более точными по сравнению с термометрами с вложенной шкалой.
В обоих видах термометров капилляр за верхней отметкой шкалы имеет запасный объем, предохраняющий прибор от повреждения при перегреве.
По назначению ртутные термометры разделяются на промышленные (технические), лабораторные и образцовые.
При измерении температуры нижняя часть технических термометров полностью опускается в измеряемую среду, т. е. глубина погружения их является постоянной.
Характеристики лабораторных ртутных термометров типа ТЛ даны в табл. 2-3,
Недостатками ртутных термометров являются их хрупкость, невозможность дистанционной передачи и автоматической записи показаний, большая инерционность и трудность отсчета из-за нечеткости шкалы и плохой видимости ртути в капилляре. Все это в значительной мере ограничивает их применение, оставляя за ними главным образом область местного контроля и лабораторные измерения.
в) Установка ртутных термометров
Точность показаний ртутного термометра, как и любого прибора, измеряющего температуру, зависит от способа его установки, т. е. от правильного решения вопросов, связанных с теплообменом между измеряемым веществом, термометром и внешней средой. Эта задача сводится к двум основным требованиям: во-первых, к обеспечению наиболее благоприятных условий передачи тепла от измеряемой среды чувствительной части (резервуару) термометра и, во-вторых, к уменьшению по возможности отдачи тепла прибором окружающему воздуху.
Особенно большое влияние на точность измерений оказывает утечка тепла от термометра, что при жидкой измеряемой среде вызывается теплопроводностью частей прибора, а при газовой и паровой — еще дополнительным обменом тепла лучеиспусканием с окружающими поверхностями. Кроме того, введенная в измеряемую среду чувствительная часть прибора в той или иной мере искажает окружающее температурное поле вследствие отвода тепла. В этих условиях измерение температуры не дает правильных результатов, так как показания прибора соответствуют его собственной температуре, отличающейся от температуры измеряемой среды. Неправильная установка термометра, дающая большую потерю тепла в окружающую среду, может привести к занижению его показаний на 10-15%.
Рассмотренные ниже способы установки ртутных термометров являются в основном общими для различных типов термометров.
Применяются два способа установки ртутных термометров: в защитных оправах (или гильзах) и без них, т. е. путем непосредственного погружения термометров в измеряемую среду.
Весьма распространенной является установка термометра в защитной гильзе (рис. 2-3),
предохраняющей его от поломки и обеспечивающей необходимую плотность соединения в месте расположения прибора. Длина защитной гильзы выбирается в зависимости от требуемой глубины погружения термометра.
При измерении температуры в трубопроводе термометр устанавливается в положение, при котором ось трубы проходит посередине резервуара. Погружение конца термометра до центра трубы, т. е. в зону наибольшей скорости потока, улучшает теплообмен между движущейся средой и прибором и уменьшает влияние на результаты измерения тепловых потерь защитной гильзы.
Наиболее правильной является установка термометра вдоль оси трубопровода на колене с восходящим потоком, так как при этом условия обтекания конца гильзы весьма благоприятны. На горизонтальном трубопроводе диаметром до 200 мм термометр устанавливается наклонно к оси трубы навстречу потоку. При диаметре трубопровода более 200 мм термометр может быть расположен нормально к оси трубы. На прямом вертикальном участке трубопровода с восходящим потоком термометр всегда устанавливается наклонно навстречу потоку. Устанавливать термометры на вертикальных трубопроводах с нисходящим потоком не рекомендуется.
На величину отвода тепла гильзой влияют средняя разность температур между измеряемой средой и окружающим воздухом, а также конструкция и материал гильзы. Защитные гильзы изготовляются из металлов, плохо проводящих тепло (например, из нержавеющей стали), а размеры головки (выступающей наружу части), толщина стенки и внутренний диаметр гильзы выбираются по возможности небольшими. Выступающие части защитных гильз покрываются теплоизоляцией.
Защитная оправа 1 состоит из гильзы и чехла, который имеет продольный вырез для отсчета показаний термометра 2. При точных определениях температуры чехлы не применяются, так как значительно увеличивают погрешность измерения из-за оттока по ним тепла.
Установка ртутного термометра без гильзы практически исключает отвод тепла от резервуара. Однако из-за влияния, оказываемого на показания термометра давлением измеряемой среды (сжатие резервуара с выдавливанием ртути в капилляр), а также вследствие недостаточной прочности термометра и трудности уплотнения места его установки использование этого способа ограничивается областью небольших давлений. Установка ртутных термометров без гильзы применяется главным образом при кратковременных точных измерениях температуры среды
г) Поверка ртутных термометров
Для поверки термометров служат термостаты типов ТС-15 м (водяной) и ТС-24 (водяной и масляный). Устройство термостата типа ТС-24 показано на рис. 2-5.
Латунный цилиндрический сосуд 1 вместимостью 24 л помещен в металлический кожух 2, покрытый изнутри теплоизоляцией 3. Сосуд накрыт крышкой 4, на которой установлен электродвигатель 5, соединенный муфтой 6 с осью, приводящей в движение насос 7 и мешалку 8. Последняя расположена в патрубке 9, имеющем вверху окна для прохода жидкости. Насос термостата используется лишь в случае, когда требуется поддерживать постоянной температуру в каком-либо внешнем аппарате. Тогда жидкость из термостата подается в аппарат через штуцер 10 и возвращается через штуцер 11. При отсутствии аппарата штуцера закорачиваются трубкой.
Нагрев жидкости в термостате производится электронагревателями 12 и 13 мощностью соответственно 700 и 1300 Вт. Нагреватели помещены в защитные чехлы, закрепленные на крышке 4. По достижении заданной температуры нагреватель 12 переключают на второй предел мощности, равный 175 Вт, предназначенный для автоматического поддержания в термостате постоянной температуры посредством ртутного контактного термометра 14 с магнитной муфтой. После этого с помощью регулируемого автотрансформатора изменяют мощность нагревателя 13 так, чтобы температура в термостате не превышала заданной.
Сосуд термостата заполняется жидкостью так, чтобы ее уровень находился на минимальном расстояний от крышки. Для опорожнения сосуда служит трубка 18 с пробкой. Кожух термостата заземляют при помощи эажима 19. Для переноски термостат снабжен ручками 20 и 21.
Блок управления термостата (выключатели, переключатель, реле для контактного термометра и пр.) смонтирован в коробке, закрепленной сбоку кожуха (на рис. 2-5 не показан).
Технические термометры градуируются и поверяются в термостате при погружении в жидкость только хвостовой части, т. е. при постоянной глубине погружения, соответствующей их положению при измерении. Лабораторные и образцовые термометры градуируются и поверяются при переменной глубине погружения с таким расчетом, чтобы при каждом очередном отсчете температуры ртутный столбик в капилляре не выступал более чем на 5 мм над крышкой термостата.
Для уменьшения погрешности, обусловленной инерционностью термометров, поверка их в термостате производится при медленном повышении температуры до заданного значения. Показания образцового и поверяемых термометров отсчитываются в порядке их установки, причем перед каждым измерением слегка постукивают по прибору. Отсчеты повторяют при одинаковой температуре не менее пяти раз, после чего находят среднее показание каждого прибора.
До и после поверки термометра в термостате определяется положение нулевой точки прибора, которое может изменяться из-за расширения капилляра и резервуара вследствие термического последействия стекла, появляющегося в результате нагрева и последующего охлаждения термометра. Указанное явление, вызываемое нарушением равновесной структуры стекла при нагревании, исчезает с течением времени. Термическое последействие стекла тем больше, чем выше температура нагрева термометра и чем длительнее он находился при этой температуре.
Поверка положения нулевой точки производится в термостате плавления льда (рис. 2-6 а),
представляющем собой два стеклянных сосуда, из которых внутренний сосуд 1 заполняется смесью из кусочков чистого льда и дистиллированной воды, а внешний сосуд 2 с замкнутым воздушным пространством служит в качестве теплоизоляции. В тающий лед погружается поверяемый термометр 3.
В нижней части термостата имеется дренажная трубка 4 с зажимом 5, предназначенная для выпуска воды, так как ири поверке смесь льда и воды должна иметь вид густой массы. Термостат устанавливается на подставке 6. Положение нулевой точки до и после нагрева термометра отмечается в протоколе поверки и свидетельстве прибора. Допускаемое смещение нулевой точки (депрессия нуля) не должно превышать 0,1 °С на каждые 100 °С шкалы поверяемого термометра, в противном случае термометр считается непригодным.
Для поверки у термометров точки 100 °С применяется термостат кипения воды (рис. 2-6, б). Термостат имеет сосуд 1, заполняемый на 2/3 высоты дистиллированной водой, уровень которой контролируется по указательному стеклу 2. Нагрев воды в сосуде до кипения нроизводится электронагревателем 3. Получаемый в сосуде 1 насыщенный пар поступает через отверстия в патрубок 4, откуда по кольцевому пространству между патрубком и корпусом 5, покрытым снаружи теплоизоляцией 6, направляется в водяной холодильник 7. Образующийся в холодильнике конденсат стекает обратно в сосуд по трубке 8. Вверху корпус снабжен крышкой 9 с отверстиями в центре и по краям для установки образцового 10 и поверяемых 11 ртутных термометров. Давление пара внутри патрубка находится по показаниям водяного манометра 12.
При поверке глубина погружения лабораторных и технических термометров должна быть такой же, как и в термостате на рис. 2-5. Отсчеты показаний образцового и поверяемых термометров производятся через каждую минуту не менее пяти раз. Действительные показания определяются как средние из этих отсчетов. Для точного определения температуры tн (°С) насыщенного пара в термостате пользуются формулой
д) Поправки к показаниям ртутных термометров
При точных измерениях температур с помощью ртутных термометров к их показаниям вводятся следующие поправки:
Следовательно, в общем случае определение действительной температуры среды t по показаниям tT ртутного термометра производится согласно равенству:
Основная поправка принимается из свидетельства термометра.
Поправка на температуру выступающего столбика ртути вводится к показаниям только лабораторных и образцовых термометров в тех случаях, когда при измерении часть ртутного столбика намного выступает из защитной гильзы, а измеряемая температура значительно превышает температуру окружающего воздуха. Как отмечалось, указанные термометры градуируются и поверяются при условии, что ртутный столбик почти не выходит за пределы уровня жидкости в термостате, т. е. имеет ту же температуру, что и ртуть в резервуаре. При измерениях столбик, как правило, выступает наружу и имеет температуру, отличающуюся от температуры измеряемой среды. Это отступление от условий градуировки и поверки термометра требует^ введения к его показаниям поправки, определяемой по формуле:
Поправка на смещение положения нулевой точки термометра периодически определяется в процессе эксплуатации с помощью термостата плавления льда.
В случае отклонения положения нуля от указанного в свидетельстве (после нагрева в термостате) эта поправка вычисляется по формуле:
е) Дилатометрические термометры
К дилатометрическим термометрам относятся стержневой и пластинчатый (биметаллический) термометры, действие которых основано на относительном удлинений под влиянием температуры двух твердых тел, имеющих различные температурные коэффициенты линейного расширения.
Зависимость длины l твердого тела от его температуры t выражается равенством
Значения средних коэффициентов линейного расширения некоторых материалов в интервале температур 0 – 200 °С приведены в табл 2-5.
Стержневой термометр ( рис.2-7,а)
имеет закрытую с одного конца трубку 1, помещаемую в измеряемую среду и изготовленную из материала с большим коэффициентом линейного расширения. В трубку вставлен стержень 2, прижимаемый к ее пну рычагом 3, скрепленным с пружиной 4. Стержень изготовлен из материала с малым коэффициентом расширения. При изменении температуры трубка изменяет свою длину, что приводит к перемещению в ней стержня, сохраняющего почти постоянные размеры и связанного посредством рычага 3 с указательной стрелкой прибора.
Дилатометрические термометры не получили распространения как самостоятельные приборы, а используются главным образом в качестве чувствительных элементов в сигнализаторах температуры. Кроме того, пластинчатые термометры иногда применяются для компенсации влияния переменной температуры окружающего воздуха на показания других приборов, в которые они встраиваются.
Что такое предел измерения термометра
ТЕРМОМЕТРЫ ЖИДКОСТНЫЕ СТЕКЛЯННЫЕ
Общие технические требования. Методы испытаний
Liquid-in-glass thermometers. General technical requirements. Methods of tests
Дата введения 1991-01-01
1. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 30.03.90 N 691
2. В стандарт введены международные стандарты ИСО 386-77*, ИСО 1770-81*, ИСО 1771-81*
3. ВЗАМЕН ГОСТ 4.320-85 в части жидкостных термометров и ГОСТ 27544-87
4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ
Обозначения НТД, на который дана ссылка
Обозначения НТД, на который дана ссылка
5. ПЕРЕИЗДАНИЕ. Март 2007 г.
Стандарт не распространяется на максимальные, минимальные, метастатические, метеорологические, электроконтактные и прецизионные термометры с равноделенной шкалой.
1. КЛАССИФИКАЦИЯ
1.2. Термометры различают по конструктивному исполнению:
1.3. Термометры в зависимости от условий эксплуатации следует изготовлять следующих исполнений:
1.4. Номенклатура основных показателей качества термометров приведена в приложении 1.
2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
2.1.1. Термометры следует изготовлять в соответствии с требованиями настоящего стандарта по стандартам или техническим условиям на термометры конкретного типа.
2.1.2. Термометры должны быть градуированы в градусах Цельсия, (°С) по Международной практической температурной шкале в соответствии с требованиями ГОСТ 8.157.
Если возникает необходимость применения термометров полного погружения в условиях частичного погружения или термометров частичного погружения в условиях полного погружения, то следует вносить поправку на температуру столбика жидкости, которая будет отличаться от температуры, установленной для того или другого вида погружения. Определение поправки к показанию термометра приведено в приложении 2. Коэффициенты видимого теплового расширения термометрических жидкостей приведены в приложении 3.
Градуировку термометров частичного погружения следует проводить в помещении при температуре окружающего воздуха (20±5)°С.
2.1.3. В стандартах или технических условиях на термометры конкретного типа необходимо устанавливать требования к стеклу и его обработке, чтобы готовое изделие удовлетворяло следующим требованиям.
2.1.3.1. Напряжение стекла, капиллярной трубки и, при необходимости, защитной оболочки должно быть сведено до уровня, который обеспечит сохранность изделия при термическом или механическом воздействии.
2.1.3.2. Стекло резервуара должно быть стабилизировано термической обработкой так, чтобы точность показаний термометра соответствовала требованиям п.2.1.4. Искусственному старению должны быть подвергнуты резервуары термометров для измерения температуры свыше 200°С и термометров с ценой деления 0,1 и 0,2°С.
2.1.3.3. На резервуаре и оболочке термометра не допускаются царапины, камни, пузыри и другие дефекты, влияющие на прочность термометров или мешающие отсчету температуры по шкале.
Предел допускаемой погрешности термометров, предназначенных для учебных целей, устанавливают в технических условиях.
2.1.5. Смачивающая жидкость не должна менять агрегатного состояния во всем диапазоне измерения температур, химически взаимодействовать со стеклом, мутнеть или давать осадок, содержать механические включения; жидкость должна иметь в капиллярной трубке правильно вогнутый мениск.
2.1.6. Движение жидкости в капиллярной трубке должно быть плавным, без скачков и торможений; жидкость при движении не должна разрываться на несоединимые части и оставлять следы на стенках капиллярной трубки.
2.1.7. Мениск жидкости должен быть отчетливо виден на фоне шкалы термометра.
Допускается подкрашивать смачивающую жидкость красителем, устойчивым к влиянию света и температуры в условиях эксплуатации, или наносить на шкальную пластину краской, контрастной по цвету, полосу за капиллярной трубкой шириной не менее 1,5 мм.
Диапазон измеряемых температур
Предел допускаемой погрешности технических термометров при цене деления шкалы и классе точности
Термометры
Схема прообраза термометра была следующей: это был сосуд с трубкой, содержащей воздух, отделенный от атмосферы столбиком воды; он изменял свои показания и от изменения температуры, и от изменения атмосферного давления. В 18 веке воздушный термометр был усовершенствован. Современную форму термометру придал ученый Фаренгейт, который описал свой способ изготовления термометра в 1723 г. Первоначально свои трубки он наполнял спиртом и лишь в конце исследований перешел к ртути. Окончательно постоянные точки тающего льда и кипящей воды установил шведский физик Цельсий в 1742 г. Сохранившиеся экземпляры термометров Фаренгейта и Цельсия отличаются тщательностью исполнения.
Существует огромное количество видов термометров – электронные термометры, цифровые, термометры сопротивления, биметаллические термометры, инфракрасные термометры (ик термометры), дистанционные термометры, электроконтактные термометры. И, конечно же, наиболее популярные – спиртовые и ртутные термометры. Помимо непосредственно термометров в продаже широко представлены оправы к термометрам, манометрические термометры (термоманометры), портативные пирометры, гигрометры термометры, термометры барометры, тонометры термометры, термопары и другое оборудование.
Вопрос, где купить термометр, сейчас практически не стоит. На рынке представлен широчайший спектр термометров различного назначения, в том числе и бытовых: уличные термометры для любых окон (и деревянных, и пластиковых), комнатные термометры для дома и офиса, термометры для бань и саун. Можно купить термометры для воды, для чая, даже для вина и пива, для аквариума, специальные термометры для почвы, для инкубаторов, фасадные и автомобильные термометры. Существуют термометры для холодильников, морозильных камер и погребов. Словом, найдётся всё! От вида термометра существенно зависит его цена. Диапазон цен также широк, как и ассортимент видов термометров. Установка термометра, как правило, технологически не сложна. Но не забывайте, что надёжное и долговечное крепление термометра гарантирует только выполненная по всем правилам установка, не стоит этим пренебрегать. Помните также, что термометр – прибор инерционный, и время установления его показаний составляет 10-20 минут, в зависимости от требуемой точности. Поэтому не следует ждать, что термометр изменит свои показания сразу, как только вы его вынете из упаковки или установите.
Манометрические термометры. Приборы для измерения температуры, действие которого основано на измерении давления какого-либо вещества (жидкости или газа) при изменении температуры. Шкала манометра градуируется непосредственно в единицах температуры. Измерительная система состоит из погружаемого элемента, капиллярного провода и трубчатой пружины в корпусе. Данные элементы соединены в единое устройство, которое под давлением заполнено инертным газом. Изменение температуры влечёт изменение объема или внутреннего давления в погружаемом устройстве. Давление деформирует измерительную пружину, отклонение которой передается с помощью стрелочного механизма на стрелку. Колебания температуры окружающей среды могут не приниматься во внимание, так как для компенсации между стрелочным механизмом и измерительной пружиной встроен биметаллический элемент. В зависимости от применяемого рабочего вещества различают следующие манометрические термометры: – газовые (азот); – конденсационные (метилхлорид, спирт, диэтиловый эфир); – жидкостные (метилксилол, силиконовые жидкости, металлы с низкой точкой плавления); – ртутные со специальными наполнителями.
Термометры сопротивления. Действие термометров сопротивления основано на свойстве тел изменять электрическое сопротивление при изменении температуры. В металлических термометрах сопротивление с возрастанием температуры увеличивается практически линейно. В полупроводниковых термометрах сопротивления оно наоборот, уменьшается.
Полупроводниковые термометры сопротивления (термисторы) для измерений в промышленности применяют редко, хотя их чувствительность гораздо выше, чем проволочных термометров сопротивления. Это объясняется тем, что градуированные характеристики термисторов значительно отличаются друг от друга, что затрудняет их взаимозаменяемость.
Термометры сопротивления представляют собой первичные преобразователи с удобным для дистанционной передачи сигналом – электрическим сопротивлением, для измерения такого сигнала обычно применяют автоматические уравновешенные мосты. При необходимости выходной сигнал термометра сопротивления может быть преобразован в унифицированный сигнал. Для этого в измерительную цепь включают промежуточный преобразователь. В этом случае измерительным будет прибор для измерения постоянного тока.
Термоэлектрические термометры (термопары). Принцип действия термоэлектрических термометров основан на свойстве двух разнородных проводников создавать термоэлектродвижущую силу при нагревании места их соединения – спая. Проводники в этом случае называются термоэлектродами, а все устройство – термопарой. Величина термоэлектродвижущей силы термопары зависит от материала термоэлектродов и разности температур горячего спая и холодных спаев. Поэтому при измерении температуры горячего спая температуру холодных спаев стабилизируют или вводят поправку на ее изменение.
В промышленных условиях стабилизация температуры холодных спаев термопары затруднительна, поэтому обычно пользуются вторым способом – автоматически вводят поправку на температуру холодных спаев. Для этого применяют неуравновешенный мост, включаемый последовательно с термопарой. В одно плечо такого моста включен медный резистор, расположенный около холодных спаев. При изменении температуры холодных спаев термопары изменяется сопротивление резистора и выходное напряжение неуравновешенного моста. Мост подбирают таким образом, чтобы изменение напряжения было равно по величине и противоположно по знаку, изменению термоэлектродвижущей силы термопары вследствие колебаний температуры холодных спаев.
Термопары являются первичными преобразователями температуры в термоэлектродвижущую силу – сигнал, удобный для дистанционной передачи. Поэтому в измерительную цепь за термопарой может быть сразу включен измерительный прибор для измерения термоэлектродвижущей силы термопары. Обычно применяют автоматические потенциометры.
Если термоэлектродвижущую силу термопары преобразуют в унифицированный сигнал промежуточным преобразователем, то компенсация температуры холодных спаев производится неуравновешенным мостом, который входит в состав преобразователя.
Медный резистор размещают в потенциометре или промежуточном преобразователе. Следовательно, там же должны находиться и холодные спаи термопары. В этом случае длина термопары должна быть равна расстоянию от места измерения температуры до места установки прибора. Такое условие практически невыполнимо, так как термоэлектроды термопар (жесткая проволока) неудобны для монтажа. Поэтому для соединения термопары с прибором применяют специальные соединительные провода, подобные по термоэлектрическим свойствам термоэлектродам термопар. Такие провода называются компенсационными. С их помощью холодные спаи термопары переносятся к измерительному прибору или преобразователю.
В промышленности применяют различные термопары, термоэлектроды которых изготовлены как из чистых металлов (платина), так и из сплавов хрома и никеля (хромель), меди и никеля (копель), алюминия и никеля (алюмель), платины и родия (платинородий), вольфрама и рения (вольфрамрений). Материалы термоэлектродов определяют предельное значение измеряемой температуры. Наиболее распространенные термоэлектродные пары образуют стандартные термопары: хромель-копель (предельная температура 600°С), хромель-алюмель (предельная температура 1000°С), платинородий-платина (предельная температура 1600°С) и вольфрамрений с 5% рения- вольфрамрений с 20% рения (предельная температура 2200°С). Промышленные термопары отличаются высокой стабильностью характеристик, что позволяет заменять их без какой-либо переналадки остальных элементов измерительной цепи.
Термопары, как и термометры сопротивления, устанавливают в защитных чехлах, на которых указан тип термопары. Для высокотемпературных термопар применяют защитные чехлы из теплостойких материалов: фарфора, оксида алюминия, карбида кремния и т.п.
Изготавливаются данные приборы по техническим условиям предприятия. В общем случае электроконтактные термометры конструктивно подразделяются на 2 вида:
– термометры с переменной (устанавливаемой) температурой контактирования, термометры с постоянной (заданной) температурой контактирования (так называемые термоконтакторы);
– электроконтактные термометры с переменным контактом изготавливаются с вложенной шкалой. Шкальная пластина из стекла молочного цвета с нанесенными на нее делениями шкалы и оцифровкой позволяет проводить визуальный контроль температурных режимов в установках.
Термоконтакторы изготавливаются из массивной капиллярной трубки, имеют один или два рабочих контакта, т.е. одну или две фиксированные температуры контактирования. Применяются при погружении в измеряемую среду до соединительного (нижнего) контакта.
Термометры имеют магнитное устройство, с помощью которого рабочая точка контактирования изменяется в диапазоне всего интервала температур.
Электроконтактные термометры и термоконтакторы работают в цепях постоянного и переменного тока в безыскровом режиме. Допускаемая электрическая нагрузка на контактах этих приборов не более 1 Вт при напряжении до 220 В и силе тока 0,04 А. Для включения в электроцепь термоконтакторы снабжены припаянными гибкими проводниками. Термометры подключаются к цепи с помощью контактов под съемной крышкой.
Электронные термометры. Если нужно контролировать температуру, скажем, в подвале дома, на чердаке или в любом подсобном помещении, обычный ртутный или спиртовой термометр вряд ли подойдет. Довольно неудобно периодически выходить из комнаты, чтобы взглянуть на его шкалу.
Более пригоден в подобных, случаях электронный термометр, позволяющий измерять температуру дистанционно – на расстояниях в сотни метров. Причем в контролируемом помещении будет располагаться лишь миниатюрный термочувствительный датчик, а в комнате на видном месте – стрелочный индикатор, по шкале которого и отсчитывают температуру. Соединительная линия между датчиком и устройством индикации может быть выполнена либо экранированным проводом, либо двухпроводным электрическим шнуром. Конечно, электронный термометр – не новинка современной электроники. Но в большинстве случаев термочувствительным элементом в ранних версиях таких термометров был терморезистор, обладающий нелинейной зависимостью сопротивления от температуры окружающей среды. А это менее удобно, поскольку стрелочный индикатор нужно было снабжать специальной нелинейной шкалой, получаемой во время, градуировки прибора с помощью образцового термометра.
Сейчас в электронных термометрах в качестве термочувствительного элемента применяется кремниевый диод, зависимость прямого напряжения (т.е. падения напряжения на диоде при протекании через него прямого тока – от анода к катоду) которого линейна в широком диапазоне изменения температуры окружающей среды. В этом варианте отпадает необходимость в специальной градуировке шкалы стрелочного индикатора.
Принцип действия электронного термометра можно понять, вспомнив известную мостовую схему измерения, образованную четырьмя резисторами, с включенным в одну диагональ стрелочным индикатором и поданным на другую диагональ питающим напряжением. При изменении сопротивления одного из резисторов, через стрелочный индикатор начинает протекать ток.
Цифровые термометры. Цифровые, как и любые другие термометры, – это приборы, предназначенные для измерения температуры. Достоинством цифровых термометров является то, что они обладают малыми размерами, широким диапазоном измеряемой температуры в зависимости от используемых внешних датчиков температуры. Внешние датчики температуры могут быть как термопары различных типов, так и термометры сопротивления, иметь различные формы и области применения. Например, имеются внешние датчики температуры для газообразных, жидких и твёрдых тел. Термометры цифровые представляют собой высокоточные, высокоскоростные приборы. В основе цифрового термометра лежит аналого-цифровой преобразователь, работающий по принципу модуляции. Параметры термометра в смысле погрешности измерений всецело определяются датчиками. Цифровые термометры могут применяться в бытовых целях и для контроля технологических процессов в строительстве, в том числе дорожном, а также в строительной индустрии, сельском хозяйстве, деревообрабатывающей, пищевой и других отраслях промышленности. Цифровые термометры обладают памятью измерений и могут обеспечивать несколько режимов наблюдения.
Спиртовые термометры. Термометр спиртовой относится к термометрам расширения и является подвидом жидкостного термометра. Принцип действия термометра спиртового основан на изменении объема жидкостей и твердых тел при измерении температуры. Таким образом, в данном термометре используется способность жидкости, заключенной в стеклянную колбочку, к расширению и сжатию. Обычно стеклянная капиллярная трубочка заканчивается шаровидным расширением, которое служит резервуаром для жидкости. Чувствительность такого термометра находится в обратной зависимости от площади поперечного сечения капилляра и в прямой – от объема резервуара и от разности коэффициентов расширения данной жидкости и стекла. Поэтому чувствительные термометры имеют большие резервуары и тонкие трубки, а используемые в них жидкости с увеличением температуры расширяются значительно быстрее, чем стекло. Этиловый спирт применяют в термометрах, предназначенных для измерения низких температур. Точность проверенного стандартного стеклянного спиртового термометра ±0,05°С. Главная причина погрешности связана с постепенными необратимыми изменениями упругих свойств стекла. Они приводят к уменьшению объема стекла и повышению точки отсчета. Кроме того, ошибки могут возникать в результате неправильного считывания показаний или из-за размещения термометра в месте, где температура не соответствует истинной температуре воздуха. Дополнительные ошибки могут возникать из-за сил сцепления между спиртом и стеклянными стенками трубки, поэтому при быстром понижении температуры часть жидкости удерживается на стенках. Кроме того, спирт на свету уменьшает свой объем.
Биметаллические термометры. Их строение основано на различии теплового расширения веществ, из которых изготовлены пластины применяемых чувствительных элементов. Биметаллические термометры используются для измерения температуры в жидких и газообразных средах, в том числе на морских и речных судах, атомных электростанциях.
В общем случае, биметаллический термометр состоит из двух тонких лент металла, например медной и железной, которые при нагревании расширяются неодинаково. Плоские поверхности лент плотно прилегают одна к другой. Такая биметаллическая система скручена в спираль, один из концов этой спирали жестко закрепляется. При нагревании или охлаждении спирали ленты, изготовленные из разных металлов, расширяются или сжимаются по-разному. Следовательно, спираль или раскручивается, или туже скручивается. По указателю, который прикреплен к свободному концу спирали, можно судить о величине изменений. Примером биметаллического термометра может служить комнатный термометр с круглым циферблатом.
Кварцевые термометры. Кварцевые термометры основаны на температурной зависимости резонансной частоты пьезокварца. Датчик кварцевого термометра представляет собой кристаллический резонатор, выполненный в виде тонкого диска или линзы, помещенный в герметизирующий кожух, заполненный для лучшей теплопроводности гелием при давлении около 0,1 мм.рт.ст. (диаметр кожуха составляет 7-10 мм). В центральной части линзы или диска нанесены золотые электроды возбуждения, а держатели (выводы)располагаются на периферии.
Точность и воспроизводимость показаний определяются главным образом изменением частоты и добротностью резонатора, понижающейся при эксплуатации вследствие развития микротрещин от периодического нагрева и охлаждения.
Измеряемая схема кварцевого термометра состоит из датчика, включенного в цепь положительной обратной связи усилителя, и частотомера. Существенным недостатком кварцевых термометров является их инерционность, составляющая несколько секунд, и нестабильность работы при температурах выше 100°С из-за возрастающей невоспроизводимости.