Что такое пять попарно пересекающихся прямых
Сколько точек пересечения могут иметь четыре попарно пересекающиеся прямые?
Сразу говорю, что задачу решать НЕ НАДО. Оставьте это мне. Я просто хочу разобраться, что означает «попарное пересекающиеся прямые».
У меня есть такая интерпретация: Имеется в виду, что все прямые «собраны» в пары. И каждая такая «сладкая парочка» пересекается другой такой же парой или «одиночной» прямой. Правда в этом конкретном случае «одиночек» нет, ибо количество прямых четное.
Я правильно все понимаю, или моя интерпретация неверна? Если неверна, то что тогда имеется в виду?
задан 23 Май ’13 13:26
I_Robot
183 ● 4 ● 17 ● 38
92% принятых
Здесь имеется в виду, что какие бы две прямые из четырёх мы ни взяли, они будут пересекаться.
«они будут пересекаться.» Может быть, более точным будет сказать «они ДОЛЖНЫ пересекаться»?
Кстати, преобразуйте пожалуйста свой комментарий в ответ, дабы я мог закрыть вопрос.
3 ответа
Можно сказать «они пересекаются», «они должны пересекаться», «они будут пересекаться». Это всё одна и та же мысль. Суть в том, что любые две прямые из четырёх имеют точку пересечения. Фактически, это означает, что среди прямых нет параллельных (хотя в принципе такие прямые могли бы быть в какой-то другой ситуации, и тогда ответ был бы другим). Слово «попарно» вообще очень часто используется в математике. Например, «даны три попарно различных числа». Это значит, что первое число не равно второму, а также не равно третьему, а второе число не равно третьему.
отвечен 23 Май ’13 13:57
Если речь идет об одной паре прямых, то в одной точке, а ежели о двух парах и более, то рассматриваютя разные варианты расположения уже самих пересекающихся пар прямых.
отвечен 13 Сен ’15 13:02
Можете ли дать ссылку на определение «попарно пересекающиеся прямые» из учебника? Например как построить 5 попарно пересекающихся прямых? Можно-ли из этого сделать вывод, что одна прямая может пересекать лишь 2 других?
отвечен 22 Сен ’17 19:18
Здравствуйте
Комбинаторная задача о числе точек пересечения прямых
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
Комбинаторная задача о числе точек пересечения прямых
Известная комбинаторная задача 1) Виленкин Н.Я., Виленкин А.Н., Виленкин П.А. Комбинаторика. – М.: МЦНМО, 2006. 2) Смирнова И.М., Смирнов В.А. Комбинаторные задачи по геометрии (Библиотечка «Первого сентября». Математика. Вып. 5 (11)). – М.: Чистые пруды, 2006.
Задача о количестве точек пересечения n прямых На плоскости проведены n прямых, среди которых нет ни одной пары параллельных прямых и ни одной тройки прямых, пересекающихся в одной точке. Найти число точек пересечения таких прямых. Пример. n=5, 10 точек пересечения
Цели работы 1) обобщить одну из известных комбинаторных задач по геометрии и получить полное решение новых задач; 2) показать возможность применения метода рекуррентных соотношений для решения комбинаторных задач по геометрии.
Задача 1. Наличие параллельных прямых На плоскости провели n прямых, среди которых k параллельных прямых и никакие три прямые не проходят через одну точку. Сколько точек пересечения прямых получилось? Пример 1. n=8, k=3 25 точек пересечения Пример 2. n=8, k=4 22 точки пересечения
О методе рекуррентных соотношений Метод сведения комбинаторной задачи к аналогичной задаче для меньшего числа предметов с помощью некоторого соотношения называется методом рекуррентных соотношений. Пользуясь рекуррентным соотношением, задачу с n предметами можно свести к задаче с n–1 предметом, потом к задаче с n–2 предметами и т.д. Во многих случаях из рекуррентного соотношения удается получить явную формулу для решения комбинаторной задачи.
Решение задачи №1 1) Наглядное нахождение закономерностей 2) Нахождение формулы, позволяющей найти количество точек пересечения по любым значениям n и k
Нахождение числа точек пересечения
Таблица и рекуррентные соотношения k m Параллельные прямые 2 3 4 5 Прямые общего положения 1 2 3 4 5 2 5 7 9 11 3 9 12 15 18 4 14 18 22 26 5 20 25 30 35
Задача 2. Наличие пар параллельных прямых На плоскости провели n прямых, среди которых k пар параллельных прямых (прямые в разных парах непараллельные) и никакие три прямые не проходят через одну точку. Сколько точек пересечения прямых получилось? Пример 1. n=5, k=2 19 точек пересечения Пример 2. n=6, k=3 33 точки пересечения
Решение задачи №2 1) Наглядное нахождение закономерностей 2) Нахождение формулы, позволяющей найти количество точек пересечения по любым значениям n и k
Нахождение числа точек пересечения
Таблица и рекуррентные соотношения k m Пары параллельных прямых 2 3 4 5 Прямые общего положения 1 2 8 18 32 2 5 13 25 41 3 9 19 33 51 4 14 26 42 62 5 20 34 52 74
СПАСИБО ЗА ВНИМАНИЕ!
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-1492120
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Школьники из Москвы выступят на Международной олимпиаде мегаполисов
Время чтения: 3 минуты
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
Госдума приняла закон об использовании онлайн-ресурсов в школах
Время чтения: 2 минуты
Утверждены сроки заключительного этапа ВОШ
Время чтения: 1 минута
Во Франции планируют ввести уголовное наказание за буллинг в школе
Время чтения: 1 минута
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Cколько точек пересечения могут иметь четыре попарно пересекающиеся прямые?
Cколько точек пересечения могут иметь четыре попарно пересекающиеся прямые?
Для каждого случая сделайте рисунок.
Получилось : одна точка, четыре и шесть точек пересечения.
Прошу помочь, ответ сделать у себя на листочке и прислать фотографию, даю за это 15 баллов : На плоскости проведены три попарно пересекающихся прямые?
Прошу помочь, ответ сделать у себя на листочке и прислать фотографию, даю за это 15 баллов : На плоскости проведены три попарно пересекающихся прямые.
Рассмотрите только лучи.
Не содержащие точек пересечения.
Каждая из трёх прямых а, в, с пересекается с двумя другими?
Каждая из трёх прямых а, в, с пересекается с двумя другими.
Могут ли эти прямые иметь более одной точки пересечения?
Прямые a и b лежат в пересекающихся плоскостях α и β?
Прямые a и b лежат в пересекающихся плоскостях α и β.
Могут ли эти прямые быть : а) параллельными ; б) скрещивающимися?
Сделайте рисунок для каждого возможного случая.
Изобразите пять прямых так, чтобы они имели десять точек попарных пересечений, сделать рисунок?
Изобразите пять прямых так, чтобы они имели десять точек попарных пересечений, сделать рисунок.
Прямые a и b лежат в пересекающихся плоскостях α и β?
Прямые a и b лежат в пересекающихся плоскостях α и β.
Могут ли эти прямые быть : а) параллельными ; б) скрещивающимися?
Сделайте рисунок для каждого возможного случая.
Прямые a и b лежат в пересекающихся плоскостях α и β?
Прямые a и b лежат в пересекающихся плоскостях α и β.
Могут ли эти прямые быть : а) параллельными ; б) скрещивающимися?
Сделайте рисунок для каждого возможного случая.
Сделайте рисунок для каждого возможного случая.
Даны три прямые каждая из которых пересекает хотя бы одну другую?
Даны три прямые каждая из которых пересекает хотя бы одну другую.
Сколько всего точек пересечений могут иметь такие прямые?
Даны четыре прямые, каждые две из которых пересекаются?
Даны четыре прямые, каждые две из которых пересекаются.
Сколько точек пересечения имеют эти две прямые, если через каждую точку пересечения проходят только две прямые.
Сколько общих точек могут иметь 4 пересекающиеся прямые?
Сколько общих точек могут иметь 4 пересекающиеся прямые.
Не совсем поняла вопрос. Человекпошёл гулять в 7 утра.
Ответ 21 Те 42 / 2 равно 21.
Площадь находится по формуле, куда подставляется значение синуса( sin30 = 1 / 2) а другая 1 / 2 есть в формуле. 19 и 18 это стороны которые даны. Ответ : 85, 5.
Надо их сложить и на 2 разделить.