Что такое радиобиология кратко
Радиобиология
наука, изучающая действие ионизирующих излучений на живые организмы и биосферу в целом. В природе все подвержено радиационному воздействию, и это определяет широкий диапазон объектов (от макромолекул, вирусов, простейших до многоклеточных растительных и животных организмов, человека в целом, популяций, биоценозов), являющихся предметом радиобиологических исследований.
Как самостоятельная наука Р. сформировалась в первой половине 20 в. благодаря быстрому развитию ядерной физики и техники. На первом этапе развития Р. (до начала 20-х гг.) было исследовано действие радиации на рост и дифференциацию клеток, установлена роль ядра в их радиочувствительности (Радиочувствительность). На втором этапе (до конца 50-х гг.) были разработаны методы так называемой количественной радиобиологии и теория биологического действия ионизирующих излучений, обнаружено влияние ионизирующих излучений на генетический аппарат клетки с последующей наследственной передачей вновь приобретенных признаков, созданы препараты, ослабляющие поражающее действие ионизирующих излучений. Современный, третий, этап развития Р. характеризуется открытием явления восстановления клеток от радиационных повреждений (см. Пострадиационное восстановление), установлением тесных взаимосвязей между Р. и генной инженерией, развитием прикладных аспектов Р., таких как предпосевное облучение семян для повышения всхожести и урожайности с.-х. культур; получение и закрепление в потомстве полезных признаков, возникающих в результате индуцируемых излучением мутаций, с целью создания новых сортов растений; лучевая стерилизация овощей, пищевых консервов, лекарственных средств и реактивов; обоснование принципов гигиенического нормирования ионизирующих излучений с целью обеспечения радиационной безопасности (Радиационная безопасность) и т.д.).
Радиобиология включает следующие разделы: молекулярную радиобиологию (изучает на молекулярном уровне радиохимические процессы в живых тканях); космическую радиобиологию (исследует биологическое действие космического излучения, в т.ч. в сочетании с другими факторами космического полета); клиническую радиобиологию; смежные с другими научными дисциплинами радиационные биохимию, цитологию, генетику, экологию (Экология), иммунологию, гигиену, а также противолучевую защиту (Противолучевая защита) и терапию радиационных поражений. В связи с развитием радиоэлектронной промышленности сформировалась Р. неионизирующих излучений (УФ- и СВЧ-излучений). Изучаемые клеточно-кинетические и физиологические параметры злокачественных новообразований явились научной основой лучевой терапии рака.
Радиобиология тесно связана с медицинской радиологией (см. Радиология медицинская), является ее теоретической основой, использует достижения других естественных наук.
Клиническая радиобиология — раздел Р., изучающий вопросы патогенеза непосредственных лучевых поражений и отдаленных последствий облучения (см. Лучевая болезнь), разрабатывающий принципы их профилактики и лечения, а также научные основы лечебного применения ионизирующих и неионизирующих излучений.
Наибольшее развитие приобрел аспект клинической Р. — радиобиология опухолей. Поскольку при лучевой терапии возможны рецидивы опухоли при недостаточной до излучения (см. Доза ионизирующего излучения) и тяжелые повреждения нормальных тканей при превышении этой дозы, основная зада клинической Р. заключается в максимальном расширении терапевтического интервала между радиочувствительностью нормальных опухолевых тканей с целью избирательно повышения противоопухолевого действия ионизирующих излучений.
Существуют три направления оптимизации лучевой терапии злокачественных опухолей на радиобиологической основе: разработка оптимальных режимов фракционирования дозы, использование плотноионизирующих излучений (нейронов и тяжелых заряженных ядерных частиц) и разработка способов искусственного управления радиочувствительностью здоровых и опухолевых тканей с помощью радиомодифицирующих агентов.
При разработке оптимальных режимов фракционирования дозы используют различие клеточно-кинетических параметров опухолевых и нормальных тканей, определяющие возможную разницу в величине их реакции на одну и же суммарную дозу излучения, но при разных разовых дозах за фракцию. Так, суммарные дозы излучения, при которых проявляются те и иные непосредственные эффекты в активно пролиферирующих тканях, в т.ч. в опухолях широком диапазоне доз слабо зависят от величины дозы за фракцию. В то же время в медленно пролиферирующих нормальных тканях ростом однократной дозы существенно усиливаются отдаленные эффекты облучения, в связи с этим разработаны режимы так называемого мультифракционирования, при которых суточную дозу дробят на 2—3 и более фракций. Эти режимы особенно успешно применяют при лучевой терапии опухолей с высокой пролиферативной активностью, когда максимально повреждаются быстроделящиеся опухолевые клетки. Реакции нормальных тканей при этом усиливаются в меньшей степени благодаря репарации большей части радиационных повреждений, происходящей в 3—4-часовые интервалы между фракциями.
В основе применения нейтронов лежат высокая относительная биологическая эффективность, нивелировка существующих различий в рад; чувствительности клеток на отдельных стадиях цикла и снижение кислородного эффекта также возникновение плохо репарируемых радиационных повреждений клеток. Тяжелые заряженные ядерные частицы (протоны, многозарядные ионы и отрицательные пи-мезоны) кроме того, в конце своего пути выделяют максимум энергии, образуя так называемый пик Брэгга, что позволяет сосредоточить большую часть дозы излучения в патологическом очаге.
Радиобиологические предпосылки для направленной радиомодификации определяются морфофункциональными особенностями опухолей, которые заключаются в присущем большинству опухолей неполноценном кровоснабжении из отставания ангиогенеза от роста опухолевой массы. В результате формируются зоны, содержащие гипоксические клетки с низкой радиационной чувствительностью, и частично изменяется метаболизм, т.к. используется гликолитический путь обеспечения энергией. По этим параметрам злокачественные опухоли принципиально отличаются от хорошо оксигенированных нормальных тканей, что позволяет с помощью радиомодифицирующих агентов избирательно изменять реакции опухолей на облучение в нужную сторону.
На основе изучения клеточно-кинетических параметров опухолей и их изменений в процессе облучения разрабатываются подходы к индивидуальному прогнозированию эффективности лучевой терапии. Этому способствует использование методов клонирования опухолей человека и их выращивания у бестимусных мышей, лишенных иммунологической защиты и не отторгающих эти трансплантаты, что позволяет экспериментально изучать особенности формирования и роста различных опухолей.
Радиобиология (Радио- + Биология)
биологическая наука, изучающая действие ионизирующего излучения на живые организмы, их сообщества и биосферу в целом.
Радиобиология космическая — раздел P., изучающий биологическое действие космического излучения, в т.ч. в сочетании с другими факторами космического полета.
Радиобиология молекулярная — раздел P., изучающий на молекулярном уровне радиохимические процессы в живых тканях.
Радиобиология
Содержание
Предмет радиобиологии [ ]
Фундаментальными задачами, составляющими предмет радиобиологии, являются:
Объекты и методы в радиобиологии [ ]
В соответствии с объектами РБ-исследований (уровней организации живого) в радиобиологии выделяют 3 раздела:
В радиобиологии используют специфические методы, используемые в различных ее разделах.
Важной чертой РБ-методов исследования является количественное сопоставление рассматриваемого эффекта с вызвавшей его дозой излучения, ее распределением во времени и объеме реагирующего объекта.
Теоретические аспекты радиобиологии [ ]
Первой количественной теорией является теория «точечного тепла» или «точечного нагрева» (Ф.Дессауэр-1922):
В настоящее время произошел сдвиг парадигмы от принципа попадания и теории мишени к эффекту «свидетеля».
История [ ]
Николай Владимирович Тимофеев-Ресовский. Портрет, нарисованный Олегом Цингером ( 1945 )
Открытие Иваном Павловичем Пулюем (1890) и Вильгельмом Конрадом Рентгеном Х-лучей ( 1895 ), Анри Беккерелем естественной радиоактивности ( 1896 ), Марией Склодовской и Пьером Кюри радиоактивных свойств полония и радия ( 1898 ) явилось основой рождения радиобиологии.
Этапы развития радиобиологии | |||||||
---|---|---|---|---|---|---|---|
Первый этап описательный этап, связанный с накоплением данных и первыми попытками осмысления биологических реакций на облучение. | И. П. Пулюй | В. К. Рентген | А. Беккерель | М. Склодовская | П. Кюри | И. Р. Тарханов | Е. С. Лондон | Г. Е. Альберс- Шонберг | Л. Хальберштадтер | П. Броун | Дж. Осгоуд | Г. Хейнеке | М. Корнике | Ж. Бергонье | Л. Трибондо становление фундаментальных принципов количественной радиобиологии, характеризующийся стремлением связи эффектов с величиной поглощенной дозы; открытие мутагенного действия ионизирующих излучений, развитие радиационной генетики Г. А. Надсон | Г. С. Филиппов | Г. Мюллер | Л. Стадлер с 1945 г. по настоящее время дальнейшее развитие количественной радиобиологии на всех уровнях биологической организации: | Дубинин Н.П. | Н. В. Лучник | Б. Л. Астауров | К. П. Хансон | В. И. Корогодин | В. Д. Жестяников | Л. Х. Эйдус | А. И. Газиев | Э. Я. Граевский | И. И. Пелевина | 3. Биологическая стадия — генетические и отдаленные эффекты облучения. Учебные заведения и научные учреждения [ ]Направления [ ]Литература [ ]Ссылки [ ]РадиобиологияРадиационная биология или радиобиология — наука, изучающая действие ионизирующих и неионизирующих излучений на биологические объекты. Код науки по 4-х значной классификации ЮНЕСКО (англ.) — 2418 (раздел — биология). Радиобиология, являясь самостоятельной комплексной научной дисциплиной, имеет тесные связи с рядом теоретических и прикладных областей знаний — биологией, физиологией, цитологией, генетикой, биохимией, биофизикой, ядерной физикой, фармакологией, гигиеной и клиническими дисциплинами. СодержаниеПредмет радиобиологииФундаментальными задачами, составляющими предмет радиобиологии, являются: Существуют две противоположные и одинаково неправильные точки зрения на облучение и вред его для человека — радиоэйфория и радиофобия. Объекты и методы в радиобиологииВ соответствии с объектами радиобиологических исследований (уровней организации живого) в радиобиологии выделяют 3 раздела: Важной чертой радиобиологических методов исследования является количественное сопоставление рассматриваемого эффекта с вызвавшей его дозой излучения, ее распределением во времени и объеме реагирующего объекта. Теоретические аспекты радиобиологииПервой количественной теорией является теория «точечного тепла» или «точечного нагрева» (Ф. Дессауэр, 1922): Теория «мишени или попаданий» поставила во главу угла представления о прямом действии ионизирующего излучения на клетки (30-е годы). Стохастическая (вероятностная) гипотеза является дальнейшим развитием теории прямого действия излучений. Выразителями этой точки зрения являлись О. Хуг и А. Келлерер (1966). Суть их взглядов заключалась в том, что взаимодействие излучений с клеткой происходит по принципу вероятности (случайности) и что зависимость «доза-эффект» обуславливается не только прямым попаданием в молекулы и структуры-мишени, но и состоянием биологического объекта как динамической системы. Б. И. Тарусовым и Ю. Б. Кудряшовым было показано, что свободные радикалы могут возникать при действии радиации и в неводных средах — в липидных слоях биомембран. Эта теория получила название теории липидных радиотоксинов. Своеобразной интегральной теорией, объясняющей биологическое действие ионизирующих излучений является структурно-метаболическая теория (1976). Автор этой теории А. М. Кузин считает, что нарушения под действием радиации обусловлены деструкцией всех основных биополимерных молекул, цитоплазматических и мембранных структур в живой клетке. В настоящее время произошел сдвиг парадигмы от теории мишени и попадания к теории эффекта «свидетеля». ИсторияОткрытие Иваном Павловичем Пулюем (1890) и Вильгельмом Конрадом Рентгеном Х-лучей (1895), Антуаном Анри Беккерелем естественной радиоактивности (1896), Марией Склодовской — Кюри и Пьером Кюри радиоактивных свойств полония и радия (1898) явилось физической основой для рождения радиобиологии.
|