Что такое радиофотоника в радиолокации

Введение в радиофотонику

Фотонные и радиофотонные компоненты, устройства и системы

Моделирование и расчет параметров радиофотонных систем

Измерение параметров фотонных и радиофотонных систем

Основы фотоники, оптоэлектроники, волоконной и интегральной оптики, волоконной техники, цифровых волоконно-оптических линий связи и передачи (ВОЛС, ВОЛП)

I. Определение радиофотонники

По­след­ние де­ся­ти­ле­тия в сфе­ре сверх­ши­ро­ко­по­лос­ных си­стем пе­ре­дач мы на­блю­да­ем про­цесс за­ме­ще­ния «элек­трон­ных» си­стем на «фо­тон­ные». Свя­за­но это в первую оче­редь, с иной фи­зи­че­ской при­ро­дой фо­то­на. От­сут­ствие за­ря­да и мас­сы на­де­ля­ет его свой­ства­ми не­воз­мож­ны­ми для элек­тро­на. В ре­зуль­та­те, фо­тон­ные си­сте­мы (в срав­не­нии с «элек­трон­ны­ми») не под­вер­же­ны внеш­ним элек­тро­маг­нит­ным по­лям, об­ла­да­ют го­раз­до боль­шей даль­но­стью пе­ре­да­чи и ши­ри­ной по­ло­сы про­пус­ка­ния сиг­на­ла.

Эти, и мно­гие дру­гие пре­иму­ще­ства уже ре­а­ли­зо­ван­ные на ба­зе фо­то­ни­ки в сфе­ре те­ле­ком­му­ни­ка­ций, да­ют пра­во го­во­рит о воз­ник­но­ве­нии но­во­го на­прав­ле­ния – ра­дио­фо­то­ни­ке, воз­ник­шей из сли­я­ния ра­дио­элек­тро­ни­ки, ин­те­граль­ной и вол­но­вой оп­ти­ки, СВЧ опто­элек­тро­ни­ки и ря­да дру­гих от­рас­лей на­у­ки и про­мыш­лен­но­го про­из­вод­ства.

Дру­ги­ми сло­ва­ми, под ра­дио­фо­то­ни­кой (microwave photonics) мы бу­дем по­ни­мать, объ­еди­ня­ю­щий об­шир­ный ком­плекс об­ла­стей на­у­ки и тех­ни­ки, свя­зан­ных глав­ным об­ра­зом с про­бле­ма­ми пе­ре­да­чи, при­ё­ма и пре­об­ра­зо­ва­ния сиг­на­ла с по­мо­щью элек­тро­маг­нит­ных волн СВЧ диа­па­зо­на и фо­тон­ных при­бо­ров и си­стем.

Источник

Меньше, мощнее и эффективнее. Радиофотонные локаторы

Последний к настоящему времени прорыв в области радиолокации состоялся несколько десятилетий назад и был обеспечен активными фазированными антенными решетками. В последние годы назрела необходимость нового подобного прорыва, и наука уже имеет необходимые наработки. Дальнейшее развитие радиолокационных систем связывают с освоением и применением т.н. радиофотонных локаторов. Эта концепция предлагает существенную перестройку РЛС, за счет которой может быть получен значительный прирост всех основных характеристик.

Согласно опубликованным данным, радиофотонная РЛС может показывать определенные преимущества перед «традиционными». За счет роста коэффициента полезного действия возможно увеличение дальности обзора и точности сопровождения целей. Также имеется возможность упрощенного опознавания обнаруженной цели. Перспективные станции должны отличаться сокращенными габаритами, что дает новые возможности компоновочного характера. Впрочем, получение практически значимых результатов в новой области пока остается делом отдаленного будущего.

Концепция радиофотонного локатора обсуждалась на уровне теории в течение нескольких последних лет, однако до определенного времени дальше разговоров дело не шло. Ситуация изменилась сравнительно недавно: с конца 2016 года российские научные организации стали регулярно рассказывать о проведении новых исследований и разработке перспективных проектов. Последние сообщения о радиофотонных РЛС появились всего несколько недель назад.

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации

В самом конце 2016 года российский Фонд перспективных исследований впервые представил макет радиофотонного приемно-передающего модуля и широкополосного излучателя для принципиально новой РЛС. Макетный образец использовал волны УКВ-диапазона и смог показать примечательные характеристики. Так, разрешение по дальности достигло 1 м – подобные показатели недостижимы для «традиционных» РЛС того же диапазона.

В дальнейшем работы были продолжены. Как стало известно позже, в перспективной программе принимает участие Концерн «Радиоэлектронные технологии» (КРЭТ). В июле 2017 года о разработке радиофотонных РЛС рассказал советник первого заместителя генерального директора КРЭТ Владимир Михеев. Он раскрыл некоторые технические подробности всей концепции и нового проекта, а также рассказал о текущих работах и планах на ближайшее будущее.

К тому времени в КРЭТ был создан экспериментальный образец новой РЛС, предназначающейся для использования на будущих самолетах-истребителях шестого поколения. В рамках научно-исследовательской работы были построены основные компоненты локатора. С их помощью осуществлялись необходимые исследования, при помощи которых планировалось найти оптимальные варианты конструкции. Также велось создание полноценного макетного образца радио-оптической фотонной антенной решетки. Этот образец был необходим для отработки облика и характеристик будущей серийной аппаратуры.

Параллельно с проработкой общих аспектов нового проекта осуществлялся поиск оптимальных конструкций отдельных элементов РЛС. Такие работы затрагивали излучатель, т.н. фотонный кристалл, приемный тракт и другие компоненты станции. В дальнейшем все эти работы должны будут привести к появлению полноценных работоспособных образцов, пригодных для установки на носители.

В июле 2018 года стало известно, что тематикой радиофотонных локаторов также занимается концерн «РТИ». Сообщалось, что до конца текущего года организация планирует завершить научно-исследовательскую работу по созданию макета новой радиолокационной станции X-диапазона. Разрабатываемое изделие предназначается для использования на боевых самолетах тактического звена. При этом, как и в случае с проектом КРЭТ, речь идет не только о проектировании РЛС, но и об освоении выпуска отдельных ее компонентов.

Согласно июльским новостям, концерн «РТИ» успел запустить первую в стране технологическую линию по выпуску т.н. вертикально-излучающих лазеров. Подобные устройства являются одним из главных компонентов радиофотонной РЛС и прямо влияют на ее характеристики и возможности. Таким образом, российская промышленность получает возможность в ближайшем будущем наладить производство перспективных станций.

Руководство концерна также рассказало о планах на обозримое будущее. Предприятие «РТИ» будет развивать достигнутые успехи и намерено создавать новые версии радиофотонных РЛС. Прежде всего, планируется создать новые станции, работающие в диапазонах K, Ka и Q. Кроме того, необходимо сокращать габариты изделий, благодаря чему должны появиться сверхширокополосные бортовые РЛС новых типов.

В конце ноября концерн «РТИ» вновь рассказал о своих работах по перспективному проекту. Был изготовлен экспериментальный образец РЛС, при помощи которого специалисты провели необходимые проверки. Пока существующая станция не отличается высокими характеристиками, а кроме того, имеет массу ограничений по эксплуатации. Тем не менее, работы в рамках проекта продолжаются, и в будущем перспективная РЛС избавится от выявленных проблем, что позволит ей дойти до эксплуатации.

Лазер вместо полупроводника

Предлагаемая концепция радиофотонной РЛС или радио-оптической фотонной антенной решетки предлагает отказ от традиционных компонентов локатора в пользу новых, позволяющих получить повышенные характеристики. Современные радиолокационные станции генерируют электромагнитное излучение при помощи электровакуумных или полупроводниковых приборов. КПД таких устройств не превышает 30-40 проц. Соответственно, около двух третей электроэнергии превращается в тепло и пропадает впустую. Радиофотонная станция должна использовать иные средства генерации сигнала, обеспечивающие резкий рост КПД.

Еще в прошлом году В. Михеев, рассказывая о новой разработке КРЭТ, указал на основные особенности перспективных станций. Главное новшество предлагаемых проектов заключается в замене полупроводниковых или ламповых устройств передатчиком на основе когерентного лазера и специального фотонного кристалла. Излучение лазера с требуемыми характеристиками направляется на кристалл, который преобразует его в электромагнитные волны. КПД такого передатчика должен превышать 60-70 проц. Таким образом, новый излучатель примерно вдвое эффективнее традиционного.

Прочие открытые источники позволяют сформировать более полную картину. Аппаратура РЛС, отвечающая за выдачу, прием и обработку сигналов, должна управлять лазером, определяя его мощность, модуляцию и другие параметры излучения. Применение оптической аппаратуры, передающей сигнал по оптическому волокну, позволяет получить некоторый выигрыш в быстродействии систем в сравнении с иной аппаратурой и проводкой. Кроме того, как показывают проведенные опыты, излучатель на основе лазера и фотонного кристалла преобразовывает в электромагнитные волны больше энергии, чем иные приборы.

В теории радиофотонная архитектура локатора позволяет резко увеличить рабочие диапазоны и создать станцию сверхширокополосного класса. За счет этого перспективная РЛС способна взять на себя задачи сразу нескольких традиционных систем разных диапазонов. Кроме того, обеспечивается повышенная помехозащищенность и устойчивость при активном радиоэлектронном противодействии со стороны противника.

Ранее упоминалось, что сверхширокополосная станция не только устойчива к воздействию помех, но и сама может создавать их. Передатчик повышенной мощности с возможностью работы в разных диапазонах способен взять на себя роль постановщика помех. Полноценная реализация такого потенциала РЛС позволяет сократить состав бортовой аппаратуры РЭБ или вообще отказаться от другого оборудования такого назначения. Это приводит к экономии массы и объемов внутри носителя.

Повышенные характеристики и возможность работы в разных диапазонах должны привести к получению новых характерных возможностей. Так, в прошлом году В. Михеев рассказывал, что РЛС нового типа сможет не только определить местоположение цели, но и составить точное ее изображение, пригодное для опознания. К примеру, станция сможет определить координаты воздушной цели, вычислить тип обнаруженного самолета и затем распознать, какие ракеты подвешены под его крылом.

Ранее сообщалось, что проект радиофотонной РЛС от Концерна «Радиоэлектронные технологии» разрабатывается в контексте истребителей следующего шестого поколения. В КРЭТ справедливо полагают, что подобные самолеты должны иметь набор разнообразных средств обнаружения, работающих в разных диапазонах и использующей широкий спектр принципов локации. Вместе с прочими системами истребитель будущего должен иметь и радио-оптическую фотонную антенную решетку. При этом возможно использование нескольких антенных устройств, распределенных по всей поверхности планера и обеспечивающих круговой обзор пространства.

Схожие принципы уже реализованы в современном проекте истребителя пятого поколения Су-57, и их следует развивать при создании следующего поколения. Вероятно, к моменту завершения основных научно-исследовательских и опытно-конструкторских работ по перспективным РЛС авиационная промышленность будет готова приступить к разработке принципиально новых истребителей.

Концерн «РТИ» тоже разрабатывает свои проекты с прицелом на военную авиацию, однако проявляет интерес иному сектору. Перспективные локаторы могут иметь сокращенные габариты и массу, что может представлять интерес для конструкторов беспилотных летательных аппаратов. Первые образцы сверхлегких и малоразмерных радиофотонных станций для БПЛА планируется создать в течение нескольких следующих лет.

Появление новых средств наблюдения и обнаружения должно оказать большое влияние на дальнейшее развитие беспилотной авиации. Габариты и масса современных авиационных РЛС ограничивают круг их носителей, фактически исключая из него существующие и перспективные отечественные БПЛА. При появлении легких и компактных радиофотонных РЛС ситуация должна будет измениться.

Благодаря этому армия сможет получить средние или тяжелые летательные аппараты, способные осуществлять разведку или пилотирование не только при помощи оптико-электронных средств. Положительные последствия появления таких БПЛА очевидны. Беспилотники с высокоэффективными радиолокаторами могут найти применение в самых разных сферах, от разведки до поиска и уничтожения назначенных целей.

Будут ли перспективные РЛС внедряться в сухопутной технике – пока не уточнялось. Новая аппаратура может найти применение в стационарных и мобильных локаторах, на зенитных системах и в других областях. Тем не менее, пока представители отечественной промышленности не говорили о возможности использования радиофотонных РЛС за пределами авиации.

Согласно новостям последних лет, сразу несколько ведущих предприятий российский радиоэлектронной промышленности ведут научно-исследовательские и опытно-конструкторские работы по новому направлению. Уже выполнены и испытаны несколько макетных образцов различных составляющих перспективных радиолокационных станций, и с учетом полученных данных проводится разработка следующих изделий. Разработчики новой аппаратуры в лице концернов КРЭТ и «РТИ» определились со своими планами и продолжают разработку проектов с четкими целями в контексте развития нашей военной техники.

Однако текущие проекты отличаются сложностью, что сказывается на сроках их реализации. Так, концерн «РТИ» планирует завершить разработку практически применимой РЛС в течение нескольких следующих лет. КРЭТ, в свою очередь, создает собственный проект с прицелом на шестое поколение истребителей. Таким образом, появление готовых новых радиофотонных локаторов, пригодных для эксплуатации на технике, является делом средней или отдаленной перспективы.

Впрочем, ожидаемые сроки появления перспективной аппаратуры не являются проблемой. У нашей промышленности и армии уже есть высокоэффективные современные радиолокационные станции, способные решать все поставленные задачи. С их помощью армия сможет иметь все требуемые возможности вплоть до появления принципиально новых систем. Кроме того, вряд ли следует ожидать, что появление радиофотонных станций приведет к остановке развития «традиционных» систем. Таким образом, в будущем войска смогут своевременно получать все необходимые системы обнаружения, как уже освоенные, так и принципиально новые.

Источник

Фотонные радары, радиофотоника и стелс-технологии

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации

Мало какое инет-издание не написало о статье китайских СМИ про российский радар и его способность «превратить в мусор американскую технику»: «Фотонный радар на истребителе Су-57 превращает американский истребитель F-35 в очень дорогую воздушную мишень».

На самом деле статья неоднозначная

Упоминет о том, что «истребитель Су-57 стоил миллиарды долларов, и 20 лет исследований и разработок потерпели неудачу. У российского правительства не было иного выбора, кроме как отвлечь свое внимание и перенести первоначально заказанные заказы Су-57 на Су-35, что составляет половину цены». И, наконец, радует информацией о «луче света — микроволновом фотонном радаре».

После перечислений достоинств радара следует вывод: «Если русские смогут воспользоваться этой возможностью, истребитель Су-57 может действительно превратить поражение в победу!» «Особенность этого типа радаров заключается в том, что он компактный, легкий и имеет большой радиус действия. Он может напрямую отображать силуэт самолета с разрешением в несколько десятков раз выше, чем у обычного радара, вес и объемы нового радара примерно в два раза меньше, чем у нынешних,», – рассказывает автор статьи.

Оставим мнение о «победах» и «поражениях» на совести китайского автора и поговорим о фотонном радаре.

РОФАР

Проект РОФАР (радиоптические фазированные антенные решетки) был начат в феврале 2015 года, а заканчивается в июле 2019 года. «Концерн Радиоэлектронные технологии» (КРЭТ) Госкорпорации Ростех ведет разработку технологии радиофотоники не имеющей аналогов в мире.

Анонсировалось, что новая технология позволит снизить массу радиоэлектронного оборудования боевых кораблей в 5-7 раз), радар нового поколения сможет делать «рентгеновские снимки» самолетов, находящихся на удалении более 500 км, а радиооптические фазированные антенные решетки значительно расширят возможности современных средств связи и радаров — их масса снизится более чем вдвое, а разрешающая способность увеличится в десятки раз.

«РОФАР позволит нам увидеть самолет, находящийся в 500 км, так, словно мы стоим в 50 метрах от него на аэродроме, его портрет в видеодиапазоне. Более того, если нужно, эта технология позволит заглянуть и в сам самолет, узнать, какие люди и техника в нем находятся, поскольку сигнал может пройти любые препятствия, даже метровые свинцовые стены, благодаря использованию широкого диапазона частот, проникающих на различную глубину внутрь объекта»

КРЭТ писал о том, что радиооптические фазированные антенные решетки значительно расширят возможности современных средств связи и радаров – их разрешающая способность увеличится в десятки раз. Если у современного локатора частота излучения 10 ГГц, 3 см с шириной спектра 1-2 ГГц, то у РОФАР эта частота может составлять от 1 Гц до 100 ГГц одновременно. На практике это означает, что РОФАР может давать детализированное, объемное изображение того, что происходит на расстоянии сотен километров от него. К примеру, на дальности 400 км можно не просто увидеть человека, но даже узнать его лицо.

«В отличии от традиционных РЛС заглушить РОФАР традиционными средствами РЭБ не получится физически. Динамический диапазон фотонного кристалла — это примерно 200 Дб. Современный радиоэлектронный приемник, для сравнения, имеет диапазон 40 — 60 Дб, а мы современными комплексами РЭБ обеспечиваем подачу сигнала на вход радиоприемного устройства – в 70-80 Дб относительно его пороговой чувствительности. Таким образом, устройство, которое должно принимать сигнал выводиться из работоспособного состояния. Даже после снятия помехи у него внутри еще идут процессы, которые не дают ему работать. Но на Земле просто нет источника энергии для подачи сигнала мощностью, превышающей 200 Дб, поэтому эта логика в случае с РОФАР просто не работает. Его можно запутать так называемым интеллектуальным противодействием, но это уже совсем другая история.»

«Фотоника по сути является аналогом электроники, использующим вместо электронов кванты электромагнитного поля оптической частоты — фотоны. Радиофотоника является составной частью нанофотоники, изучающей направленное взаимодействие оптических волн с наноструктурами, в то время как радиофотоника изучает направленное взаимодействие оптических волн, промодулированных радиочастотой в специализированных наноструктурах и позволяет создавать радиочастотные устройства с параметрами, недостижимыми для традиционной электроники, благодаря тому, что фотоны, в отличие от электронов, не имеют массы покоя и заряда, что дает потенциально сверхвысокое быстродействие и уникальную помехоустойчивость».

Принцип работы фотонного радара

По западной терминологии «квантовый радар» (quantum radar) — его принцип работы основывается на особенностях фотонов как квантовых частиц. Сигнал, излучаемый таким радаром очень помехоустойчивый.

Идея заключается в использовании для обнаружения цели и получения ее изображения фотонов, имеющих определенную поляризацию. Цель освещается потоком специально поляризованного света, а отраженные от цели фотоны позволяют составить изображение цели. Но противник может перехватить фотоны, изменить их и отправить назад эти фотоны, которые исказят для радара форму цели и ее местоположение. Такой процесс приведет к изменению квантовых свойств фотонов, в частности, их поляризацию. Определив поляризацию отраженных фотонов можно не только зарегистрировать сам факт постороннего вмешательства, но и полностью избавиться от него, «выбросив» фотоны с неправильной поляризацией.

Разработанная технология базируется на квантовых свойствах фотонов света, в частности на факте, что любая попытка воздействия на фотон приведет к разрушению его квантовых свойств.

Противодействие сигналам радаров является достаточно сложным делом. Для этого существует несколько различных методов, таких как, подавление полезного сигнала шумом на частоте работы радара или сброс ложных целей, создающих ложные отражения. Но современные радарные системы, вооруженные компьютерами и процессорами обработки сигналов, легко справляются с таким противодействием, поэтому подразделениям радиоэлектронной борьбы приходится применять все более и более сложные методы. Одним из таких сложных методов является перехват сигнала радара и его изменение таким образом, который дает ложную информацию о самой цели и ее местоположении. И с таким методом противодействия бороться намного труднее.

Стелс-технологии

Если осветить поляризованным светом самолет и проверить измерения количества отраженных фотонов, имеющих ошибочную поляризацию, то данных от фотонов, имеющих правильную поляризацию, будет вполне достаточно для того, что бы составить четкое и узнаваемое изображение самолета. Исследователи обнаружили, что природа фотонов позволяет справиться даже с самыми продвинутыми стелс-технологиями. Если стелс-самолет попытается перехватить поток фотонов или исказить свое местонахождение каким-либо образом, то тем самым выдаст себя с головой, изменив свойства фотонов.

Используемый в работе системы принцип похож на тот, что лежит в основе квантовых криптографических систем с разделенной передачей ключа: любая попытка вклиниться в передачу ключа влияет на его квантовые характеристики и сразу выдает присутствие интервента.

Простыми словами

В работе используется непрерывный стабилизированный лазер, амплитудные модуляторы и узкополосные оптические фильтры для преобразования радиолокационного сигнала в диапазон низких частот. Оптическая несущая и одна из боковых полос могут быть подавлены с помощью оптических полосовых фильтров на основе, например, микрорезонаторов или волоконных брегговских решеток.

Часть лазерного луча модулируется по амплитуде несущим СВЧ сигналом и также фильтруется для подавления оптической несущей и одной из боковых полос. После этого оптические сигналы, содержащие принимаемый сигнал и сигнал СВЧ несущей, могут быть смешаны на фотоприемнике и оцифрованы медленным электронным АЦП.

Для современных оптических элементов отношение сигнал/шум на выходе преобразователя может достигать 60-70 дб и более для СВЧ сигнала с несущей в десятки гигагерц и полосой 100 МГц и выше.

Работа радиофотонного приемного канала с оптическим гетеродинированием может быть использованы в исследованной схеме для ее применения в качестве универсального приемного канала, обеспечивающего ширину полосы до 100 МГЦ (длительность сигналов до 10 нс) с частотой несущей в десятки ГГц при отношении сигнал/шум, равном 60-70 дб (10-11 эффективных бит оцифрованного сигнала). Перспективным может быть также применение режима подавления несущей оптической частоты в модуляторах приемного канала. В этом случае в несколько раз повышается отношение сигнал/шум, а также не требуется использовать узкополосные оптические фильтры в схеме.

Радиофотоника, изучающая взаимодействие оптических и СВЧ-сигналов, позволяет создавать электронные устройства с параметрами, недостижимыми традиционными средствами.

Основные преимущества радиофотонных устройств:

Родом из СССР

Из книги Радиооптические антенные решетки / Воскресенский, Д. И.; Гринев, А.Ю. ; Воронин, Е.Н., Москва : Радио и связь, 1986 :

«Описаны методы формирования пространственных характеристик направленности приемных антенных решеток (АР) произвольной формы с использованием средств когерентной оптики и голографии. Рассмотрены когерентные оптические процессоры АР. обладающие различными функциональными возможностями, приведены результаты экспериментальных исследований. Для инженерно-технических работников, специализирующихся в области оптической обработки информации, антенной техники, радио- и гидролокации».

От автора

Так как исследования и разработки по радиофотонным технологиям проводят и США, и ЕС, и Япония, и Южная Корея и Китай стоит смотреть шире и помнить, что использование систем радиооптических фазированных антенных решеток (РОФАР) в перспективе даст возможность построения сети уникальных синхронизированных космических и наземных радиотелескопов, а также покрыть фюзеляж самолетов и вертолетов «умной» обшивкой нового типа.

Фотоника может также эффективно применятся в ЖКХ, например, в городских и поселковых системах теплоснабжения, где вместо горячей воды энергоносителями будут выступать фотоны, распространяющиеся в фотоннокристаллических волокнах толщиной с человеческий волос почти без потерь, энергия которых будет преобразовываться в тепло с почти 100% КПД в устройствах, вмонтированные в квартирные радиаторы.

Также радиофотоника может совершить революцию в метеорологии, качественно улучшив точность прогнозирования погоды на Земле. Поэтому радиофотоника призвана стать новой цивилизационной ступенью развития всего человечества.

Источник

О практике применения радиофотонных устройств в радиолокации

Доклад на II всероссийской научно-технической конференции «Перспективы развития РЛС дальнего обнаружения и интегрированных систем и комплексов информационного обеспечения ВКО», Москва 2014.

Введение
Радиофотоника, изучающая взаимодействие оптических и СВЧ-сигналов, позволяет создавать электронные устройства с параметрами, недостижимыми традиционными средствами. Сверхширокополосные аналоговые линии связи на ВОЛС, линии задержки, а также использующие элементы радиофотоники фильтры, генераторы и другие устройства СВЧ-диапазона находят применение в системах радиоэлектронной борьбы, радиоэлектронного противодействия и в радиолокационных станциях. В статье рассматривается практический опыт разработки устройств радиофотоники для применения в радиолокационной аппаратуре.

Основные преимущества радиофотонных устройств:

Некоторые проблемы радиофотонных устройств:

1. Активные линии задержки

В состав активной линии задержки входят: источник оптического излучения (полупроводниковый лазер), излучение которого модулируется ВЧ сигналом, катушка оптического волокна необходимой длины и фотоприемник, детектирующий задержанный оптический сигнал. При необходимости компенсации ослабления сигнала, вносимого модуляцией-демодуляцией оптического сигнала и ослаблением его в волокне в тракт добавляются транзисторные усилители на нужный диапазон частот.
В качестве примера можно привести характеристики переключаемой линии задержки на 16 положений.

На рис.1 приведены частотные характеристики, снятые при переключении задержки от нулевой начальной до 9,9867 мкс, на рис.2 – ее фотографии.

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации

Рис. 1. Частотные характеристики переключаемой линии задержки.

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации
Рис.2.
Фото переключаемой линии задержки: общий вид и вид со снятой крышкой.

Поскольку изделие было предназначено для метрологических задач, усилители в его тракте не использовались, и полоса рабочих частот была ограничена характеристиками аналоговых оптоэлектронных модулей.

2. Каналы передачи СВЧ сигналов на большие расстояния

На рис.3 приведена структурная схема волоконно–оптического тракта для передачи аналоговых сигналов X-диапазона на расстояние 50 км.

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации

Рис.3. Структурная схема тракта передачи аналоговых сигналов X-диапазона на расстояние 50 км: ЭОМ – электрооптический модулятор; ОМ –одномодовое волокно; ОУ – оптический усилитель; КД – волокно, корректирующее дисперсию; ФД – фотодетектор; МШУ – малошумящий СВЧ усилитель.

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации
Рис.4.
АЧХ и ФЧХ аналогового тракта с компенсацией дисперсии в широкой полосе частот с широкополосным фотоприемником (без МШУ).

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации
Рис.5.
Измерения АЧХ и ФЧХ полного аналогового тракта в полосе частот 9,5 ÷ 10,5 ГГц (с МШУ).

3. Системы распределения радиосигналов по полотну АФАР РЛС

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации

Рис.6. Структурная схема системы распределения радиосигналов по полотну антенны РЛС: 1:2 – ВЧ разветвитель на основной и резервный каналы; ЛД – лазерный диод; МОД – оптический модулятор; ОУ – оптический усилитель; 2:M – оптический разветвитель на M выходов; 1:N – оптический разветвитель на N выходов; ФД – фотодиод; ТУ – транзисторный усилитель.

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации
Рис.7.
Фазовые шумы передатчика РЛС: нижняя кривая – на входе системы распределения, верхняя кривая – на выходе системы распределения (MxN=128).

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации
Рис.8.
АЧХ и ФЧХ системы распределения Х-диапазона на 128 выходов.

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации
Рис.9.
Динамический диапазон системы распределения сигнала по ФАР Х-диапазона, свободный от продуктов 3-го порядка, в полосе 1 Гц.

4. Измерительно-калибровочные средства для РЛС

В качестве примера реализации можно привести опытный образец стенда для проверки параметров РЛС без выхода в эфир в полевых или цеховых условиях.
Стенд позволяют существенно упростить и удешевить процесс настройки, проверки и аттестации РЛС.

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации
Рис.10.
Структурная схема стенда: 1 – лазер; 2 – модулятор; 3 – схема стабилизации режимов лазера и модулятора; 4 – волоконно-оптическая линия задержки на 67,765 мкс; 5 – оптический кабель 160 м; 6 – фотоприемник; 7 – усилитель; 8 – ферритовый вентиль; 9 – рупорная антенна.

Основные технические характеристики стенда:

Полоса частот СВЧ сигналаот 9 до 11 ГГц
Время задержки СВЧ сигнала67,765 мкс
Неравномерность АЧХ в полосе 9 ÷ 11 ГГцне более 5 дБ
Нелинейность ФЧХ в полосе 9 ÷ 11 ГГц±10 град.
КСВн по входу модуляторане более 2,3
КСВн по выходу демодуляторане более 1,5
Коэффициент передачине менее –10 дБ
Максимально допустимый уровень входного сигнала100 мВт
Напряжение питания21÷29 В постоянного тока
Ток потребленияне более 1,5 А
Длина оптического кабеля на катушке160 м
Время готовности (от момента подачи питания)15 с
Диапазон рабочих температурОт –30 до +50 град С
Динамический диапазон, свободный от продуктов интермодуляции 3-го порядка97 ±1 дБ в полосе 1 Гц
Завал коэффициента передачи на 1 дБ соответствует уровню входного сигнала не менее100мВт

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации
Рис.11.
Частотные характеристики аналогового тракта стенда.

Что такое радиофотоника в радиолокации. Смотреть фото Что такое радиофотоника в радиолокации. Смотреть картинку Что такое радиофотоника в радиолокации. Картинка про Что такое радиофотоника в радиолокации. Фото Что такое радиофотоника в радиолокации
Рис.12.
Фото блоков стенда: блок оптического приемника; блок оптического передатчика с линией задержки; катушка с оптоволоконным кабелем (тренога с рупорной антенной не показана).

Заключение

Приведенные примеры показывают, что, несмотря на крайне ограниченный выбор элементов фотоники на отечественном рынке, многие задачи радиолокационной техники могут быть успешно решены методами радиофотоники.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *