Что такое радиопротекторы патофизиология

РАДИОПРОТЕКТОРЫ

Радиопротекторы — вещества преимущественно синтетического происхождения, введение которых перед облучением в среду с биологическими объектами или в организм животных и человека снижает поражающее действие ионизирующего излучения.

Принципиальная возможность фармакохимической противолучевой защиты (см.) млекопитающих была показана в 1949 г. Паттом (H. М. Patt) с соавт., установившим возможность предотвращения гибели части мышей с помощью цистеина (см.), введенного им за несколько минут перед рентгеновским облучением в смертельной дозе. Несколько позднее 3. Бак установил существенно больший радиозащитный эффект декарбоксилированного производного цистеина — цистеамина — и его дисульфида — цистамина (см.). Введение этих соединений перед облучением животных предотвращало гибель 100% мышей при 100% гибели контрольных животных, подвергнутых облучению в той же дозе, но без введения радиопротекторов.

Радиопротекторы предназначены в основном для индивидуальной защиты организма от внешнего облучения в чрезвычайных обстоятельствах (аварийные, военные условия) и для преимущественной защиты нормальных тканей при лучевой терапии злокачественных опухолей. Из многих изученных средств отобраны наиболее эффективные Радиопротекторы, относящиеся к двум большим классам — серосодержащим соединениям и индолилалкиламинам. К серосодержащим радиопротекторам относятся также аминоалкилтиофосфаты, аминоалкилизотиурониевые производные, серосодержащие аминокислоты, пептиды (глутатион) и их соответствующие дисульфиды. Из других серосодержащих соединений в качестве Радиопротекторов изучены дитиокарбоматы и производные тиазолидина.

Радиозащитной активностью обладают лишь те аминотиолы, в которых углеводородная цепочка, отделяющая аминогруппу от SH-группы, состоит из 2 или 3 атомов углерода. SH-груипа в этих соединениях должна. быть свободной или высвобождаться в процессе их метаболизма в организме. Часть серосодержащих Р. вводят только парентерально, другие эффективны и при назначении внутрь. Максимальная концентрация в крови в первом случае наступает через 5—15 мин., а во втором — через 30—60 мин. В организме эти Р. распределяются неравномерно; напр., содержание цистамина в щитовидной железе, почках, костном мозге, надпочечниках и селезенке превышает их содержание в сердце и в скелетных мышцах. В больших количествах серосодержащие Р. поступают в печень, где происходит их инактивация. Из организма они выделяются с мочой частично в неизмененном виде, а в основном в виде продуктов распада: таурина, гипотаурина, цистамина-дисульфоксида, аминоальдегида и сульфата. Продуктами метаболизма аминоэтилизотиурония, выделяющимися из организма, являются 2-гуанидоэтансульфоновая к-та, 8-ацетил-2-меркаптоэтилгуанидин и сульфаты.

Наибольший практический интерес представляют цистеамин, циста-мин, пропамин бета-меркаптопропиламин), производные 2-аминоалкилтиофосфорной к-ты и ее натриевая соль (цистафос) и пропильный аналог 2-аминопропил аминоэтилтиофосфорная к-та (гаммафос). К гаммафосу привлечено особое внимание, как к перспективному Р. при лучевой терапии опухолей. В исследованиях на животных с перевиваемыми опухолями, было показано, что в определенные интервалы времени между введением препарата и облучением гаммафос избирательно ослабляет поражение нормальных тканей, не влияя на противоопухолевое действие ионизирующего излучения. Это дает возможность увеличить дозу облучения опухоли, не превышая предела толерантности окружающих ее здоровых тканей. В ряде стран с 1980 г. начаты клин, испытания гаммафоса.

Что такое радиопротекторы патофизиология. Смотреть фото Что такое радиопротекторы патофизиология. Смотреть картинку Что такое радиопротекторы патофизиология. Картинка про Что такое радиопротекторы патофизиология. Фото Что такое радиопротекторы патофизиология

К индолилакиламинам относятся гомологи и производные триптамина (рис.). Наиболее эффективные Р. из класса индол ил алкил аминов — серотонин (см.) и мексамин (см.), а также их производные являются природными соединениями — биогенными аминами (см.). Все они получены и синтетическим путем. Из других биогенных аминов, изучаемых как Р., наибольший интерес представляют арилалкиламины, называемые часто пирокатехинами, поскольку их важнейшие представители — адреналин и норадреналин, а также бета-фенилэтиламин, тирамин, эфедрин, гистамин и ацетилхолин. Большинство индолилалкиламинов эффективно при парентеральном введении. Мексамии можно назначать внутрь; в этом случае он также быстро всасывается, достигая максимальной концентрации в крови через 20—30 мин. Как и серосодержащие Р., индолилалкиламины в организме распределяются неравномерно. Наибольшая концентрация мексамина при приеме внутрь отмечается в почках, печени и селезенке. В течение первых суток он выводится с мочой частично в неизмененном виде, а в течение двух последующих суток — в виде основного продукта его метаболизма (5-метокси-3-индолилуксусной к-ты).

В объяснении механизмов действия Радиопротекторов нет единой точки зрения. Е. Ф. Романцев развивает представление о комплексном биохимическом механизме действия Р., особое значение в к-ром принадлежит временному ингибированию репликативных процессов и стимулированию репарации ДНК. Существует мнение о наличии общего механизма противолучевой защиты. Так, напр., согласно гипотезе Ю. Б. Кудряшова и Е. Н. Гончаренко, радиозащитный эффект любых Р. в организме реализуется за счет синтеза и высвобождения комплекса биогенных аминов, обладающих противолучевыми свойствами, и снижения содержания продуктов перекисного окисления липидов — эндогенных радиосенсибилизаторов. Высказывается гипотеза биохимического шока, возникающего под влиянием Р. в клетке и временно повышающего порог поражающего действия ионизирующего излучения. По мнению Э. Я. Граевского, в качестве единого материального субстрата, определяющего уровень естественной радиорезистентности и его варьирование с помощью Р., являются эндогенные SH-группы. Предприняты попытки связать молекулярный механизм защитного действия Р. с пострадиационной репарацией ДНК. Показана зависимость действия Р. от состояния генетического аппарата, контролирующего системы репарации ДНК.

Противолучевой эффект Радиопротекторов в организме реализуется двумя путями. Решающее значение для проявления защитного эффекта серосодержащих Р. имеет достижение пороговой концентрации Р. в клетках критических органов (кроветворной системы и кишечника) при общем облучении или в клетках любых других защищаемых тканей при локальном радиационном воздействии. Преимущественный механизм радиозащитного действия индолилалкиламинов в организме состоит в создании тканевой гипоксии вследствие временного спазма кровеносных сосудов.

В связи с разными механизмами защитного действия Р. и количественными различиями в степени защиты отдельными Р. критических систем для усиления радиозащитного эффекта целесообразно применять смеси Р., принадлежащие к разным классам.

Количественным показателем эффективности Р. является так наз. фактор изменения дозы (ФИД), который определяется отношением равноэффективных доз: в числителе дозы излучения при использовании Р., в знаменателе — дозы излучения без использования Р. При применении отдельного Р. величина ФИД колеблется в диапазоне 1,5—2,0, тогда как при использовании многокомпонентных смесей Р. ФИД достигает 3—4.

Противолучевая защита организма может быть достигнута использованием общей гипоксии, вызываемой вдыханием обедненных кислородом газовых смесей. Этот метод получил название гипоксирадиотерапии и изучается для преимущественной защиты нормальных тканей при лучевой терапии злокачественных опухолей.

Несмотря на большое число экспериментальных исследований, Радиопротекторы пока не нашли широкого практического применения. Это связано гл. обр. в побочными эффектами, возникающими при применении Р. в радиозащитных дозах. Преодоление этих трудностей лежит на пути комбинированного применения Р., обладающих разным механизмом защитного действия. При этом, как показано в экспериментах на различных видах животных, одновременное введение трех и более Р. или их применение совместно с газовыми гипоксическими смесями позволяет достигнуть значительного радиозащитного эффекта при резком снижении или отсутствии нежелательных токсических проявлений. Кроме того, на примере гаммафоса и его аналогов видны перспективы синтеза новых более эффективных и лишенных побочного действия на организм человека Радиопротекторов для избирательной защиты нормальных тканей при лучевой терапии опухолей.

Библиография: Бак 3. Химическая защита от ионизирующей радиации, пер. с англ., М., 1968; Бреелер С. Е. и Носкин Л. А. Репарационные механизмы и действие радиопротекторов на клетки E. coli, Радиобиология, т. 18, в. 4, с. 548, 1978; Гончаренко Е.Н. и Кудряшов Ю. Б. Гипотеза эндогенного фона радиорезистентности, М., 1980; Романцев Е.Ф. и др. Биохимические основы действия радиопротекторов, М., 1980; Суворов H. Н. и Шашков В. С. Химия и фармакология средств профилактики радиационных поражений, М., 1975; Эйдус Л. X. Неспецифическая реакция клеток и радиочувствительность, М., 1977; Ярмоненко С. П., Вайнсон А. А. и Магдон Э. Кислородный эффект и лучевая терапия опухолей, М., 1980.

В. С. Шашков, С. П. Ярмоненко.

Источник

Роль радиопротекторов и иммунотропов в профилактике лучевых реакций и осложнений

Обзор посвящен медикаментозной профилактике и лечению лучевых реакций и осложнений у онкологических больных. Поиск оптимальных радиопротекторов сохраняет свою актуальность и в настоящее время. Идеальный радиопротектор должен обладать цитопротекторными, регенерирующими, антиоксидантными, стимулирующими иммунную систему свойствами. В обзоре описаны патогенетические аспекты, методология применения, эффективность радиопротекторов химического и природного происхождения, препаратов с выраженным иммунотропным эффектом. Использование единственного радиопротектора химического происхождения – пролекарства амифостин признано нецелесообразным в широкой клинической практике ввиду высокой токсичности и неудобства введения. С целью профилактики химиолучевых повреждений обсуждается возможность использования антиоксидантных, противовоспалительных свойств малотоксичных радиопротекторов природного происхождения: флавоноидов, фенольных кислот, ликопина, алкалоидов, полисахаридов, фитогормонов. В качестве элементов сопроводительной терапии апробирована группа иммуномодуляторов. Применение синтетических иммунотропов (левамизол, Ликопид, Имунофан, Полиоксидоний, Галавит, Глутоксим, тетрахлордекаоксид) целесообразно в послеоперационном периоде. Природные иммуномодуляторы (Эрбисол, Деринат) демонстрируют эффективность на разных этапах комплексного лечения злокачественных опухолей. Выраженные иммуномодулирующие, противовоспалительные, регенерирующие, гемопоэтические эффекты характерны для препаратов дезоксирибонуклеиновой кислоты. Их применение обоснованно на этапе полихимиотерапии, конкурентной химиолучевой и лучевой терапии для стимуляции гемопоэза, снижения кардио- и миелотоксичности проводимого лечения. Универсальность ДНК-препаратов повышает вероятность проведения полных и беспрерывных курсов радиотерапии вплоть до радикальных, способствует удлинению безрецидивного периода болезни, улучшает качество жизни пациентов. Расширяющаяся доказательная база клинической эффективности обусловливает целесообразность продолжения исследований, разработки стандартов, клинических рекомендаций по оптимизации сопроводительной терапии химиолучевого лечения.

Обзор посвящен медикаментозной профилактике и лечению лучевых реакций и осложнений у онкологических больных. Поиск оптимальных радиопротекторов сохраняет свою актуальность и в настоящее время. Идеальный радиопротектор должен обладать цитопротекторными, регенерирующими, антиоксидантными, стимулирующими иммунную систему свойствами. В обзоре описаны патогенетические аспекты, методология применения, эффективность радиопротекторов химического и природного происхождения, препаратов с выраженным иммунотропным эффектом. Использование единственного радиопротектора химического происхождения – пролекарства амифостин признано нецелесообразным в широкой клинической практике ввиду высокой токсичности и неудобства введения. С целью профилактики химиолучевых повреждений обсуждается возможность использования антиоксидантных, противовоспалительных свойств малотоксичных радиопротекторов природного происхождения: флавоноидов, фенольных кислот, ликопина, алкалоидов, полисахаридов, фитогормонов. В качестве элементов сопроводительной терапии апробирована группа иммуномодуляторов. Применение синтетических иммунотропов (левамизол, Ликопид, Имунофан, Полиоксидоний, Галавит, Глутоксим, тетрахлордекаоксид) целесообразно в послеоперационном периоде. Природные иммуномодуляторы (Эрбисол, Деринат) демонстрируют эффективность на разных этапах комплексного лечения злокачественных опухолей. Выраженные иммуномодулирующие, противовоспалительные, регенерирующие, гемопоэтические эффекты характерны для препаратов дезоксирибонуклеиновой кислоты. Их применение обоснованно на этапе полихимиотерапии, конкурентной химиолучевой и лучевой терапии для стимуляции гемопоэза, снижения кардио- и миелотоксичности проводимого лечения. Универсальность ДНК-препаратов повышает вероятность проведения полных и беспрерывных курсов радиотерапии вплоть до радикальных, способствует удлинению безрецидивного периода болезни, улучшает качество жизни пациентов. Расширяющаяся доказательная база клинической эффективности обусловливает целесообразность продолжения исследований, разработки стандартов, клинических рекомендаций по оптимизации сопроводительной терапии химиолучевого лечения.

Проблема профилактики лучевых реакций и осложнений, сопровождающих радиотерапию злокачественных опухолей, остается актуальной. Оптимизация подходов к лучевой терапии (ЛТ) больных злокачественными новообразованиями предполагает использование радиопротективных методов защиты здоровых тканей, окружающих опухоль, повышение степени переносимости ЛТ, проведение полных и беспрерывных курсов облучения, в том числе в комбинации с полихимиотерапией (ПХТ), профилактики развития лучевых повреждений и проч. [1, 2]. Согласно фармакологической классификации, предложенной Программами исследований Национального института рака, в зависимости от сроков введения радиопротекторы могут быть использованы с целью защиты, смягчения действия ионизирующей радиации и в качестве терапевтических агентов [3, 4].

Защитные радиопротекторы вводят перед ЛТ для предотвращения развития острых или хронических лучевых повреждений. Смягчители применяют во время проведения курса радиотерапии или вскоре после его завершения до появления симптомов лучевых реакций. Действие таких средств направлено на уменьшение лучевого влияния на нормальные ткани. Терапевтические агенты используют после появления симптомов лучевых повреждений для их купирования [4]. При этом идеальное радиопротекторное средство помимо предотвращения прямого острого или хронического воздействия на нормальные ткани должно легко дозироваться и сохранять радиочувствительность новообразования [5].

Наиболее известными механизмами радиопротекции являются антиоксидантный, противовоспалительный, процесс репарации ДНК и восстановления клеток, модуляция регенерации кроветворных клеток и стимуляция иммунной системы, молекулярная радиопротекция, в том числе повышение экспрессии белков теплового шока [6].

Поиску оптимального радиозащитного средства посвящен ряд исследований. Ввиду высокой эффективности предметом активного изучения остаются химические радиопротекторы. Однако их применение ограничивается высокой токсичностью, побочными эффектами и высокой стоимостью. Единственным химическим радиопротектором, одобренным Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов США, в настоящее время является аминорадиотиол амифостин (тиофосфат). Свои цитопротективные свойства органическое тиолфосфатное пролекарство амифостин проявляет за счет более высокой активности щелочной фосфатазы в клетках здоровых тканей по сравнению с опухолевыми [6]. При этом, как сообщают M. Szejk и соавт., его недостаточно широкое использование обусловлено существенным уровнем токсичности (может провоцировать системную гипотонию), коротким и четко регламентированным периодом введения – 15–30 минут до начала облучения, только внутривенным введением [7, 8].

Активно изучаются радиопротективные свойства природных соединений – растений и фитохимических веществ. За счет меньшей токсичности и большей доступности они считаются наиболее предпочтительными [6].

К известным веществам и соединениям, обладающим радиопротекторным действием, относятся флавоноиды, фенольные кислоты, стилбены, ликопин, алкалоиды, пептиды, полисахариды и фитогормоны, а также чеснок, зеленый чай, яблоки, цитрусовые и имбирь [8].

Согласно данным анализа результатов 24 исследований, проведенных на лабораторных животных и культивированных клетках человека и животных в формате «случай – контроль», гликозид флавонона гесперидин снижает окислительный стресс и активность воспалительного процесса во всех исследованных тканях, защищает ДНК от повреждений, увеличивая показатель 30- и 60-дневной выживаемости, демонстрируя антиоксидантные, противовоспалительные и антиапоптотические свойства. Наилучшая радиопротекция достигается при введении гесперидина перед облучением [9–12].

Введение флавоноида апигенина, содержащегося в листьях и стеблях многих диетических овощей и фруктов, а также в напитках растительного происхождения, таких как чай и вино, за час до облучения Со-60 лимфоцитов периферической крови человека значительно уменьшает повреждение лимфоцитарной ДНК (снижается количество дицентрических, ацентрических фрагментов, ацентрических колец), число индуцированных излучением аномалий – микроядер, нуклеоплазматических мостиков и проч. N. Begum и соавт. сообщают о способности апигенина защищать лимфоциты от индуцированных гамма-излучением цитогенетических изменений [13].

Соевый изофлавон генистеин помимо защитных свойств, опосредуемых комбинацией внутриклеточного свободнорадикального, антиоксидантного и противовоспалительного эффектов, демонстрирует возможность частичного смягчения позднего радиационно-индуцированного повреждения легких у облученных крыс на срок не менее 28 недель облучения даже после прекращения его применения в течение 14 недель [14]. Клинические данные показывают, что генистеин уменьшает кишечные, мочевые и андроген-депривационные побочные эффекты ЛТ, проводимой по поводу рака предстательной железы [15].

Производное флавоноида рутина троксерутин поглощает свободные радикалы, производные кислорода. Во время ЛТ по поводу рака головы и шеи введение смеси кумарина и троксерутина обеспечивает защиту слизистой оболочки полости рта и слюнных желез [16]. Предполагаемые молекулярные механизмы радиопротекции троксерутином включают активацию AKT и ингибирование JNK, что приводит к снижению радиационно-индуцированной активации PTEN [17].

Радиопротекторные свойства растительных полифенолов объясняют их мощным антиоксидантным эффектом. Несмотря на неуточненный механизм полифенолов, таких как хлорогеновая и хиновая кислота [18], содержащихся в кофейных зернах [19], N. Cinkilic и соавт. наглядно продемонстрировали их радиопротекторный эффект в виде защиты ДНК неканцерогенных лимфоцитов человека от повреждения рентгеновским излучением. Показано, что хиновая кислота уменьшает количество повреждений ДНК на 5,99–53,57%, хлорогеновая – на 4,49–48,15% [18].

Базовым полифенольным компонентом зеленого чая является эпигаллокатехин-3-галлат (EGCG), известный как мощный поглотитель свободных радикалов. После проведения мастэктомии с последующей адъювантной лучевой терапией 49 больных еже­дневно, начиная с момента появления признаков дерматита первой степени и заканчивая двумя неделями после завершения ЛТ, применяли EGCG, что позволило уменьшить выраженность болевого синдрома в 85,7% случаев, чувство жжения – в 89,8%, зуд – в 87,8%, тянущие ощущения – в 71,4% и болезненность – в 79,6% случаев. На основании этих данных авторы сделали вывод о целесообразности местного применения EGCG в качестве средства лечения радиационно-индуцированного дерматита [20]. Те же авторы отметили способность EGCG повышать уровень нескольких антиоксидантных ферментов, включая глутаматцистеинлигазу, супероксиддисмутазу и гемоксигеназу-1 (HO-1), как in vitro, так и in vivo [20].

В эксперименте на мышах показаны радиопротекторные эффекты EGCG против лучевых повреждений, измеряемые индексом селезенки, гематологическими параметрами, концентрацией малонового диальдегида и активностью супероксиддисмутазы [21, 22].

Монофенольный фенилпропаноид – феруловая кислота, содержащаяся в том числе в кофейных зернах и листьях зеленого чая, также обладает противовоспалительной и антиоксидантной активностью, что указывает на ее потенциальные защитные эффекты против радиационно-индуцированной токсичности [23].

К группе природных фенольных антиоксидантов с сильным АФК-продуцирующим свойством, повышающим репаративную активность ДНК, относится 3,4-метилендиоксифенол (сезамол), входящий в состав семян кунжута и кунжутного масла. В ходе эксперимента отмечались ослабляющее индуцированное радиационным воздействием повреждение желудочно-кишечного тракта, структур ДНК в кроветворной системе мышей [24, 25], снижение генотоксичности в клетках костного мозга [26].

Псоралидин – биологически активное природное фенольное соединение из псоралеи лещинолистной также продемонстрировал потенциал в качестве радиопротектора благодаря противовоспалительному действию на фибробласты легких человека и мышей. В частности, псоралидин снижает экспрессию индуцированных излучением циклооксигеназы (COX2) через регуляцию путей NF-kB и PI3K/Akt и провоспалительных цитокинов, таких как фактор некроза опухоли (ФНО) альфа, трансформирующий фактор роста бета, интерлейкин (ИЛ) 6, ИЛ-1-альфа/бета, ICAM-1 [27].

Среди других природных радиопротекторов обращают внимание производное танина бергенин, куркоминоид куркумин, антоцианид дельфинидин, каротиноид ликопин и проч. [6]. Бергенину свойственно антигепатотоксическое, противоязвенное, противовоспалительное, нейропротекторное и иммуномодулирующее действие [28]. Дельфинидин (морковь, помидоры, красный лук) обладает сильным противовоспалительным действием и самой сильной антиоксидантной активностью благодаря наличию в его структуре многих гидроксильных радикалов [29]. Кроме того, он защищает нормальные ткани от высокого линейного излучения переноса энергии, такого как излучение протонов, что делает его перспективным радио­протектором [29, 30].

K. Hamilton и соавт. приводят данные о повышении индекса качества жизни у мужчин, получающих радиотерапию по поводу рака предстательной железы, в результате уменьшения степени выраженности постлучевого цистита на фоне использования антоцианов и проантоцианидинов, а также флавоноидов, содержащихся в клюквенных капсулах [31].

Предварительное применение содержащегося в красных фруктах и овощах ликопина значительно снижает частоту микроядер, дицентрических аберраций и транслокаций в облученных лимфоцитах человека и гепатоцитах крыс, уменьшает радиационно-индуцированную активность процесса пероксидации липидов, повышает активность антиоксидантных ферментов, включая супероксиддисмутазу, каталазу и глутатионпероксидазу [32].

О выраженном клиническом радио­протекторном эффекте куркумина сообщается в работе V. Verma [33]. Установлено, что куркумин профилактирует развитие лучевого дерматита, пневмонита, катаракты, миелосупрессии, мукозита/энтерита, вторичных злокачественных опухолей, прежде всего за счет противовоспалительных свойств – снижения продукции провоспалительных молекул, нормализации баланса антиоксидантов и окислителей [33].

Сохраняется интерес к радиопротекторным свойствам витамина C. По мнению M.S. Alexander и соавт., при внутривенном введении фармакологического аскорбата (P-AscH) можно достичь его концентрации, обеспечивающей одновременно селективную цитотоксичность вещества по отношению к опухолевым клеткам и подавление радиационно-индуцированного повреждения нормальных клеток. На примере пациентов с аденокарциномой поджелудочной железы показано уменьшение радиационно-индуцированного повреждения кишечника, отложений коллагена и выраженности окислительного стресса в не пораженных опухолью тканях. Пероральное применение P-AscH не ассоциируется с подобным эффектом [34].

Наряду с классическими представителями группы радиопротекторов в качестве метода профилактики и лечения осложнений полихимио- и радиотерапии признание получили препараты с выраженным иммунотропным эффектом. С этой целью в клинической практике применяют иммуномодуляторы различных фармакологических групп. В соответствии с различными классификациями, их подразделяют по происхождению и механизму действия [35].

Установлено, что способность активировать мононуклеарные фагоциты с последующим ростом их цитотоксического воздействия, нейтрофилы и NK-клетки присуща препаратам микробного происхождения, таким как Рибомунил, Имудон, натрия нуклеинат [35].

Тимические пептиды (Тактивин, Тималин, Миелопид) работают на протяжении всего периода противоопухолевой терапии, в том числе в качестве сопроводительного лечения на фоне ЛТ рака легкого, тела матки, молочной железы, воздействуют на клеточное звено иммунитета, оказывая влияние на пролиферативные процессы и дифференцировку Т-лимфоцитов; инициируют продукцию интерферонов (ИФН), ФНО и т.д. [36].

По мнению ряда авторов, при использовании иммунокорректирующих пептидов стабилизируется лейко- и лимфопоэз, восстанавливается лимфоцитарный ответ на митогенные стимулы и в целом снижается частота лучевых повреждений и химиотерапевтических осложнений [37, 38]. Однако в настоящее время препараты данной группы признаны недостаточно эффективными и в клинической практике уступают синтетическим аналогам [38].

Группа синтетических иммуномодуляторов неоднородна. Левамизол, обладая подобным механизмом действия, также влияет на Т-звено иммунитета, индуцирует ИЛ-2, активирует выработку естественных клеток-киллеров. У больных колоректальным раком на фоне приема левамизола усиливается противоопухолевый эффект ПХТ [39].

Помимо выраженного противовоспалительного эффекта при упорно рецидивирующих заболеваниях различной этиологии Ликопид демонстрирует существенное дезинтоксикационное действие. Кроме того, на фоне его применения снижается частота возникновения лучевых ректитов и циститов при проведении дистанционной гамма-терапии и сочетанной ЛТ, начатых на 11–14-й день после хирургического лечения у женщин с аденокарциномой матки, что положительно отражается на качестве их жизни (по шкале Карновского) [38, 40].

Иммунокоррекция Имунофаном считается целесообразной для всех пациентов с онкопатологией благодаря отсутствию у него простагландиновой зависимости, что помогает организму поддерживать противо­опухолевый иммунитет, профилактировать периканкрозное воспаление [38]. Превентивное использование данного иммуномодулирующего средства до и после химиолучевой терапии у 54 больных раком шейки матки третьей стадии позволило снизить частоту и степень выраженности побочных эффектов лечения, а в случае их возникновения сократить сроки купирования [41].

Выраженным иммунотропным действием характеризуется препарат Полиоксидоний. Вследствие его направленного действия на процесс фагоцитоза возрастает активность системы макрофагов, нейтрофилов, NK-клеток. Благодаря увеличению продукции цитокинов лимфоцитами и моноцитами активируется как клеточное, так и гуморальное звено иммунной системы. Помимо иммуномодулирующего определены мембраностабилизирующее, антиоксидантное, детоксикационное свойства данного вещества [38].

При оценке переносимости химиолучевого лечения больными раком молочной железы (РМЖ), получавшими Полиоксидоний, осложнения не зафиксированы. Достижение данного эффекта происходило на фоне увеличения среднего количества лейкоцитов, нормализации содержания CD3+, CD4+, CD16+ [36].

Галавит активирует антиген-представительскую функцию макрофагов, но в случае гиперактивации последних способен ингибировать образование провоспалительных цитокинов, при недостаточности которых начинает стимулировать выработку ИЛ-1, ФНО, ИЛ-2. Известно, что Галавит формирует противоинфекционную защиту, повышает регенераторные способности тканей, проявляет детоксикационные свойства [42].

После комбинированного лечения у больных раком яичников, мочевого пузыря и новообразований других локализаций терапия глутоксимом способствовала стабилизации и улучшению клинико-биохимических и иммунологических показателей, что сопровождалось повышением качества жизни пациентов [43].

TCDO/WF10 (тетрахлордекаоксид/macrokine, immunokine) – химически стабилизированная матрица хлорита, индуцирующая естественный иммунитет и реализующая механизмы клеточной защиты через естественные клетки-киллеры, цитотоксические Т-лимфоциты и систему «моноцит – макрофаг». Обладает мощным противовоспалительным действием, уменьшает гематурию и вероятность ее рецидива, снижает медикаментозную нагрузку антибиотиками и спазмолитиками. Ответ на проводимое лечение лучевых циститов достигает 80% [44].

Говоря об иммунотропных веществах природного происхождения, нельзя не сказать о Ganoderma lucidum (трутовике лакированном) с противоопухолевыми и иммуномодулирующими свойствами. На фоне применения указанного вещества у пациентов одно­временно увеличивается содержание CD3, CD4 и CD8 на 3,91% (95%-ный доверительный интервал (ДИ) 1,92–5,90; р

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *