Что такое раскисление для чего оно необходимо
Раскисление
Раскисление металла – одна из основных операций рафинирования металла, заключающаяся в удалении из жидкого металла кислорода, присутствующего в виде оксидов, присадкой в металл раскислителей (восстановителей) – веществ, обладающих способностью соединяться с кислородом. От раскисления металлов в большой степени зависит их качество. Хорошими раскислителями являются C, Si, Mn, используемые в виде ферросплавов, в том числе комплексных раскислителей (силикомарганец, силикокальций и другие). Продукты раскисления всплывают в шлак либо удаляются в виде газа (оксид углерода).
Восстановительный процесс – физико-химический процесс получения металлов из оксидов отщеплением и связыванием кислорода восстановителем – веществом, способным соединяться с кислородом. Типичным восстановительным процессом является доменный процесс, в котором железо восстанавливается из руд главным образом углеродом или его оксидом.
Раскисление стали
Стадии процесса раскисления:
Способы раскисления стали:
Осаждающее раскисление
Такой способ раскисления, как осаждающее раскисление осуществляется при помощи элементов, обладающих большим сродством к кислороду, чем Fe. В зависимости от ситуации в качестве раскислителей применяют марганец, кремний, алюминий или комплексные раскислители.
Диффузионное раскисление
Этот способ раскисления применяется только в дуговых печах, где нет горящих газов.
Обработка синтетическими шлаками (способ раскисления)
Широко применяется в практике обработка расплава железа синтетическими шлаками. В дуговой печи наводят шлак из Al2O3 и CaO; шлак заливают в ковш, туда же с высоты 3-6 м выливают струю металла из печи. Этот способ раскисления позволяет снизить содержание кислорода и серы.
Электрошлаковый переплав (способ раскисления)
Вакуумное раскисление
Вакуумное раскисление основывается главным образом на реакции обезуглероживания, так как в вакууме раскислительная способность углерода значительно возрастает.
Автор обзора: Корниенко А.Э. (ИЦМ)
Раскисление металлов
Полезное
Смотреть что такое «Раскисление металлов» в других словарях:
Раскисление металлов — процесс удаления из расплавленных металлов (главным образом стали и других сплавов на основе железа) растворённого в них кислорода, который является вредной примесью, ухудшающей механические свойства металла. Для раскисления применяют элементы… … Википедия
Раскисление металлов — [killing; deoxi dation] удаление растворенного кислорода из жидких металлов (главным образом из стали и других сплавов на основе железа) с целью повышения качества. Раскисление часто совмещают с легированием металла. Виды раскисления:… … Энциклопедический словарь по металлургии
раскисление металлов — удаление из расплавленных металлов (гл. обр. стали) растворённого в них кислорода, который является вредной примесью, ухудшающей механические свойства металла. Осуществляется путём введения в металл раскислителей (восстановителей) – веществ,… … Энциклопедия техники
РАСКИСЛЕНИЕ — металлов удаление из расплавленных металлов (главным образом стали) растворенного в них кислорода. Осуществляют введением химических элементов, образующих устойчивые соединения с кислородом. Для раскисления применяют Al, Si, Ti и др. элементы или … Большой Энциклопедический словарь
Раскисление металла — Раскисление металлов процесс удаления из расплавленных металлов (главным образом стали и других сплавов на основе железа) растворённого в них кислорода, который является вредной примесью, ухудшающей механические свойства металла. Для раскисления… … Википедия
раскисление — металлов, удаление из расплавленных металлов (главным образом стали) растворённого в них кислорода. Осуществляют введением химических элементов, образующих устойчивые соединения с кислородом. Для раскисления. применяют Al, Si, Ti и другие… … Энциклопедический словарь
РАСКИСЛЕНИЕ МЕТАЛЛА — одна из осн. операции рафинирования металлов, заключающаяся в удалении из жидкого металла кислорода путём присадки в металл раскислителей (восстановителей) в в, обладающих способностью соединяться с кислородом. Хорошими раскислителями являются… … Большой энциклопедический политехнический словарь
Рафинирование — I Рафинирование (нем. Raffinieren, от франц. raffiner очищать) окончательная очистка продукта от примесей в металлургической, химической, пищевой и др. отраслях промышленности. II Рафинирование металлов, очистка первичных… … Большая советская энциклопедия
Кислородно-конвертерный процесс — один из видов передела жидкого чугуна в сталь без затраты топлива путём продувки чугуна в Конвертере технически чистым кислородом сверху. О целесообразности использования кислорода при производстве стали в конвертерах указывал ещё в 1876… … Большая советская энциклопедия
Бессемеровский процесс — бессемерование чугуна, один из видов передела жидкого чугуна в сталь без затраты топлива (см. Конвертерное производство). Б. п. был предложен Г. Бессемером в 1856 в связи с растущими потребностями в стали, вызванными ростом ж. д … Большая советская энциклопедия
Раскисление почвы (ПОШАГОВЫЙ план работ и материалы)
Для большинства культурных растений кислая почва не благоприятна. В условиях кислой почвы показатели урожайности снижаются на 20-30%, и это очень значительная цифра. В условиях и промышленного сельскохозяйственного производства, и фермерских хозяйств, и личных подсобных хозяйств вопрос определения значения показателя pH и подбора способов раскисления почвы стоит всегда в числе первоочередных.
Содержание
Раскисление почвы процесс не сложный, но требует определенных знаний. В рамках этого материала мы узнаем для чего раскисляют почву и какие материалы/ способы для этого применяют.
1. Зачем раскислять/расщелачивать почву (знать pH показатель)
Следует иметь в виду, что кислая почва – это хорошая среда для проволочника и других почвообитающих насекомых – вредителей и их личинок.
Кроме этого, например кислая почва накапливает железо, марганец и алюминий в виде веществ, опасных для растений. А если среда нейтральная, то тяжелые металлы практически не попадают из грунта в растения и, соответственно, далее в организм человека.
Еще один важный момент. Значение кислотности грунта влияет и на доступность элементов питания из почвы растению. Большинство элементов питания (нитраты, калий, фосфор, магний, сера, медь, бор) максимально усваиваются растением в диапазоне 6-7 (кроме микроэлементов и кальция).
Для всех тех, кто в серьёз занимается агротехникой, показатель кислотности важен. Важно уметь определить не только сам показатель pH, но знать на какой показатель ориентироваться при возделывании определенной культуры (так, например, для чеснока оптимальное значение pH составляет 6,5-7).
2. Как определить кислотность почвы
Кислотность почвы, вернее сказать кислотно-щелочной баланс, определяется по показателю pH (от 0 до 14 единиц). Для почвы чаще всего — это 3,5 — 8,5 единиц.
Чем больше pH:
тем меньше кислотность почвы;
тем больше щелочность почвы.
Чем меньше pH:
тем больше кислотность почвы;
тем меньше щелочность почвы.
ПОДРОБНЕЕ: «Показатель pH почвы (как определить кислотность почвы)« |
Тип почвы принято считать так:
3. Материалы и способы раскисления почвы
Раскисление почвы проходит не быстро, около полугода. Осень самое благоприятное время, чтобы заняться этим вопросом. Оптимальное время – это сентябрь-октябрь, или можно и раньше, локально участками после сбора урожая.
Раскисление почвы – единственный способ поднять ее рН до нужной отметки (т. е. до 5,0 и выше). Делается это следующими способами/материалами:
3.1. Доломитовая мука для раскисления почвы
Раскисление доломитовой (известняковая) мукой на сегодня один из самых востребованных и распространённых способов. «Доломитка» не только раскислитель, она является удобрением (содержит магний), хорошая защита от личинок, слизней и др. вредителей. И что важно – абсолютно безопасна для человека.
Доломитовая мука — состоящая из кристаллов (или их агрегатов) доломита рыхлая или сыпучая масса, применяемая в сельском хозяйстве для известкования почв. Природная доломитовая мука залегает среди доломитов, доломитизированных известняков, дедоломитов, других минералов и является продуктом их разрыхления и выщелачивания при выветривании. Она на 30 — 32% состоит из оксида кальция и на 18 — 20% — из оксида магния. Также доломитовая мука производится путём переработки карбонатных пород.
Усредненная норма применения доломитовой муки в среднем 300гр./ 1м2. В зависимости от состояния почвы норма может быть уменьшена или увеличена:
Мука равномерным слоем рассыпается по участку и перекапывается на штык лопаты.
Важно помнить, что доломитовую муку, как и другой раскислитель (например, известь-пушонку) не следует смешивать с органикой и минеральными удобрениями. Между собой они вступают в химические реакции. Таким образом — если осенью раскисляется почва, то внесение удобрений лучше перенести на весну.
3.2. Известь (известкование) почвы
Известь активно используют в земледелии для раскисления почты и борьбой с болезнетворными фитопатогенами.
Известь (из греч. ἄσβεστος «неугасимый») — материал, получаемый обжигом карбонатных горных пород (известняков, мела), состоящий в основном из СаО и MgO. Известь бывает разной: гашёная известь/гидроксид кальция/гидратная известь — Ca(OH)2, негашёная известь — CaO, хлорная известь — Ca(Cl)OCl и др. Бывает в виде порошка либо гранулированная. «Известь-пушонку» получают при гашении негашёной извести ограниченным количеством воды, в результате чего образуется белый рассыпающийся мелкокристаллический пылевидный порошок.
Но важно помнить, что известь — очень агрессивное вещество. После ее использования необходимо восстанавливать органику и биогумусные составляющие почвы (например, проливать через некоторое время почвогрунт биопрепаратами «Байкал-М1», «»Фитоспорин-М» и др.). Использование извести блокирует не некоторое время процессы потребленья растениями фосфора. Известь используют только осенью.
Известь для раскисления почвы
Рекомендовано для известкования почвы использовать ГАШЕНУЮ известь, так называемую «известь-пушонку». Если используется НЕГАШЕНАЯ известь, то её предварительно заливают водой на несколько часов. Гашеную известь можно использовать сразу. Известь рассыпается равномерно по почве и обязательно перекапывается на штык лопаты (глубина около 20 см.)
Норма применения извести зависимости от состояния почвы норма может быть уменьшена или увеличена:
3.3. Зола древесная (золирование)
От раскисления почвы золой в настоящее время почти отказались. Её сложно собрать в нужном количестве. Стоимость пакета золы в магазине несоизмерима высока для применения в качестве раскислителя. Норма расхода – 1,0-1,5 кг/ м2
3.4. Мел и гипс для раскисления почвы
Эти раскислители действуют мягко. Также, как и предыдущие раскислители они равномерно распиваются по участку и разделываются в почву. Единственный минус – комкуются при намокании (дождь, влажная почва и пр.). Иногда мел растворяют в воде и рабочим раствором пропиливают почву:
Норма расхода ориентировочно
Преимущество — мел и гипс можно использовать и осенью, и весной.
3.5. Готовые раскислители
Производители средств защиты растений выпускают готовые составы – раскислители. Как правило, это смесевые препараты, состоящие из доломитовой муки, микроэлементов, гумусных добавок и пр. Они безопасны для растений, действую быстро, их удобно применять и обеспечивают комплексный подход к вопросу восстановления почвы осенью.
3.6. Сидераты для раскисления почвы
Сидераты — специально высаживаемые растения для повышения качественных характеристик почвы, в том числе и для раскисления. Это отдельные культуры (горчица, донник, фацелия, рожь, люпин, рапс и др.) или смеси растений, как правило, однолетних, развивающих мощную корневую систему и быстро отрастающую надземную зеленую массу. Корневая система сидератов разрыхляет почву, особенно тяжелого состава (суглинистые черноземы), снабжает большим количеством органических остатков, а надземная масса служит хорошим снегозадержателем, после скашивания используется как мульча или заделывается в почву как зеленое удобрение.
Но в полном объеме с задачей по раскислению почвы сидератам не справится, значение показателя pH сможет измениться лишь не значительно. Чтобы был результат сидеральные культуры на участке высевают в течение всего года. Схема такая: посеяли – зацвели – убрали, снова посеяли – зацвели – убрали, снова посеяли – зацвели – убрали, и т.д. до самых заморозков.
Подробнее о назначении, выборе, сроках посева и уборки сидератов в отдельных материалах на сайте:
Как раскислить почву на участке – полезные советы для садоводов и огородников
Добавление статьи в новую подборку
На грядах плохо растут овощи и ягоды, зато пышно зеленеют мох и мокрица, покрывая каждый свободный сантиметр? Поздравляем, кислотность почвы явно превышает все нормы. Но не отчаивайтесь – мы расскажем, как раскислить почву на огороде весной и осенью.
Нарушенная кислотность почвы плоха, в первую очередь, тем, что некоторые элементы питания становятся недоступны растениям. Поэтому даже своевременное внесение удобрений не даст результата. Кроме того, в кислой почве не могут жить некоторые бактерии и полезные микроорганизмы, что также негативно сказывается на плодородии.
Как определить кислотность почвы
При разумном подходе к обработке земли определить тип и кислотность почвы нужно еще до того, как будут посажены первые растения. Впрочем, даже если изначально почва на вашем участке имена нейтральный pH, со временем все могло измениться. К счастью, для определения кислотности почвы не нужно ехать к специалистам – существуют простые и недорогие методы, которые под силу любому огороднику.
Определение кислотности почвы с помощью лакмусовой бумажки
Для того чтобы максимально точно узнать pH почвы, вам понадобится взять несколько чайных ложек земли с разных частей участка, купить в аптеке универсальную лакмусовую бумажку и провести несложный эксперимент.
Каждую порцию грунта заверните в плотную ткань, положите в стакан и залейте дистиллированной водой в соотношении 1:1. Через 5 минут возьмите лакмусовые бумажки и окуните каждую в отдельный стакан на 1-2 секунды. Бумага поменяет цвет, а по прилагающейся шкале кислотности вы сможете узнать pH и понять, какие меры стоит принять.
Определение кислотности почвы с помощью уксуса
Нет времени идти за специальными приспособлениями? Можно обойтись и тем, что есть в каждом доме, например, 9%-ным уксусом.
Определение кислотности почвы с помощью уксуса
Возьмите стекло, положите его на темную поверхность. На стекло насыпьте 1 ч.л. земли и налейте небольшое количество уксуса. Если образуется обильная пена, значит почва щелочная, если пена есть, но ее очень мало – нейтральная, а если реакции и вовсе не произошло – почва на выбранном месте кислая.
Подсказать уровень кислотности почвы может и обычная свекла: на кислой почве она вырастает с красными листьями, на слабокислой – с красными прожилками на ботве, а на нейтральной – с зелеными листьями и красными черешками.
Чем раскислить почву
Для раскисления почвы используют немало веществ. Основную часть из них можно найти в садовых магазинах и на строительных рынках, а что-то вы способны произвести и на собственном участке. Вы можете проводить раскисление почвы весной и осенью, но для разных сезонов подходят разные раскислители.
Раскисление почвы известью
Обычно, говоря об использовании извести в садоводстве, мы подразумеваем известь-пушонку (гашеную известь). Но есть еще и известковый туф (ключевая известь), цементная пыль, молотый известняк (углекислая известь) и другие вещества. Принцип действия у них схож, однако нормы и сроки внесения могут различаться.
Не менее функциональна, но реже встречается в продаже гажа – озерная известь.
Любая известь – продукт достаточно агрессивный, после ее внесения растения некоторое время не усваивают фосфор. Проводить известкование почвы желательно осенью, внося раскислитель под перекопку, чтобы к весне химические процессы в грунте пришли в равновесие. Если вы отдали предпочтение извести-пушонке, то вносите ее в следующих количествах:
Сумели раздобыть для своих целей молотый известняк? Тогда нормы внесения будут отличаться.
Для супесей и легких суглинков:
Для средних и тяжелых суглинков:
Раскисление почвы доломитовой мукой
Доломитовая мука (измельченная горная порода доломит) удобнее, чем разновидности извести. Ее можно вносить и весной под посадку растений или при перекопке грунта. Кроме того, она богата магнием, а потому отлично подходит для легких почв, где его всегда не хватает. Также доломитка служит отличным разрыхлителем на вязких глинистых почвах, улучшая не только состав, но и структуру грунта.
Доломитовую муку вносят в следующих пропорциях:
Раскисление почвы золой
Древесная зола не только отличное натуральное удобрение, но и эффективный раскислитель почвы. Правда, есть один нюанс, который не позволяет использовать ее бездумно. Состав золы зависит от множества параметров (породы деревьев, их возраста, места произрастания, сожженной части и т.д). В зависимости от этого, содержание солей кальция может колебаться от 30 до 60%, а значит, и нормы внесения будут меняться. Кроме того, нажечь такое количество золы довольно непросто, ведь для полноценного раскисления почвы ее нужно вносить из расчета 1-1,5 кг на 1 кв.м.
Зола, полученная от сожжения травы и сорняков, содержит меньше кальция, поэтому ее вносят из расчета 2,5-3 кг на 1 кв.м.
Поэтому применяйте золу как минеральное удобрение, содержащее калий, фосфор, магний и микроэлементы, а для борьбы с повышенной кислотностью почвы выберите другой вариант.
Раскисление почвы мелом
Мел, как и известь, вносят в почву осенью, предварительно тщательно его измельчив. При хранении мела нужно избегать влажных мест, чтобы он не слеживался в комки, а грунт тщательно перемешивать, стараясь добиться однородности.
Если вы планируете раскислить почву мелом, соблюдайте следующие нормы:
Какие растения любят кислую почву
Если все предложенные варианты раскисления вам по каким-то причинам недоступны, всегда можно посадить растения, любящие кислую почву. Конечно, овощей в этом списке будет не так уж много, а вот цветов, хвойных и ягод хватит на вполне приличный сад.
Итак, на участке с умеренно кислой почвой можно выращивать:
Из декоративных растений, спокойно относящихся к закисленной почве, можно сформировать полноценный цветник или сад, правда, без плодовых деревьев.
Теперь, когда вы знаете, чем раскислить почву весной, дела на участке пойдут на лад, и вы сможете выращивать даже те культуры, которые раньше категорически отказывались приживаться на грядах и в саду.
Раскисление металла в восстановительный период
Раскисление стали
Высокая концентрация кислорода, растворенного в стали (повышенная активность кислорода), полученная после окончания окислительных процессов, не дает возможности получить качественный слиток, так как понижение температуры металла в процессе кристаллизации приводит к возобновлению реакции окисления углерода [С] + [О] → СОгаз и образованию газовых пузырей, как правило, остающихся в слитке и не всегда заваривающихся при обработке давлением. Неиспользованный при протекании этой реакции кислород выделяется из металлического расплава в конце кристаллизации в виде пленок оксида железа FеО по границам зерен и резко ухудшает механические свойства стали. Это вызывает необходимость проведения раскисления металла. Раскислением называют технологическую операцию, приводящую к снижению концентрации растворенного кислорода (или активности кислорода) в стали до пределов, обеспечивающих требуемое качество готового металла. Содержание растворенного в металле кислорода можно уменьшить или за счет снижения общего содержания кислорода, или путем связывания растворенного кислорода в прочные соединения, не растворяющиеся в стали. Известны следующие способы раскисления стали: осаждающее (ранее не совсем точно называвшееся глубинным) раскисление; экстракционное, или диффузионное, раскисление (раскисление шлаком); раскисление обработкой вакуумом и электрохимическое раскисление. В практике сталеплавильного производства применяют первые два способа, в последнее время все чаще используется и раскисление обработкой вакуумом.
При осаждающем раскислении в металлический расплав вводят элементы-раскислители, обладающие большим химическим сродством к кислороду, чем железо. В результате протекания реакции между растворенным кислородом и раскислителем образуется практически не растворимый в железе оксид, плотность которого меньше плотности жидкой стали, т. е. растворенный кислород переводится в нерастворимый оксид и в расплаве образуется своеобразный «осадок» из нерастворимых оксидов. Полученный «осадок» всплывает или каким-либо другим способом удаляется в шлак. Отсюда и название способа – осаждающее раскисление. Так как раскислители обычно вводят (или пытаются вводить) в глубину металлического расплава, то данный способ раскисления иногда называют глубинным раскислением. В общем виде осаждающее раскисление можно изобразить следующей схемой:
где R – элемент-раскиcлитель.
В металлургической практике для осаждающего раскисления стали чаще всего используют (как наиболее дешевые и доступные) марганец в виде ферромарганца, кремний в виде ферросилиция, алюминий, углерод в различном виде. Иногда для раскисления стали используют более дорогие сплавы щелочно-земельных металлов (чаще кальция) и редкоземельных металлов (с преобладанием церия). Все реакции раскисления такими раскислителями идут с выделением тепла, поэтому глубина протекания реакции раскисления увеличивается при понижении температуры (равновесие реакции раскисления сдвигается вправо, в сторону образования дополнительного количества оксида раскислителя). Оксиды элементов-раскислителей, образующиеся в процессе раскисления, в отечественной специальной литературе принято называть продуктами раскисления. Продукты раскисления, образующиеся в жидком металле в процессе технологической операции раскисления, принято называть первичными продуктами раскисления. В течение всего времени существования научно обоснованных технологий сталеплавильного производства специалисты стремились проводить осаждающее раскисление так, чтобы первичные продукты раскисления возможно более полно и возможно быстрее удалялись из металла. Этой проблеме были посвящены многие исследования, результаты которых позволили металлургам быстро и почти полностью удалять из металла первичные продукты раскисления. Но в процессе кристаллизации стали при понижении температуры реакции осаждающего раскисления продолжают идти, при этом образуются «новые» (вторичные) продукты раскисления, которые уже практически не могут удалиться из кристаллизирующего очень вязкого металла и остаются в стали. Поэтому после осаждающего раскисления готовая сталь всегда содержит некоторое количество неметаллических включений – продуктов раскисления, что и является главным недостатком данного способа раскисления. Но благодаря простоте осуществления операции и большой скорости удаления растворенного кислорода из металла осаждающее раскисление остается основным способом раскисления стали.
Для уменьшения количества и размеров вторичных (кристаллизационных) продуктов раскисления очень важно понизить концентрацию растворенного кислорода при раскислении жидкого металла до возможно более низких значений. Остаточная концентрация растворенного кислорода в металле зависит от температуры, концентрации элемента раскислителя и раскислительной способности элемента- раскислителя. Раскислительной способностью элемента-раскислителя принято называть концентрацию растворенного кислорода [O]р (или активность кислорода a[O]), соответствующую конкретной концентрации элемента-раскислителя, при которой он находится в равновесии с кислородом при данной температуре. Данные о раскислительной способности различных раскислителей получают в лабораторных исследованиях, так как в производственных условиях достичь равновесия реакций раскисления не удается. Обычно сравнение раскислительной способности раскислителей проводят при температуре 1600 °С. Для практических нужд удобнее всего использовать данные о раскислительной способности, представленные графически в координатах [O]р – [R] или a[O] – [R], lga[O] и т.д. Следует отметить, что данные о раскислительной способности тех или иных раскислителей, полученные разными исследованиями, часто сильно различаются. Это объясняется тем, что применяется различное оборудование, различные методики исследования; а также различной исходной концентрацией растворенного кислорода и различным составом продуктов раскисления.
Кислород — постоянный спутник железа и стали. Максимальная растворимость кислорода в жидкой стали при температуре ее плавления не превышает 0,22%. С повышением температуры растворимость кислорода в жидкой стали увеличивается. Кислород в стали частично находится в виде раствора, входя, главным образом, в состав неметаллических включений: оксидов — FeO, MnO, SiO2, Al2O3, CaO и ряда их соединений между собой и серой (так называемые силикаты, алюминаты, шпинели, оксисульфиды и пр.).
Кислород ухудшает механические свойства стали, снижает ее ударную вязкость при низких температурах, уменьшает временное сопротивление (прочность на разрыв), повышает неоднородность металла. Комбинированные кислородные и сернистые соединения образуют легкоплавкие неметаллические включения, располагающиеся по границам зерен. В процессе обработки давлением (прокатка или ковка) в таком металле при высоких температурах возможно образование трещин и рванин (явление красноломкости).
Форма, количество и состав кислородных включений в готовой стали зависят от способов раскисления металла, внепечной обработки, разливки и условий затвердевания расплава, а также от характера процессов выплавки стали (основной или кислой). Раскисление стали проводят таким образом, чтобы уменьшить в ней содержание кислорода и неметаллических включений и понизить их вредное влияние на качество металла. Для этого применяют следующие методы раскисления стали: диффузионное — воздействие на металл шлаком с низким содержанием оксидов железа; осадочное — воздействие на металл непосредственно элементами-раскислителями; комбинированное — одновременное воздействие на металл шлаком и элементами- раскислителями.
При равновесии отношение содержания кислорода в железе [О] к содержанию монооксида железа в шлаке (FeO) является постоянной величиной и зависит от основности шлака и температуры. При основности шлака, равной 2, и температуре 1600 °С данное отношение составляет величину 0,005. Если содержание (FeO) в шлаке ниже равновесного, то обеспечивается переход кислорода в виде FeO из металла в шлак. Другими словами, обработкой ванны безжелезистым шлаком можно добиться снижения содержания кислорода в металле.
Присадка в печь порошкообразных материалов — кокса, ферросилиция, алюминия — обеспечивает взаимодействие элементов-рас- кислителей с (FeO) шлака и снижение его концентрации ниже 0,5%. Если конечное содержание (FeO) в шлаке 0,5%, то конечное содержание кислорода в металле в условиях равновесия, определяемое из соотношения [О]кон/0,5 = 0,005, составит: [0]кон = 0,0025%.
Практически равновесие между шлаком и металлом в восстановительный период плавки (доводки) не достигается и содержание кислорода в металле перед выпуском из электропечи колеблется в пределах 0,003—0,012%. При этом уменьшение содержания кислорода в металле происходит, в основном, за счет диффузии кислорода из металла в шлак, поэтому такой способ раскисления называют диффузионным. Диффузионное раскисление ванны металла имеет место при выплавке стали в дуговых печах емкостью до 25 т. Процесс осуществляют под «белым» *(серым) или карбидным шлаком. Белый шлак получают раскислением основного шлака коксом, а затем порошками ферросилиция и алюминия. Карбидный — в результате интенсивного раскисления известкового шлака порошком кокса.
Современные большегрузные дуговые печи оборудуют высокопроизводительными установками для отсоса и очистки отходящих газов, которые при работе создают интенсивный газообмен в рабочем пространстве.
С учетом этого восстановительный шлак требуемых состава, консистенции и раскисленности наводят на жидкой ванне в печи за 15-20 мин до выпуска плавки в ковш путем интенсивной присадки порошков кокса, ферросилиция и алюминия. Период доводки металла (корректировка химического состава стали, нагрев металла и др.) проводят в течение минимального времени под известковым шлаком с основностью 3—4.
Диффузионный способ рафинирования металла позволяет существенно снизить загрязненность стали продуктами раскисления — неметаллическими включениями, так как взаимодействие происходит в шлаке и на поверхности раздела металл-шлак. Однако процесс малопроизводителен. Формирование восстановительного основного шлака к моменту выпуска плавки из большегрузной печи позволяет существенно повысить эффективность взаимодействия фаз в момент слива шлака и металла и тем самым обеспечить высокую степень рафинирования стали от кислорода и серы.
Раскисление стали путем непосредственного ввода в жидкий металл раскислителей в виде кусков или порошка называют глубинным или осадочным. Оно имеет место в металле на разной глубине в зависимости от удельного веса материала-раскислителя, размеров его кусков и способа ввода в металл. Эффект осадочного раскисления металла возрастает с уменьшением температуры плавления веществ- раскислителей и с повышением их растворимости в железе. Сочетание процессов осадочного раскисления металла с диффузионным взаимодействием элементов-раскислителей с кислородом относят к комбинированным методам.
Способы раскисления металла
В восстановительный период электроплавки раскисление металла осуществляют диффузионным способом, при котором реакция раскисления, т. е. связывание кислорода в прочные оксиды, протекает не в металле, а в шлаке, и металл, следовательно, не загрязняется продуктами раскисления. Это основное преимущество диффузионного раскисления перед глубинным. Другим преимуществом диффузионного раскисления является более слабое развитие реакции окисления металла шлаком во время и после выпуска металла из печи. Этим, в частности, объясняется незначительный угар легирующих элементов и раскислителей в электропечах,
К недостаткам диффузионного раскисления относятся:
Несмотря на отмеченные недостатки дуффузионного раскисления, его преимущества, связанные с возможностью получать хорошо раскисленный металл с низким содержание серы и неметаллических включений столь очевидны при производстве качественной и высококачественной стали, что этот способ находит широкое распространение при выплавке стали в электропечах.
Однако для уменьшения отрицательного влияния диффузионного раскисления металла в последнее время получила распространение технология, сочетающая преимущества диффузионного и глубинного раскисления. В этом случае перед началом диффузионного раскисления в металл присаживают кусковые раскислители: ферромарганец, ферросилиций, алюминий и т.д.
Иногда глубинное раскисление применяют и для окончательного раскисления металла.
Для диффузионного раскисления металла широко используют углерод, который дают на шлак чаще всего в виде коксика или электродного боя. При достаточно большом расходе коксика или электродного боя и высоком содержании CaO в шлаке в зоне дуг под электродами образуется карбид кальция по реакции
Карбид кальция, обладая большим сродством к кислороду, взаимодействует с оксидами железа шлака:
Под карбидным шлаком (>2% CaCr) содержание FeO в шлаке может быть снижено до 0,5%, чему соответствует равновесное содержание кислорода в металле 0,0012% в металле при 1600° С. Подобное содержание кислорода в металле не может быть достигнуто даже при 0,3% Ti. Особенностью углерода как раскислителя является малое влияние температуры на его сродство к кислороду. Относительная дешевизна коксика и электродного боя и хороший эффект раскисления ими объясняет широкое применение их для диффузионного раскисления шлака.
В зависимости от содержания карбида кальция и шлаке, а следовательно, и степени его раскисления шлак восстановительного периода разделяют на белый (до 2% CaC2) и карбидный (>2% CaC2). Под белым шлаком выплавляют конструкционные стали с содержанием углерода ниже 0,35%, под карбидным шлаком — средне- и высокоуглеродистые стали.
Иногда рафинирование металла в окислительный период проводят под известково-глиноземистым, известково-шамотным или магнезиально-глиноземистым шлаками.
Диффузионное раскисление под белым шлаком
После скачивания окислительного шлака в ванне наводят шлак из извести и плавикового шпата в соотношении 3:2 и в количестве 2—4% от массы металла. Жидко-подвижный шлак образуется через 10—15 мин и на него задают восстановительную смесь из извести, плавикового шпата и молотого просеянного кокса или древесного угля с размером частиц не более 0,5—1,0 мм в соотношении 8:2: 1.
В результате раскисления шлака углеродом кокса содержание FeO в нем примерно через 40 мин снижается до 1,5%, и проба шлака после остывания принимает серый цист вместо черного в начале восстановительного периода, когда в шлаке содержится относительно много оксидов железа.
Вследствие возможности науглероживания металла дальнейшее его раскисление проводят кремнием. В шлаковую смесь вводят мелкоизмельченный ферросилиций марок ФС45 и ФС75. Состав шлаковой смеси следующий: четыре части извести, одна часть плавикового шпата, одна часть кокса и одна часть ферросилиция. Раскисление шлака кремнием длится
20 мин. Около 50% Si, вводимого из шлака ферросилицием, усваивается металлом.
Раскисление шлака кремнием иногда производят с начала восстаковительного периода, что устраняет науглероживание металла. Однако содержание кремния в металле возрастает, он реагирует с растворенным в металле кислородом и образующиеся продукты раскисления частично остаются в металле. Поэтому загрязненность металла неметаллическими включениями при такой технологии может возрасти.
Белый шлак имеет обычно следующий состав 55— 65% CaO, 10—20% SiO2, до 1% FeO, 0,4% MnО, 12— 16% MgO, 2-3% Al2O3, 5-10% CaF2, 1% CaS, до 2% CaC2. Проба белого шлака при остывании рассыпается, что связано с присутствием в нем силиката кальция 2 CaO • SiO2, который при 675° С меняет свою модификацию, увеличиваясь при этом в объеме.
Для получения относительно раскисленного металла необходимо выдерживать металл под белым шлаком
1 ч, периодически присаживая некоторое количество раскислительной смеси с коксом или ферросилицием. Хороший белый шлак пенится в печи, густой шлак затрудняет нагрев металла и протекание диффузионных процессов. Поэтому необходимо непрерывно поддерживать нормальную консистенцию шлака, своевременно увеличивая в смеси количество плавикового шпата.
Иногда увеличение вязкости шлака вызывается повышением содержания MgO в шлаке в результате разрушения откосов и подины. В этом случае шлак необходимо скачать и навести новый. Жидкий шлак исправляют присадкой извести.
Диффузионное раскисление под карбидным шлаком
При проведении восстановительного периода под карбидным шлаком металл вначале покрывают шлаковой смесью того же состава, что и при раскислении под белым шлаком. После образования равномерного слоя жидкоподвижного шлака в печь дают смесь из извести, плавикового шпата и молотого кокса в соотношении 3:1:1. Общее количество шлака в восстановительный период составляет 4% в электропечах большой емкости и 7—8% в печах малой емкости (от массы металла).
Карбид кальция образуется в зоне дуг с большим поглощением тепла, поэтому печь хорошо уплотняют и к ней подводят повышенную мощность. Печь не открывают в течение 20—30 мин. Внешним признаком образования карбидного шлака является выбивание из-под заслонок черного дыма.
Карбид кальция из зоны дуг разносится по всему объему шлака. Он является сильным раскислителем, взаимодействуя с FeO по реакции (CaC2) + 3(FeO) = 3[Fe] + 2 <СО>+ (CaO). Карбид кальция частично восстанавливает кремний из оксида кремния шлака. Поэтому в процессе раскисления металла карбидным шлаком на 0,05—0,1% возрастает содержание кремния в металле. Карбидный шлак плотно прилипает к ложке, а при замачивании ошлакованного инструмента в воде чувствуется специфический запах ацетилена.
Раскисление под карбидным шлаком продолжается не менее 1 ч. Для поддержания в шлаке необходимого содержания карбида кальция в печь периодически задают молотый кокс с известью и плавиковым шпатом, если необходимо уменьшить вязкость шлака.
Существенным недостатком ведения плавки под карбидным шлаком является заметное науглероживание металла в печи и во время выпуска, а также прилипание карбидного шлака к металлу, что приводит иногда к появлению в готовом металле относительно крупных шлаковых включений. Для устранения этого явления карбидный шлак примерно за 30 мин до выпуска переводят в белый. Для этого в печь присаживают известь с плавиковым шпатом, при этом увеличивается общее количество шлака и снижается содержание в нем карбида кальция. Иногда дополнительно открывают рабочее окно, способствуя таким образом, окислению карбида кальция. Если и после этого шлак остается карбидным, то часть шлака (∼1/3) удаляют из печи и забрасывают в печь шлаковую смесь из извести, плавикового шпата и шамотного боя.
Карбидный шлак имеет следующий химический состав: 55-65% CaO, 10-15% SiO2, до 0,5% FeO, до 0,3% MnO, 6—10% MgO, 2-3% Al2O3, 1—2% CaS, 2— 4% CaC2, 8—12% CaF2.
Основное отличие карбидного шлака от белого по составу заключается в несколько более низком в первом шлаке содержании оксидов железа и марганца, а также повышенном содержании карбида кальция.
Раскисление под известково-глиноземистым шлаком
При выплавке нержавеющих и им подобных сталей диффузионное раскисление металла в восстановительный период проводят под известково-глиноземистым или шамотным шлаком. В этом случае устраняется возможность науглероживания металла. Например, на Златоустовском металлургическом заводе после скачивания окислительного шлака наводится новый шлак из извести и отработанного флюса электрошлакового производства (
40% Al2O3) в соотношении 2:1 в количестве
2% от массы металла. Для раскисления известково-глиноземистого шлака применяют порошкообразный ферросилиций, алюминий и силикокальций.
Глубинное и диффузионное раскисление металла
После скачивания окислительного шлака на открытое зеркало металла присаживают кусковые раскислители: ферромарганец, ферросилиций, силикомарганец, алюминий и т.д. Расход раскислителей должен обеспечить содержание марганца в металле на нижнем пределе в заданной марке стали, введение 0,15—0,2% кремния и 0,05—0,1% алюминия. Затем загружают шлаковую смесь и после ее расплавления шлак обрабатывают раскислительными смесями с постепенно уменьшающимся количеством порошка кокса. При такой обработке образуется слабокарбидный или белый шлак, содержащий
Раскисление алюминием
Раскисление кремнием
Кремний – достаточно сильный и сравнительно недорогой раскислитель (рис. 3.7), поэтому он применяется в производстве стали. При раскислении жидкого металла кремнием в зависимости от окисленности металла и концентрации кремния в стали образуются или жидкие силикаты железа (мало [Si] и много [О]), или твердый кремнезем SiO2 (много [Si] и мало [О]). При наличии основного шлака раскислительная способность кремния возрастает. Однако удаление образующихся при раскислении силикатов из металла несколько затруднено, так как они хорошо смачиваются железом. Обычно для раскисления стали кремнием используют ферросилиций и силикомарганец различных марок.
Раскисление стали в кислой электропечи
В кислой электропечи углеродистую сталь обычно выплавляют без диффузионного раскисления в печи. Диффузионное раскисление применяют лишь иногда при выплавке легированной стали.
Раскисление углеродистой стали
В окислительный период металл частично раскисляется восстановившимся кремнием. В конце окислительного периода в ванну присаживают ферромарганец. Повышение содержания марганца в металле способствует восстановлению кремния до 0,2—0,3% по реакции
2 [Mn] + (SiO2) = [Si] + 2 (MnO). (160)
За 7—10 мин до выпуска в ванну присаживают ферросилиций для получения заданного содержания кремния; за 3—5 мин до выпуска вводят ферромарганец для окончательного корректирования содержания марганца в металле.
При расчете необходимого количества ферросилиция необходимо учитывать угар кремния (5—10%) и марганца (15—20%). Иногда ферромарганец при выплавке углеродистой стали присаживают в ковш. Угар марганца в этом случае не превышает 10%. Окончательно металл раскисляют алюминием в количестве 160 —200 г/т при отливке слитков и 1—1,5 кг/т при использовании жидкой стали для фасонного литья. Причем 0,5—0,6 кг/т присаживают во время выпуска, остальное при разливке.
Раскисление легированной стали
При выплавке легированной стали в электропечах содержание серы и фосфора в шихте не должно превышать 0,04%. При выплавке стали, содержащей никель и молибден, в завалку используют содержащие указанные элементы отходы, что уменьшает расход легирующих присадок. Расплавление ведут как при выплавке углеродистой стали. После расплавления отбирают пробу металла на полный химический анализ (С, Cr, Ni, Mo, Cu, S, P) и, если содержание серы и фосфора не превышает заданного, в ванну загружают при необходимости никель и ферровольфрам.
После проведения чистого кипения иногда проводят операцию «перекипа», для чего в ванну присаживают чугун или углеродистый ферромарганец (5—7 кг/т). После этих присадок ванна бурно вскипает, что способствует удалению газов.
Легированную сталь выплавляют иногда с удалением 60—80% окислительного шлака, что уменьшает угар легирующих элементов. Для наведения нового шлака в печь загружают смесь из 1—2% кварцевого песка и 0,5—1 % извести или известняка.
Раскисление легированной стали в кислой электропечи может осуществляться либо диффузионным, либо глубинным методами. Если плавку проводят без диффузионного раскисления металла, то после окончания чистого кипения в ванну присаживают для предварительного раскисления силикомарганед (2—4 кг/т) или ферромарганец и ферросилиций. После тщательного перемешивания ванны присаживают феррохром. Не позже чем за 10 мин до выпуска присаживают ферросилиций для легирования стали. Ферромарганец для легирования присаживают непосредственно перед выпуском. При выпуске из печи металл окончательно раскисляют силикокальцием (1,5—2,5 кг/т), алюминием и ферротитаном.
В случае диффузионного раскисления металла после проведения чистого кипения и «перекипа» на шлак задают коксик в количестве 0,2% от массы металла и иногда молотый ферросилиций. Вязкость шлака регулируют присадками извести или известняка. После присадки кокса ванну выдерживают в течение 5—10 мин. Получив результаты анализа, проводят предварительное раскисление металла силикомарганцем (4 кг/т) или ферросилицием и ферромарганцем. Легирование металла проводят после предварительного раскисления. Ферросилиций присаживают за 10 мин до выпуска, а ферромарганец — непосредственно перед выпуском. Окончательно металл раскисляют при выпуске алюминием (1 кг/т) и силикокальцием (2—3 кг/т).
Ниже приведена длительность плавок различных сталей в кислых электропечах емкостью 7 т по данным одного из уральских машиностроительных заводов.
Производительность кислой электропечи на 15—30% выше производительности основной печи.
Раскисление металла обработкой в вакууме
Раскисление металла обработкой вакуумом основано на том, что равновесие реакции
в вакууме сдвигается:
в сторону образования дополнительных количеств монооксида углерода в результате снижения Рсо, а концентрация растворенного кислорода (активность кислорода) в металле при этом уменьшается. Иногда такой способ называют углеродное раскисление в вакууме, или вакуумно-углеродное раскисление. Раскисление металла углеродом в вакууме эффективно и протекает достаточно быстро лишь при обработке нераскисленного металла, лучше при высоком содержании углерода в стали и при хорошем перемешивании металла. После вакуумноуглеродного раскисления проводят окончательное осаждающее раскисление металла. Внепечное раскисление металла углеродом в вакууме в настоящее время довольно широко применяется в практике сталеплавильного производства, особенно в случае выплавки высококачественных сталей, где необходима низкая степень загрязненности оксидными неметаллическими включениями.