Что такое реактивный двигатель самолета
Реактивный двигатель: мотор, подаривший людям небо
Мы живем в эпоху реактивной авиации – это знакомо любому, даже не слишком сведущему в технических вопросах, человеку. Поршневой мотор с традиционным винтом, хотя и не совсем канул в Лету, но лидирующие позиции он сдал давным-давно. Подавляющее большинство современных самолетов – пассажирских, транспортных и военных – оснащены различными типами реактивных двигателей. Именно благодаря моторам подобно конструкции авиация превратилась в удобный, массовый и быстрый вид транспорта.
Реактивный двигатель (РД) – это двигатель, создающий силу тяги путем преобразования внутренней энергии топлива в кинетическую рабочего тела. Оно истекает из сопла со значительной скоростью, и, согласно закону сохранения импульса, толкает его в противоположную сторону. Это и есть принцип работы реактивного двигателя. Особенностью РД является его сочетание с движителем, усилие тяги он создает только за счет контакта с рабочим телом, без опоры или взаимодействия с иными объектами. Первым прототипом РД можно назвать шар Герона, созданный еще в I веке н. э.
В наши дни основной областью применения реактивного двигателя является авиация и ракетостроение, но не только. Их пытались устанавливать на поезда и автомобили, правда, широкого распространения такие транспортные средства так и не получили. Турбины используются при перекачке природного газа, причем многие из подобных агрегатов разработаны на базе авиационных ВРД и имеют аналогичный принцип действия.
В данном материале мы подробно коснемся конструкции устройств, относящихся к реактивным двигателям. Рассмотрим, как работает реактивный двигатель, представим их классификацию, а также основные особенности применения.
Немного теории или как летают самолеты
Основным параметром, определяющим характеристики работы любого реактивного двигателя, является тяга (или сила тяги), которую мотор развивает в сторону движения летательного аппарата. Она описывается формулой:
P = G × (c – v), где P – сила тяги, G – расход рабочего тела в секунду, c – скорость истечения реактивной струи, v – скорость полета.
Для ее создания необходимо несколько составляющих:
В ВРД в качестве первичной используется энергия сгорания химических веществ, то есть – это типичный тепловой двигатель. Главное условие функционирования подобной системы – превышение давления рабочего тела над атмосферным перед началом цикла расширения. Причем чем больше эта разница, тем выше эффективность ВРД. Все существующие в настоящий момент типы реактивных двигателей в первую очередь отличаются способом достижения этого перепада давлений, именно он и определяет их основные технические особенности.
Рабочее тело воздушных реактивных двигателей представляет собой смесь продуктов сгорания топлива с фракциями воздуха, оставшимися после использования кислорода. Для окисления 1 кг керосина – основного топлива для реактивных двигателей – необходимо примерно 15 кг воздуха.
В состав конструкции любого ВРД входит камера сгорания, где происходит окисление горючего, и реактивное сопло, из которого выбрасывается раскаленный газ, а тепловая энергия превращается в кинетическую, создавая при этом тягу.
История развития реактивных двигателей
Эволюция реактивных двигателей неразрывно связана с развитием авиации. На протяжении практически всей ее истории улучшение характеристик летательных аппаратов обеспечивалось главным образом непрерывным совершенствованием авиамоторов.
Первые самолеты были оснащены поршневыми двигателями, и подобная ситуация оставалась неизменной на протяжении нескольких десятилетий. Постепенно их конструкция улучшалась, возрастала мощность, уменьшался расход топлива. Но к середине 40-х годов прошлого века стало понятно, что поршневой двигатель самолета достиг своего предела, и для дальнейшего развития необходимы совершенно другие технологии и новые конструкторские решения.
Буквально за несколько десятилетий поршневые самолеты прошли впечатляющий путь: если первые аэропланы летали со скоростью 50 км/ч, то к середине Второй мировой войны они перешагнули рубеж в 700 км/ч. Однако дальнейшее повышение мощности вошло в противоречие с другими важнейшими характеристиками любого авиамотора – компактностью и массой. Второй преградой, мешавшей увеличению скорости поршневых самолетов, был его движитель – воздушный винт. Дело в том, что на больших скоростях начинается работать такое неприятное явление, как «эффект запирания», не позволяющее увеличить тягу даже при повышении мощности.
Попытки создания летательных аппаратов с реактивным двигателем предпринимались еще на заре авиации. В 1913 году французский инженер Лорен получил патент на конструкцию прямоточного реактивного двигателя (ПВРД). В 1921 году француз Максим Гийом создал проект двигателя, имевшего основные элементы современного воздушно-реактивного двигателя: камеру сгорания, компрессор и одну турбину, приводимую в движение выхлопными газами. Однако изобретатель так и не смог никого заинтересовать своим проектом. В 1928 году авиатор Фриц Стамер впервые поднялся в небо на аппарате с ракетным приводом.
Интересовались изучением данной темы и в России. Важный вклад в развитие реактивного движения внесли Кибальчич, Жуковский, Мещерский, Циолковский. Последний сделал обоснование полета ракеты с жидкостным двигателем (ЖРД), а также описал многие особенности его конструкции.
В 1930 году англичанин Фрэнк Уиттл получил патент на конструкцию работоспособного турбореактивного двигателя, позже он основал компанию, создавшую первые британские РД. В 1935 году немецкий изобретатель Ганс фон Охайн разработал турбореактивный двигатель HeS, а в 1939 году в небо поднялся первый в мире летательный аппарат с ТРД. Скорость первого самолета с реактивным двигателем He 178 была выше, чем у самой быстрой поршневой машины (700 против 650 км/ч), правда, при этом он был менее экономичен и, соответственно, имел меньший радиус действия.
В СССР проект первого истребителя с ВРД был разработан конструктором Люлькой в 1943 году. Но он был «зарезан»: руководство советской авиационной отрасли не верило в перспективы таких моторов. Зато у германских конструкторов, работавших в области реактивного авиастроения и ракетной техники, подобных проблем со своим начальством не было. В 1944 году немцы сумели наладить серийное производство истребителя-бомбардировщика с двумя ТРД Me.262 и реактивного бомбардировщика Arado Ar 234 Blitz. В конце войны немецкой промышленностью также был освоен выпуск пульсирующих воздушно-реактивных двигателей (ПуВРД), которыми оснащались самолеты-снаряды Фау-1.
После войны началась настоящая эра реактивной авиации: ведущие мировые державы занялись интенсивной разработкой ВРД. Уже в 1946 году был создан первый советский реактивный Як-15 на основе трофейных немецких двигателей Jumo-004, а через год в КБ Люльки появился отечественный турбореактивный ТР-1. В 1947 году на вооружение был принят истребитель МиГ-15, оснащенный мотором РД-45. В середине 50-х годов началось серийное производство первого советского пассажирского реактивного самолета Ту-104. К этому времени СССР превратился в одного из лидеров в области авиационного моторостроения. Дальнейшее развитие технологий позволило создать двигатели, с помощью которых самолеты сначала преодолели звуковой барьер, а затем вышли на сверхзвук.
Какими бывают реактивные моторы?
В настоящее время существует множество типов реактивных двигателей, поэтому классификация их довольно сложна.
Подобные силовые установки можно разделить на две большие группы:
Ракетный двигатель. Он несет все компоненты для создания рабочего тела, поэтому способен работать в любой среде, в том числе и безвоздушном пространстве.
Воздушно-реактивный двигатель (ВРД), использующий для движения смесь из атмосферного воздуха и продукты сгоревшего топлива.
ВРД можно разделить на две большие группы:
К первой категории относятся устройства, у которых двигатель и тепловая машина не совмещаются в одном агрегате – их условно можно назвать турбовинтовыми. У таких моторов мощность, вырабатываемая турбиной, заставляет вращаться лопасти винта. Именно он создает большую часть тяги (80-85%). У двигателей второй группы тепловая машина и движитель образуют единое целое, а тяга создается за счет газового потока из сопла.
Во вторую группу входят следующие типы моторов:
Есть еще электродвигатели: асинхронный и синхронный реактивный. Они называются так, потому что их роторы вращаются за счет реакций сил магнитного притяжения, но это не имеет отношения к законам реактивного движения.
Особенности конструкции турбореактивного двигателя
ТРД состоит из следующих элементов:
Во время полета набегающий поток воздуха тормозится во входном устройстве: его скорость превращается в давление. Далее струя воздуха поступает в компрессор, который еще больше увеличивает степень ее сжатия. В камере сгорания происходит нагревание при сжигании топлива. Из нее предельно разогретый и сжатый поток направляется в турбину. Там газы совершают работу, вращая лопатки, которая передается компрессору и другим вспомогательным агрегатам.
При выходе из турбины ТРД газ имеет давление, значительно превосходящее атмосферное. Благодаря этому достигается высокая скорость его истечения из выходного сопла, что создает реактивную тягу.
В 60-е и 70-е годы прошлого столетия ТРД широко применялись на различных типах гражданских и военных самолетов. Позже им на смену пришли двухконтурные турбореактивные двигатели (ТРДД), имеющие лучший КПД, особенно при полетах на дозвуковых скоростях. По существу, сегодня они являются основными моторами современной авиации. Каков же принцип работы ВРД подобного типа?
Внутренний (первый) контур любого ТРДД представляет собой, по сути, обычный турбореактивный двигатель. Воздух, пройдя воздухозаборник, попадает в низконапорный компрессор, называемый еще вентилятором. После этого он разделяется на два потока: один, из которых попадает во внутренний контур, где проходит обычный для ТРД цикл, описанный выше. Второй входит в наружный контур, минуя турбину и камеру сгорания, и попадает в сопло, где смешивается с потоком, выходящим из первого контура. Такой тип двигателя называется ТРДД со смешением потоков.
Благодаря наличию внешнего контура общая скорость истечения газа из сопла уменьшается, что повышает тяговый КПД. Важнейшей характеристикой любого ТРДД является степень его двухконтурности – это отношение расхода воздуха через внутренний и внешний контур. Двигатели с большой степенью двухконтурности (выше 2) называются турбовентиляторными. Главным недостатком моторов этого типа является их значительные размеры и масса, а достоинством – высокая экономичность. Турбовентиляторными двигателями оснащается большинство коммерческих авиалайнеров и транспортных самолетов.
Существует несколько способов повышения эффективности работы ТРД и ТРДД:
Любой ТРД имеет резерв мощности: избыток кислорода в камере сгорания. Однако использовать его напрямую – через увеличение впрыска топлива – нельзя: более высокую температуру не выдерживают детали двигателя. Конструкторы выбрали другой путь, и он оказался правильным: между турбиной и соплом сжигается дополнительное топливо, что увеличивает температуру рабочего тела и значительно повышает тягу (до 1,5 раза). Форсажные камеры в основном устанавливаются на боевых самолетах.
Регулируемое сопло состоит из подвижных продольных элементов, управляя положением которых, можно изменять геометрию самой узкой части выходного отверстия двигателя. Это позволяет оптимизировать работу мотора на разных его режимах.
Управление вектором тяги производится с помощью специальных отклоняемых сопел, которые позволяют изменять поток рабочего тела относительно оси двигателя. Такая конструкция несколько усложняет управление самолетом, но существенно увеличивает его маневренность и взлетно-посадочные характеристики.
Прямоточные воздушно-реактивные двигатели
ПВРД – самый простой тип реактивного двигателя по своему устройству. В нем вообще нет движущихся частей. Повышенное давление, необходимое для работы, достигается за счет торможения встречного потока воздуха. Любой ПВРД состоит из трех компонентов:
В диффузоре уменьшается скорость потока воздуха и повышается его давление, затем в камере сгорания он нагревается за счет окисления топлива, после чего происходит расширение рабочего тела в сопле и возникает реактивная тяга. Существуют три вида ПВРД:
Дозвуковые ПВРД имеют очень низкий термический КПД, поэтому серийно в настоящее время не используются.
На сверхзвуковой скорости прямоточный двигатель весьма эффективен, при скорости в 3 Маха степень повышения давления вполне сравнимо с аналогичным показателем ТРД.
Гиперзвуковой прямоточный реактивный двигатель (ГПВРД) предназначен для полетов на скоростях выше 5 Махов. Сегодня созданием подобных силовых установок занимаются во многих странах мира, но они все еще остаются на уровне единичных прототипов.
Прямоточный реактивный двигатель неработоспособен на земле и малоэффективен на низких скоростях полета. Поэтому его нередко используют с различными разгонными устройствами: пороховыми ускорителями или же запуск ЛА с ПРВД производится с самолетов-носителей. Подобные ограничения определяют область возможного применения летательных аппаратов с ПВРД: обычно это боевые системы одноразового использования. Примером могут служить крылатые ракеты «Оникс» и «Брамос».
Отдельно следует упомянуть о ядерных прямоточных двигателях, разработка которых велась в 60-е и 70-е годы. Воздух в таких силовых установках нагревался за счет тепла работающего ядерного реактора, размещенного в камере сгорания. Американцы даже сумели построить подобное устройство и провели его огневые испытания. Однако дальше этого дело не пошло, и проект был закрыт.
Пульсирующие воздушно-реактивные двигатели
ПуВРД – это один из первых типов реактивных моторов, использование которых началось еще во время Второй мировой войны. Гитлеровцы устанавливали их на крылатые ракеты Фау-1, применявшиеся для обстрелов Британии.
У пульсирующего реактивного двигателя тяга образуется не постоянно, а в виде серии импульсов, следующих с определенной частотой. Он состоит из диффузора, камеры сгорания и цилиндрического сопла. Между камерой сгорания и диффузором установлен специальный клапан. Цикл работы ПуВРД выглядит следующим образом:
Пульсирующий характер работы ПуВРД делает его менее эффективным по сравнению с двигателями с постоянным процессом горения. Такие моторы шумны и неэкономичны, зато очень просты и дешево стоят. В настоящее время ПуВРД используются мало: их устанавливают на БПЛА, летающие мишени, также они нашли свое применение в авиамоделировании.
Не будет преувеличением сказать, что создание реактивного двигателя подарило человечеству небо. Благодаря этому устройству самолет превратился из орудия войны в массовый вид транспорта, которым ежегодно пользуются сотни миллионов человек. Однако история реактивного двигателя отнюдь не закончена. Техника и технологии не стоят на месте. Возможно, уже в ближайшие годы появятся новые типы реактивных двигателей, которые позволят нам летать с гиперзвуковой скоростью и наконец-то достигнуть других планет.
АВИАЦИОННЫЙ ДВИГАТЕЛЬ
Устройство реактивного двигателя
С первого взгляда кажется устройство конструкции реактивной установки достаточно простым, однако характеристики использования топлива и его сгорания требуют применения высокопрочных материалов.
На рисунке 4 изображено устройство реактивного двигателя.
Рисунок 4 – Устройство реактивного двигателя
Из рисунка 4 видно, что на входе в аппарат установлен вентилятор всасывающий воздух в двигатель. Вентилятор состоит из мощных и объемных по размеру лопастей, которые, как правило, изготавливаются из титана. Далее вслед за вентилятором установлен многоступенчатый турбокомпрессор для подачи воздуха непосредственно в камеру, где происходит сгорание рабочего тела.
После воспламенения и сгорания поток реактивных газов направляется на рабочие лопатки турбоагрегата, чем и приводят его во вращение. На валу турбины горячей ступени имеется жесткая связь с компрессором, который вращается от работы турбины.
Отработанный газовый вихрь через сопла набирает реактивную скорость и покидает полость аппарата. Для предотвращения перегрева и расплавки на сопла подводится охлаждающий воздух от турбокомпрессора по специальным каналам в корпусе двигателя.
Фантастические путешествия
О полетах в космос человечество мечтало давно. Об этом свидетельствуют произведения писателей-фантастов, которые для достижения этой цели предлагали самые разнообразные средства. Например, герой рассказа французского писателя Эркюля Савиньена Сирано де Бержерака достиг Луны на железной повозке, над которой постоянно подбрасывался сильный магнит. До этой же планеты добрался и знаменитый Мюнхгаузен. Совершить путешествие ему помог гигантский стебель боба.
Реактивное движение использовалось в Китае еще в первом тысячелетии до нашей эры. Своеобразными ракетами для забавы при этом служили бамбуковые трубки, которые начинялись порохом. Кстати, проект первого на нашей планете автомобиля, созданный Ньютоном, был также с реактивным двигателем.
Реактивные двигатели
К реактивным относятся турбореактивные, турбореактивные двухконтурные, прямоточные и пульсирующие реактивные двигатели.
Турбореактивный двигатель (трд)
Этот тип двигателя является основным в реактивной авиации.
Сила тяги, необходимая для движения, создаётся путём преобразования внутренней энергии топлива в кинетическую энергию реактивной струи продуктов сгорания топлива.
В теплотехнике существует понятие «рабочее тело». Это какое-то условное тело, которое расширяется при нагревании и сжимается при охлаждении. Энергию рабочее тело получат при сжатии, а при расширении оно выполняет механическую работу, благодаря которой приводится в движение рабочий орган.
В турбореактивном авиационном двигателе рабочим телом является атмосферный воздух, который через входное устройство подаётся в компрессор, где и сжимается. Следующий этап – камера сгорания, где воздух нагревается и смешивается с продуктами сгорания керосина. Образовавшаяся газовоздушная смесь попадает на турбину, через рабочие лопатки вращает её, расширяется и теряет часть своей энергии. Эта энергия превращается в механическую энергию основного вала, расходуется на работу компрессора, а также на работу топливных и масляных насосов, привода электрогенераторов, которые вырабатывают электроэнергию для различных бортовых систем самолёта.
Но основная часть энергии газовоздушной смеси разгоняется в специальном сужающемся устройстве, которое называется реактивное сопло. За счёт реактивной струи появляется сила тяги двигателя.
На сверхзвуковых самолётах применяют турбореактивные двигатели с форсажной камерой. В них между турбиной и соплом установлена дополнительная камера, которая и называется форсажной. В этой камере сжигается дополнительное топливо, что вызывает увеличение тяги (форсаж) до 50 %. Но его расход в таких двигателях значительно выше, чем у обычных ТРД.
Турбореактивный двухконтурный двигатель (ТРДД)
1 – компрессор низкого давления; 2 – внутренний контур; 3 – выходной поток внутреннего контура; 4 – выходной поток внешнего контура.
Этот двигатель имеет два контура: внутренний и внешний. Его отличие от обычного турбореактивного заключается в том, что весь воздушный поток сначала попадает в компрессор низкого давления. Затем основная часть воздуха проходит по внутреннему контуру такой же путь, как и в обычном турбореактивном двигателе. То есть, попадает в другой компрессор, сжимается, нагревается, смешивается в камере сгорания с топливом и разгоняется в сопле для образования реактивной тяги. А вторая часть воздуха проходит напрямую по внешнему контуру поверх внутреннего контура, оставаясь холодной, и выбрасывается, не сгорая
Тем самым создаётся дополнительная тяга и уменьшается расход топлива, что очень важно для самолёта. А также снижается и шум двигателя
Прямоточный воздушно-реактивный двигатель (ПВРД)
1 – воздух; 2 – впрыск горючего; 3 – стабилизатор пламени; 4 – камера сгорани; 5 – сопло; 6 – форсунки.
Этот двигатель не имеет ни турбины, ни компрессора. Он состоит из трёх обязательных элементов: диффузора, камеры сгорания и сопла.
Диффузор повышает статистическое давление за счёт торможения встречного потока воздуха. В камере сгорания происходит сгорание топлива. Окислителем служит кислород воздуха, поступающий из диффузора. Тяга создаётся за счёт реактивной струи, вытекающей из сопла.
В зависимости от скорости полёта ПВРД подразделяют на дозвуковые, сверхзвуковые и гиперзвуковые. Каждая из групп имеет свои конструктивные особенности.
Пульсирующий воздушно-реактивный двигатель
1 – воздух; 2 – горючее; 3 – клапанная решётка; 4 – форсунки; 5 – свеча зажигания; 6 – камера сгорания; 7 – сопло.
В таком двигателе имеется камера сгорания с входными клапанами и длинное выходное сопло цилиндрической формы. Когда клапаны открываются, в камеру сгорания подаются воздух и топливо. Искра свечи зажигания поджигает смесь. Образуется избыточное давление, которое закрывает клапаны. А продукты сгорания выбрасываются через сопло, тем самым создавая реактивную тягу.
И прямоточные, и пульсирующие воздушно-реактивные двигатели на практике применяются довольно редко.
Компрессор
Компрессор у ТВД обладает ступенчатой конструкцией, количество ступени варьируется от 2 до 6. Благодаря такой системе двигатель лучше работает с перепадами температуры и давлением, благодаря этому пилот может с легкостью регулировать обороты двигателя. Такая конструкция позволяет не только лучше работать мотору, но и из-за ступенчатой системы появилась возможность облегчить вес мотора.
Эта особенность очень важна для авиации, так как вес самолета также снижается, а за счет этого есть возможность развивать необходимую скорость и совершать перелеты на более длинные дистанции, так как топливо затратность зависит от веса самолета. В составе компрессора находиться: рабочие колеса с лопатками и направляющий аппарат.
Существует несколько видов аппарата, первый это регулируемый, в направляющем аппарате установлены лопатки, с помощью которых его можно поворачивать вокруг оси. А второй вариант не имеет возможности регулирования.
Конструкция
Устройство двигателя самолета достаточно сложное. Рабочая температура в таких установках достигает 1000 и более градусов. Соответственно, все детали, из которых двигатель состоит, изготавливаются из устойчивых к воздействию высоких температур и возгоранию материалов. Из-за сложности устройства существует целая область науки о ТРД.
ТРД состоит из нескольких основных элементов:
Перед турбиной установлен вентилятор. С его помощью воздух затягивается в установку извне. В таких установках используются вентиляторы с большим количеством лопастей определенной формы. Размер и форма лопастей обеспечивают максимально эффективную и быструю подачу воздуха в турбину. Изготавливаются они из титана. Помимо основной функции (затягивания воздуха), вентилятор решает еще одну важную задачу: с его помощью осуществляется прокачка воздуха между элементами ТРД и его оболочкой. За счет такой прокачки обеспечивается охлаждение системы и предотвращается разрушение камеры сгорания.
Возле вентилятора расположен компрессор высокой мощности. С его помощью воздух поступает в камеру сгорания под высоким давлением. В камере происходит смешивание воздуха с топливом. Образующаяся смесь поджигается. После возгорания происходит нагрев смеси и всех расположенных рядом элементов установки. Камера сгорания чаще всего изготавливается из керамики. Это объясняется тем, что температура внутри камеры достигает 2000 градусов и более. А керамика характеризуется устойчивостью к воздействию высоких температур. После возгорания смесь поступает в турбину.
Вид самолетного двигателя снаружи
Турбина представляет собой устройство, состоящее из большого количества лопаток. На лопатки оказывает давление поток смеси, приводя тем самым турбину в движение. Турбина вследствие такого вращения заставляет вращаться вал, на котором установлен вентилятор. Получается замкнутая система, которая для функционирования двигателя требует только подачи воздуха и наличия топлива.
Далее смесь поступает в сопло. Это завершающий этап 1 цикла работы двигателя. Здесь формируется реактивная струя. Таков принцип работы двигателя самолета. Вентилятор нагнетает холодный воздух в сопло, предотвращая его разрушение от чрезмерно горячей смеси. Поток холодного воздуха не дает манжете сопла расплавиться.
В двигателях воздушных судов могут быть установлены различные сопла. Наиболее совершенными считаются подвижные. Подвижное сопло способно расширяться и сжиматься, а также регулировать угол, задавая правильное направление реактивной струе. Самолеты с такими двигателями характеризуются отличной маневренностью.
Разновидности реактивных двигателей
Существует несколько реактивных двигателей отличающихся по своему принципу работы и подобию. Так, принцип работы ядерного двигателя, в основу которого положена синтезная реакция разложения химического элемента, к примеру – урана.
Данный элемент помещается в реактор. Туда же подводится при помощи турбонасосов рабочее вещество. Распылительными форсунками производится его рассеивание по рабочей камере, в которой происходит контакт с химическим ураном. В результате выделяется энергия большой силы, которая и является движущей.
Не смотря на всю конфиденциальность и секретность информации о ядерном вооружении стран во всем мире, самую большую опасность представляет крылатая ракета, работающая на ядерном топливе.
Отклоняемый вектор тяги
Реактивные двигатели обладают соплами самых разнообразных конфигураций. Самыми передовыми считаются подвижные сопла, размещенные на двигателях, у которых имеется отклоняемый вектор тяги. Они могут сдавливаться и расширяться, а также отклоняться на существенные углы — так регулируются и направляются непосредственно реактивные потоки. Благодаря этому воздушные судна с двигателями, имеющими отклоняемый вектор тяги, становятся чрезвычайно маневренными, потому что процессы маневрирования происходят не только вследствие действий механизмов крыльев, но также прямо самими двигателями.
Конструкция поршневого ДВС
Основные элементы ДВС
Поршневой двигатель внутреннего сгорания состоит из следующих основных элементов:
Сгорание топлива в поршневом двигателе осуществляется в цилиндрах, где поджигается смесь топлива и воздуха, под действием давления получившихся газов происходит поступательное движение поршня. Образовавшаяся при этом тепловая энергия превращается в механическую. Это движение поршня, в свою очередь, преобразуется во вращательное движение коленчатого вала двигателя через шатун, являющийся связующим звеном между цилиндром с поршнем и коленчатым валом.
Коэффициент полезного действия современных поршневых двигателей не превышает 25-30%, то есть большая часть энергии, получаемой при сгорании топлива, превращается в тепло, которое необходимо отводить из двигателя. Эту функцию выполняет система охлаждения.
Схемы двигателей со временем усложнялись, появились моторы 4-, 6-, 8-цилиндровые; рядные и V-образные; с жидкостным охлаждением3 или воздушным.
Мощность зависела в основном от объёма цилиндров. Но с увеличением объёма цилиндров (или их количества) росла масса двигателя.
Авиационные двигатели
Первые двигатели, предназначенные специально для авиации, начали проектировать и строить в начале ХХ века. Они представляли собой двигатели внутреннего сгорания, устройство которых было позаимствовано у автомобильных двигателей.
По мере развития авиации изменялись и авиационные двигатели. Все известные современные их модификации можно разделить на 2 принципиально отличающиеся группы: двигатели, способные работать только в пределах атмосферы и такие, для работы которых наличие атмосферы не требуется.
Двигатели первой группы называются воздушными, или атмосферными. А вторая группа получила название ракетных. Их принципиальное различие в том, что для воздушных двигателей рабочим телом, совершающим механическую работу, является атмосфера. А у ракетных рабочее тело находится в самом летательном аппарате.
Авиационный двигатель, как и любой другой, преобразует энергию топлива в кинетическую энергию. В любом из них происходит реакция горения топлива. А для протекания этой реакции необходим кислород. В воздушных двигателях этот кислород берётся из атмосферы. А в ракетных окислитель находится на борту летательного аппарата.
Устройство
Устроен типичный реактивный двигатель следующим образом. Основные его узлы – это:
– камера для сгорания;
Рассмотрим данные элементы более подробно. Компрессор представляет собой несколько турбин. Их задача – всасывать и сжимать воздух по мере того, как он проходит через лопасти. В процессе сжатия повышается температура и давление воздуха. Часть такого сжатого воздуха подается в камеру сгорания. В ней воздух смешивается с топливом и происходит воспламенение. Этот процесс еще больше увеличивает тепловую энергию.
Смесь выходит из камеры сгорания на высокой скорости, а затем расширяется. Далее она следует еще через одну турбину, лопасти которой вращаются за счет воздействия газов. Эта турбина, соединяясь с компрессором, находящимся в передней части агрегата, и приводит его в движение. Воздух, нагретый до высоких температур, выходит через выпускную систему. Температура, уже достаточно высокая, продолжает расти за счет эффекта дросселирования. Затем воздух выходит окончательно.
Классификация авиационных двигателей
К авиационным двигателям относятся все типы тепловых машин, используемых как движители для летательных аппаратов авиационного типа, т. е. аппаратов, использующих аэродинамическое качество для перемещения, маневра и т. п. в пределах атмосферы (самолеты, вертолеты, крылатые ракеты классов “В-В”, “В-3”, “3-В”, “3-3”, авиакосмические системы и др.). Отсюда вытекает большое разнообразие применяемых двигателей — от поршневых до ракетных.
Авиационные двигатели (рис.1) делятся на три обширных класса:
Более детальной классификации подлежат два последних класса, в особенности класс ВРД.
По принципу сжатия воздуха ВРД делятся на:
Класс ракетных двигателей ЖРД также относится к компрессорному типу тепловых машин, так как в этих двигателях сжатие рабочего тела (топлива) осуществляется в жидком состоянии в турбонасосных агрегатах.
Ракетный двигатель твердого топлива (РДТТ) не имеет специального устройства для сжатия рабочего тела. Оно осуществляется при начале горения топлива в полузамкнутом пространстве камеры сгорания, где располагается заряд топлива.
По принципу действия существует такое деление: ПД и ПуВРД работают по циклу периодического действия, тогда как в ВРД, ГТД и РкД осуществляется цикл непрерывного действия. Это дает им преимущества по относительным показателям мощности, тяги, массе и др., что и определило, в частности, целесообразность их использования в авиации.
По принципу создания реактивной тяги ВРД делятся на:
Двигатели первого типа создают тяговое усилие (тягу Р) непосредственно — это все ракетные двигатели (РкД), турбореактивные без форсажа и с форсажными камерами (ТРД и ТРДФ), турбореактивные двухконтурные (ТРДД и ТРДДФ), прямоточные сверхзвуковые и гиперзвуковые (СПВРД и ГПВРД), пульсирующие (ПуВРД) и многочисленные комбинированные двигатели.
Газотурбинные двигатели непрямой реакции (ГТД) передают вырабатываемую ими мощность специальному движителю (винту, винтовентилятору, несущему винту вертолета и т. п.), который и создает тяговое усилие, используя тот же воздушно-реактивный принцип (турбовинтовые, турбовинтовентиляторные, турбовальные двигатели — ТВД, ТВВД, ТВГТД). В этом смысле класс ВРД объединяет все двигатели, создающие тягу по воздушно-реактивному принципу.
На основе рассмотренных типов двигателей простых схем рассматривается ряд комбинированных двигателей, соединяющих особенности и преимущества двигателей различных типов, например, классы:
и многие другие комбинации двигателей более сложных схем.
Ракетные авиа двигатели
Первые ракетные авиа двигатели появились в начале 40 годов прошлого столетия в Германии, когда немцы всеми усилиями пытались создать быстрый самолёт, который мог бы принести им победу во Второй мировой войне. Тем не менее, стоит отметить, что наука в те годы не позволяла совершить точный расчёт некоторых параметров, поэтому проект так и не был реализован. Впоследствии ракетные авиа двигатели испытывались исключительно с возможностью их применения для разгона самолётов в стратосфере, но применимость их весьма ограничена, и потому на сегодняшний день они практически не используются.
Основным недостатком ракетного авиационного двигателя является практически полное отсутствие управляемости на высоких скоростях.
Классификация поршневых авиадвигателей
Авиационные поршневые двигатели могут быть классифицированы по различным признакам.
В зависимости от рода применяемого топлива — на двигатели легкого или тяжелого топлива.
По способу смесеобразования — на двигатели с внешним смесеобразованием (карбюраторные) и с внутренним смесеобразованием (непосредственный впрыск топлива в цилиндры).
В зависимости от способа воспламенения смеси — на двигатели с принудительным зажиганием и двигатели с воспламенением от сжатия.
В зависимости от числа тактов — на двухтактные и четырехтактные.
В зависимости от способа охлаждения — на двигатели жидкостного и воздушного охлаждения.
По числу цилиндров — на четырехцилиндровые, пятицилиндровые, двенадцатицилиндровые и т. д.
В зависимости от расположения цилиндров — на рядные (с расположением цилиндров в ряд) и звездообразные (с расположением цилиндров по окружности).
Рядные двигатели, в свою очередь, подразделяются на однорядные, двухрядные V-образные, трехрядные W-образные, четырехрядные Н-образные или Х-образные. Звездообразные двигатели также бывают однорядные, двухрядные и многорядные.
По характеру изменения мощности в зависимости от изменения высоты двигатели подразделяются на высотные, то есть сохраняющие мощность с подъемом самолета на высоту, и невысотные, мощность которых падает с увеличением высоты полета.
По способу привода воздушного винта — на двигатели с прямой передачей на винт и редукторные двигатели.
Поршневые двигатели работают по циклу периодического действия.
Поршневые двигатели воздушного охлаждения имеют преимущества перед двигателями жидкостного охлаждения: меньшая масса, соответственно, большая удельная мощность и более простая, а значит, и более надежная конструкция, высокая эффективность охлаждения. Для лучшего обдува цилиндров воздухом их располагают в виде звезды. Каждый цилиндр отделен от остальных и доступен для ремонта и обслуживания.
В 1909 году Луисом и Лораном Сеген был создан ротативный двигатель «Гном», получивший широкое распространение и применение самолётах времён Первой мировой войны.
В этом звездообразном двигателе вокруг неподвижного коленчатого вала вращался блок цилиндров.
Преимущества ротативных авиадвигателей: в таких двигателях нет необходимости в установке противовесов. Цилиндры постоянно находятся в движении, что создает хорошее воздушное охлаждение. Можно отказаться от применения маховика, т. к. вращающиеся цилиндры и поршни создают вращающийся момент.
Недостатки: отнести плохое маневрирование самолёта, обусловленное гироскопическим эффектом, создаваемым большой вращающейся массой двигателя, а также плохую систему смазки, поскольку инерционные силы заставляют смазочное масло скапливаться на периферии двигателя. Масло приходилось смешивать с топливом для обеспечения надлежащего смазочного эффекта.
Такая конструкция была проще, но самолеты возвращались из полета покрытые толстым слоем касторового масла, которое во время работы такого двигателя разлеталось от вращающегося блока, щедро разбрасывая капли даже на лётчиков. К тому же на вращающиеся цилиндры действовали большие инерционные нагрузки.
Более поздние двигатели содержали привычный неподвижный блок цилиндров и вращающийся коленчатый вал. Но радиальное расположение имело и свои недостатки: высокое лобовое сопротивление и сложность обслуживания двигателя.
Основные типы поршневых двигателей
В 1918 году французский изобретатель Ратье предложил турбонагнетатель.
Ракетные двигатели
В авиации ракетные двигатели используются в особых случаях как дополнительные двигатели для сокращения длины разбега самолёта при взлёте или сокращения длины пробега при посадке, а также для увеличения мощности при полётах в чрезвычайных ситуациях. Применяют их и на исследовательских или экспериментальных самолётах.
Ракетные двигатели разделяются на твёрдотопливные и жидкостные. В твёрдотопливных (РДТТ) и топливо, и окислитель находятся в твёрдом состоянии, а в жидкостных (ЖРД) – в жидком агрегатном состоянии. Сгорание топлива происходит в камере сгорания – основной части ракетного двигателя. А газы, образуемые при сгорании, выбрасываются через реактивное сопло, создавая реактивную тягу.
Так как окислитель для горения ракетные двигатели везут с собой, то они не зависят от воздушной среды, и прекрасно зарекомендовали себя в разреженном и безвоздушном пространстве. Их используют для подъёма и разгона баллистических ракет, космических кораблей, запуска спутников.
Как бы пафосно это не звучало, но мысль верная. Ведь двигатель самолета – это главный, да что там, единственный источник энергии для летательного аппарата. Эту необходимую энергию я позволю себе разделить на две части: энергия жизнеобеспечения и энергия движения.
С энергией движения все понятно
Двигатель работает, тяга есть (будь это реактивная тяга или тяга воздушного винта, неважно) и самолет летит. Чего же еще нужно? Так это и было на первых летательных аппаратах времен Первой мировой
Но современный аппарат – это целый комплекс различных систем, которые надо снабжать энергией различного вида, чтобы они работали бесперебойно и самолет не просто летел, а еще и летел правильно, в нужную сторону на нужной высоте и с нужной скоростью. Чтобы все поставленные задачи выполнялись корректно, а людям, находящимся на борту было комфортно работать и перевозимый груз был бы в целости и сохранности.
ангар ТЭЧ нашего полка
И как бы непривычно это не звучало, в конечном итоге этот самый комфорт обеспечивает двигатель самолета. Он например вращает роторы электрогенераторов, которые обеспечивают самолет электроэнергией. На современном ЛА ее потребителей, как говорится, «выше крыши» и без нее современный лайнер слеп, глух и практически нем.
Гидравлическая система, та самая, которая ведает уборкой-выпуском шасси, управлением самолетом в полете и другими жизненно-важными функциями. Давление (достаточно высокое, надо сказать) в ее магистралях создается насосами, которые тоже приводятся от двигателя.
Воздух повышенного давления, который используется в системах кондиционирования различного назначения, в системах наддува, обдува, антиобледенения и т.д. тоже забирается от двигателя.
И так далее и тому подобное. Вобщем двигатель самолета — настоящий источник жизни. Так что лозунг в нашей ТЭЧ был совершенно правильный. Существуют конечно специальные наземные агрегаты для приведения в действие систем самолета автономно от двигателя и проведения специальных проверок в период регламентных и ремонтных работ. Возвращаясь к медицинской теме, – это как для человека аппарат искусственной почки или искусственного легкого. Но ведь человек стаким аппаратом прикован к постели, а самолет, соответственно к бетонке :-). Прямо как в песне Ю. Антонова «только в полете живут самолеты».
Двигатель самолета (или двигатели в комплексе, если их несколько) совершенно справедливо называют авиационной силовой установкой (источник силы и жизни для летательного аппарата).
Ил-76, один из обладателей ВСУ
И ради той же справедливости стоит сказать, что в состав силовой установки определенного вида самолетов входит так называемая (ВСУ). Это по сути дела миниатюрный двигатель, который выполняет функции жизнеобеспечения на стоянке и используется, когда нет доступа к наземным источникам энергопитания или это нецелесообразно. Обычно ВСУ стоит на больших транспортных и пассажирских самолетах, которые частенько работают в отрыве от своих баз. Этакое маленькое запасное сердечко. Запустил его и самолет оживает.
Полететь он конечно не сможет, но это и не нужно. Для этого будет использован двигатель самолета. Настоящее сердце, дающее жизнь… А жизнь – это полет, скорость и высота…
История создания РД
Только в 19-м в. мечта человечества о космосе стала приобретать конкретные черты. Ведь именно в этом столетии русским революционером Н. И. Кибальчичем был создан первый в мире проект с реактивным двигателем. Все бумаги были составлены народовольцем в тюрьме, куда он попал после покушения на Александра. Но, к сожалению, 03.04.1881 г. Кибальчич был казнен, и его идея не нашла практического воплощения.
В начале 20-го в. мысль об использовании ракет для полетов в космос выдвинул русский ученый К. Э. Циолковский. Впервые его работа, содержащая описание движения тела переменной массы в виде математического уравнения, была опубликована в 1903 г. В дальнейшем ученый разработал саму схему реактивного двигателя, приводящегося в движение при помощи жидкого топлива.
Также Циолковским была изобретена многоступенчатая ракета и высказана идея о создании на околоземной орбите настоящих космических городов. Циолковский убедительно доказал, что единственным средством для космических полетов является ракета. То есть аппарат, оборудованный реактивным двигателем, заправляемый горючим и окислителем. Только такая ракета способна преодолеть силу тяжести и совершать полеты за пределами атмосферы Земли.
Существует две разновидности двигателя, в первом случае в двигателе находиться один рабочий вал, а во втором установлено два вала. В одновальном двигателе все расположено на единственном валу, в то время как на двухвальном ТВД, на одном валу расположена турбина с компрессором, а на втором находиться винт и редуктор, также они никак не связанны друг с другом.
Если в мотор двухвального типа, то его структура выглядит примерно так: в нем находиться две турбины, которые связанны между собой с помощью газодинамики. Одна турбина служит для работы компрессора, а другая в то время отвечает за работу самого винта. ТВД двухвального типа используют намного чаще, чем другой вариант двигателя, так как его характеристики намного лучше, чем у одновального типа. Но двигатель второго типа выглядит намного сложнее, чем другой тип двигателя. Также двухвальный ТВД способен начать выработку энергии до начала запуска самого винта.
Устройство реактивного двигателя
основные детали реактивного двигателя
В начале турбины всегда стоит вентилятор, который засасывает воздух из внешней среды в турбины. Вентилятор обладает большой площадью и огромным количеством лопастей специальной формы, сделанных из титана. Основных задач две – первичный забор воздуха и охлаждение всего двигателя в целом, путем прокачивание воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.
Сразу за вентилятором стоит мощный компрессор, который нагнетает воздух под большим давлением в камеру сгорания.
Камера сгорания реактивного двигателя одна из самых горячих его частей – её необходимо постоянно интенсивное охлаждение. Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики.
После камеры сгорания горящая топливо-воздушная смесь направляется непосредственно в турбину.
Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал, на котором “сидят” вентиллятор и компрессор. Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.
После турбины поток направляется в сопло. Сопло реактивного двигателя – последняя, но далеко не по значению часть реактивного двигателя. Оно формирует непосредственно реактивную струю. В сопло направляется холодный воздух, нагнетаемый вентиллятором для охлаждения внутренних деталей двигателя. Этот поток ограничивает манжету сопла от сверхгорячего реактивного потока и ее дает ей расплавится.
Принцип работы реактивного двигателя
В реактивных двигателях струи воздушных потоков, которые попадают в двигатели, встречаются с обращающимися с колоссальной скоростью турбинами компрессоров, которые засасывают воздух из окружающей среды (при помощи встроенных вентиляторов). Следовательно, происходит решение двух задач:
Лопатки турбин компрессоров производят сжатие воздуха приблизительно от 30 и более раз, совершают «проталкивания» его (нагнетание) в камеру сгорания (происходит генерирование рабочего тела). Вообще камеры сгорания выполняют к тому же и роли карбюраторов, производя смешивание топлива с воздухом.
Это могут быть, в частности, смеси воздуха и керосина, как в турбореактивных двигателях современных реактивных самолетах, либо смеси жидкого кислорода и спирта, такими обладают кое-какие жидкостные ракетные двигатели, либо еще какое-то твердое топливо в пороховых ракетах. Как только образовалась топливно-воздушная смесь, происходит ее воспламенение с выделением энергии в виде тепла. Таким образом, топливом в реактивных двигателях могут быть только такие вещества, которые в результате химических реакций в двигателях (при возгорании) выделяют тепло, при этом образуя множество газов.
При возгорании совершается существенное разогревание смеси и деталей вокруг с объемным расширением. Собственно говоря, реактивные двигатели пользуются для продвижения управляемыми взрывами. Камеры сгорания в реактивных двигателях — это одни из самых горячих элементов (температурный режим в них может достигать до 2700 °С), и они требуют постоянного интенсивного охлаждения.
Реактивные двигатели снабжены соплами, через которые из них вовне с огромной скоростью вытекают накаленные газы, которые являются продуктами сгорания топлива. В некоторых двигателях газы оказываются в соплах сразу же после камер сгорания. Это относится, например, к ракетным или прямоточным двигателям.
Турбореактивные двигатели функционируют несколько иначе. Так, газы, после камер сгорания, вначале проходят турбинами, которым отдают свою тепловую энергию. Это делается для того, чтобы привести в движение компрессоры, которые послужат для сжатия воздуха перед камерой сгорания. В любом случае, сопла остаются последними частями двигателей, через которые протекут газы. Собственно они и формируют непосредственно реактивную струю.
В сопла направляют холодный воздух, который нагнетается при помощи компрессоров, чтобы охлаждать внутренние детали двигателей. Реактивные сопла могут обладать различными конфигурациями и конструкциями исходя из разновидностей двигателей. Так, когда скорость проистекания должна быть выше скорости звука, тогда соплам придаются формы расширяющихся труб или же вначале суживающиеся, а далее расширяющиеся (так называемые сопла Лаваля). Только с трубами такой конфигурации газы разгоняются до сверхзвуковых скоростей, при помощи чего реактивные самолеты перешагивают «звуковые барьеры».
Исходя из того, задействуется ли в процессе работы реактивных двигателей окружающая среда, они подразделяются на основные классы воздушно-реактивных двигателей (ВРД) и ракетных двигателей (РД). Все ВРД являются тепловыми двигателями, рабочие тела которых образуются тогда, когда происходит реакция окисления горючих веществ с кислородом воздушных масс. Поступающие из атмосферы воздушные потоки составляют основу рабочих тел ВРД. Таким образом, аппараты с ВРД несут на борту источники энергии (топливо), но большая часть рабочих тел черпается из окружающей среды.
К аппаратам ВРД относятся:
В противоположность воздушно-реактивным двигателям все компоненты рабочих тел РД находятся на борту аппаратов, оснащенных ракетными двигателями. Отсутствие движителей, взаимодействующих с окружающей средой, а также присутствие всех составляющих рабочих тел на борту аппаратов делают ракетные двигатели пригодными для функционирования в космическом пространстве. Имеется также комбинация ракетных двигателей, представляющих собой некое совмещение двух основных разновидностей.
Ракетный двигатель
Характеристикой эффективности ракетного двигателя является удельный импульс (в двигателестроении применяют характеристику удельная тяга) – отношение количества движения, получаемого ракетным двигателем, к массовому расходу рабочего тела. Удельный импульс имеет размерность м/c, то есть размерность скорости. Для ракетного двигателя, работающего на расчётном режиме (при равенстве давления окружающей среды и давления газов на срезе сопла), удельный импульс численно равен скорости истечения рабочего тела из сопла. Ракетные двигатели относятся к двигателям прямой реакции, которые используют для работы только вещества, имеющиеся на ЛА; в качестве А. д. практического применения не нашли.
Газотурбинные авиа двигатели
Принцип работы газотурбинного авиационного двигателя основывается на сжатии и нагреве газа, энергия которого впоследствии преобразуется в механическую работу, заставляя вращаться газовую турбину. Первые двигатели данного класса появились в Германии ещё в начале 40-х годов прошлого века, и на сегодняшний день они по-прежнему продолжают широко применяться в военной авиации, в частности устанавливаются на самолётах Су-27, МиГ-29, F-22, F-35 и т.д.
Газотурбинные авиа двигатели весьма эффективны на сравнительно небольших скоростях перемещения воздушных судов, и потому их применение в гражданской авиации также весьма обоснованно.
Принцип действия реактивной силы
Твердотопливные двигатели относительно простые в конструкции, имеют нетоксичное топливо, надежные и пожаробезопасные, могут долго храниться, представляя собой стратегический арсенал. Однако удельный импульс у них небольшой, ими трудно управлять (включая не только направление тяги, но и запуск, а также остановку двигателя), а потому для космических полетов более предпочтительны ракетные двигатели на куда более эффективном жидком топливе.
Особенности авиационных двигателей
Двигатель называют сердцем самолёта. И это действительно так. Ведь без него самолёт перестанет быть самолётом. Чем мощнее двигатель, тем быстрее самолёт преодолеет силу сопротивления воздуха и тем большую скорость он сможет развить.
«Но то же самое можно сказать и об автомобиле», – возразите вы. И будете правы. Без двигателя ни самолёт, ни автомобиль не смогут двигаться.
Для чего же нужен двигатель?
Любой двигатель, авиационный или автомобильный, предназначен для создания тяги. И принцип работы у них почти одинаков. Но авиационные двигатели всё-таки имеют свои особенности. Они отличаются от автомобильных размерами и меньшим удельным весом, то есть, весом, приходящимся на единицу мощности. Удельный вес авиационных двигателей в десятки и даже сотни раз меньше удельного веса автомобильных. Ну и, конечно же, в авиации они выполнятся из более лёгких и прочных материалов. Конструкция авиационного двигателя такова, что он может надёжно работать в любом перевёрнутом положении, ведь самолёту иногда приходится выполнять различные манёвры в воздухе. И ещё одна его важная особенность – возможность устойчиво работать, не теряя мощность, на высоте, когда падают плотность и давление воздуха.
Кто придумал реактивный двигатель
Идею применения реактивной тяги для преодоления земного притяжения впервые довел до практической осуществимости в 1903 году российский ученый К. Э. Циолковский в своем труде “Исследование мировых пространств реактивными приборами”. Опубликованная в «Научном обозрении» статья утвердила за ним репутацию мечтателя и не была воспринята всерьез. Константину Эдуардовичу потребовались годы трудов и смена политического строя, чтоб доказать свою правоту.
Сейчас много говорят о первенстве в этом вопросе одного из цареубийц Александра 2, революционера Кибальчича. Хотя его завещание и датировались 1881 годом, но к моменту выхода работы Константина Эдуардовича еще было погребено в тюремных архивах. К тому же это были лишь наброски, тогда как ученый сумел подвести надежный грунт под теорию уже в своих ранних работах.
Освоение космоса
Статья Циолковского, опубликованная в периодическом издании «Научное обозрение», утвердила за ученым репутацию мечтателя. Его доводов никто не принял всерьез.
Идею Циолковского реализовали советские ученые. Возглавляемые Сергеем Павловичем Королевым, они осуществили запуск первого искусственного спутника Земли. 4 октября 1957 г. этот аппарат доставила на орбиту ракета с реактивным двигателем. Работа РД была основана на преобразовании химической энергии, которая передается топливом газовой струе, превращаясь в энергию кинетическую. При этом ракета совершает движение в обратном направлении.
Реактивный двигатель, принцип работы которого используется уже много лет, находит свое применение не только в космонавтике, но и в авиации. Но более всего его используют для Ведь только РД способен перемещать аппарат в пространстве, в котором отсутствует любая среда.
Как получить рабочее тело
Для приобретения рабочего тела в реактивных двигателях могут использоваться:
Современные реактивные двигатели главным образом используют химическую энергию. Рабочие тела представляют собой смесь раскаленных газов, которые являются продуктами сгорания химического горючего. Когда работает реактивный двигатель, химическая энергия от сгорающих веществ преобразуется в тепловую энергию от продуктов сгорания. В то же время тепловая энергия от горячих газов превращается в механическую энергию от поступательных движений реактивных струй и аппаратов, на которых установлены двигатели.