Что такое рефлекторный телескоп
Телескоп рефлектор
|
Оптическая схема рефлекторного телескопа системы Ньютона:
Достоинства телескопов рефлекторов
В телескопах-рефлекторах почти нет хроматизма, поскольку линзы отсутствуют (поскольку, линзы всё равно есть в окуляре, то теоретически небольшой хроматизм может быть).
Лучше выбирать модели, в которых главное зеркало имеет параболическую форму, поскольку сферические зеркала привносят ещё и сферические искажения (чем больше диаметр сферического зеркала, тем это искажение будет сильнее).
Кстати, если посмотрите на схему, то увидите, что окуляр у «ньютона» расположен сбоку, поэтому смотреть объекты ближе к зениту можно без дополнительной призмы перед окуляром, которая нужна в телескопах-рефракторах.
Если посмотрите на цены, то увидите, что за те же деньги можно взять рефлектор с гораздо большей апертурой, чем у рефрактора. Поэтому рефлекторы системы Ньютона так популярны среди любителей.
Недостатки телескопов рефлекторов
Говоря о рефлекторах, то есть о телескопах с зеркальным объективом, в подавляющем большинстве случаев имеют ввиду именно рефлектор Ньютона, схема которого приведена выше.
Другие системы чисто зеркальных телескопов встречаются крайне редко.
Например, это брахиты, у которых вторичное зеркало установлено не на оси главного зеркала, а вынесено в сторону. За счёт этого, в брахитах нет злосчастного центрального экранирования, которое снижает чёткость изображения (проницаемость) и светосилу телескопа. К сожалению, брахиты приемлемой апертуры в промышленных масштабах видимо не выпускают.
Телескопы рефлекторные: описание, устройство, история создания
Хотя рефлекторные телескопы производят другие типы оптических аберраций, это конструкция, которая позволяет достичь целей большого диаметра. Почти все основные телескопы, используемые в астрономических исследованиях, являются таковыми. Отражающие телескопы бывают разных вариантов дизайна и могут использовать дополнительные оптические элементы для улучшения качества изображения или размещения изображения в механически выгодном положении.
Характеристика рефлекторных телескопов
Вам будет интересно: Формула угла между плоскостью и прямой. Примеры использования формулы
История создания
Вам будет интересно: Синхротронное излучение: понятие, основы, принцип и устройства для изучения, применение
Потенциальные преимущества использования параболических зеркал, в первую очередь сокращение сферической аберрации без хроматической аберрации, привели ко многим предлагаемым проектам будущих телескопов. Наиболее заметным был Джеймс Грегори, который опубликовал инновационный дизайн для «отражающего» телескопа в 1663 г. Прошло десять лет (1673), прежде чем экспериментальный ученый Роберт Гук смог построить этот тип телескопа, который стал известен как Григорианский телескоп.
Исааку Ньютону, как правило, приписывали создание первого рефлекторно-рефракторного телескопа в 1668 году. В нем использовалось первичное зеркало из сферического металла и небольшое диагональное в оптической конфигурации, получившее название ньютоновского телескопа.
Дальнейшее развитие
Несмотря на теоретические преимущества конструкции рефлектора, сложность конструкции и низкая производительность металлических зеркал, используемых в то время, означали, что потребовалось более 100 лет, чтобы они стали популярными. Многие из достижений в области создания рефлекторных телескопов включали совершенствование изготовления параболического зеркала в XVIII веке, стеклянные зеркала с серебряным покрытием в XIX веке, долговечные алюминиевые покрытия в XX веке, сегментированные зеркала для обеспечения большего диаметра, и активную оптику для компенсации гравитационной деформации. Инновацией середины XX века были катадиоптические телескопы, такие как камера Шмидта, которые используют как сферическое зеркало, так и линзу (называемую корректорной пластиной) в качестве первичных оптических элементов, в основном используемых для широкомасштабной визуализации без сферической аберрации.
В конце XX века развитие адаптивной оптики и удачной визуализации для преодоления проблем, связанных с наблюдением, и отражение телескопов повсеместно распространены на космических телескопах и многих типах средств визуализации космических аппаратов.
Криволинейное первичное зеркало является основным оптическим элементом телескопа, оно и создает изображение в фокальной плоскости. Расстояние от зеркала до фокальной плоскости называется фокусным расстоянием. Цифровой датчик может быть расположен здесь для записи изображения, или дополнительное зеркало может быть добавлено для изменения оптических характеристик и/или перенаправления света на пленку, цифровой датчик или окуляр для визуального наблюдения.
Детальное описание
Первичное зеркало в большинстве современных телескопов состоит из твердого стеклянного цилиндра, передняя поверхность которого измельчена до сферической или параболической формы. Тонкий слой алюминия вакуумируется на линзу, образуя светоотражающее первое поверхностное зеркало.
В некоторых телескопах используются первичные зеркала, которые сделаны по-разному. Расплавленное стекло вращается, чтобы сделать его поверхность параболоидальной, оно остывает и затвердевает. Полученная форма зеркала аппроксимирует желаемую форму параболоида, которая требует минимального шлифования и полировки, чтобы достичь точной цифры.
Качество изображения
Рефлекторные телескопы, как и любая другая оптическая система, не создают «идеальных» изображений. Необходимость фотографировать объекты на расстояниях до бесконечности, просматривать их на разных длинах волн света, а также требовать иметь некоторый способ просмотра изображения, которое производит первичное зеркало, означает, что в оптическом дизайне отражающего телескопа всегда есть какой-то компромисс.
Поскольку основное зеркало фокусирует свет на общую точку перед собственной отражающей поверхностью, почти все отражающие конструкции телескопа имеют вторичное зеркало, держатель пленки или детектор вблизи этой фокальной точки, частично препятствуя свету достичь основного зеркала. Это не только приводит к некоторому уменьшению количества света, которое система собирает, но также приводит к потере контраста в изображении из-за дифракционных эффектов обструкции, а также к дифракционным спайкам, вызванным большинством вторичных опорных структур.
Использование зеркал позволяет избежать хроматической аберрации, но они создают другие типы аберраций. Простое сферическое зеркало не может передать свет от отдаленного объекта к общему фокусу, поскольку отражение световых лучей, поражающих зеркало у его края, не сходится с теми, которые отражают от центра зеркала, дефект, называемый сферической аберрацией. Чтобы избежать этой проблемы, наиболее продвинутые устройства рефлекторных телескопов используют параболические зеркала, которые могут фокусировать весь свет на общий фокус.
Григорианский телескоп
Григорианский телескоп описан шотландским астрономом и математиком Джеймсом Грегори в его книге 1663 года Optica Promota как использующий вогнутое вторичное зеркало, которое отражает изображение через отверстие в первичном зеркале. Это создает вертикальное изображение, полезное для наземных наблюдений. Существует несколько крупных современных телескопов, которые используют григорианскую конфигурацию.
Рефлекторный телескоп Ньютона
Аппарат Кассегрена
Телескоп Кассегрена (иногда называемый «классический Кассегрен») был впервые сконструирован в 1672 году, приписываемый Лорану Кассегрейну. Он имеет параболическое первичное зеркало и гиперболическое вторичное зеркало, которое отражает свет назад и вниз через отверстие в первичном.
Дизайн телескопа Dall-Kirkham Cassegrain был создан Горасом Даллом в 1928 году, и получил название в статье, опубликованной в Scientific American в 1930 году после обсуждения астронома-любителя Аллана Киркхэма и Альберта Г. Ингаллса, (редактора журнала в то время). Он использует вогнутое эллиптическое первичное зеркало и выпуклое вторичное. Хотя эту систему легче измельчить, чем классическую систему Cassegrain или Ritchey-Chrétien, она не подходит для внеосевой комы. Кривизна поля фактически меньше, чем у классического Кассегрена. Сегодня такой дизайн используется во многих сферах применения этих замечательных аппаратов. Но его вытесняют электронные аналоги. Тем не менее именно аппарат этого типа считается самым большим рефлекторным телескопом.
Как выбрать телескоп
Далекие неизведанные миры и яркие звезды, загадочные небесные тела и бесконечная Вселенная… Что может быть интереснее? И разве легко найти более интригующую тему? Звездное небо – зрелище всегда завораживающее, способное увлечь и пытливый детский ум, и пылких юных романтиков, и людей постарше. А потому неудивительно, что почти каждый из нас порой обращает взор ввысь, пусть даже неосознанно пытаясь проникнуть в тайны мироздания. И лучшим помощником в таком исследовании может стать телескоп.
Что мы обычно представляем при упоминании подобного устройства? Как правило, на ум приходит образ эдакой подзорной трубы увеличенного размера, поставленной для устойчивости на специальную треногу. При этом с помощью термина «телескоп» обозначают целый класс разнообразных технических средств, предназначенных для исследования космоса. И многие из них далеки от привычного стереотипа.
В основе конструкции многих телескопов лежат линзы и зеркала различного размера, а также всевозможные варианты их комбинирования. Это так называемые оптические телескопы. Линзы и зеркала необходимы им для сбора света и увеличения изображения таким образом, чтобы его можно было рассмотреть в окуляр. Именно на оптических телескопах, которые можно использовать в домашних условиях или взять с собой за город, мы и остановимся подробнее. Они предназначены для тех, кто увлекается астрономией, и позволяют начать знакомство со звездным небом или оттачивать отдельные навыки изучения небесных объектов, светил и явлений.
ВИДЫ ТЕЛЕСКОПОВ. ИХ ОСОБЕННОСТИ
Оптические телескопы можно разделить на несколько групп:
— линзовые телескопы (рефракторы);
— зеркальные телескопы (рефлекторы);
— зеркально-линзовые телескопы (катадиоптрики).
Рефракторы отличает классическая конструкция. Они больше всего похожи на подзорную трубу. Изображение в таких телескопах строится с помощью двух линз. Рефракторы предпочтительнее использовать для наблюдения ярких небесных объектов (например, Луны, планет Солнечной системы, двойных звезд), а также для дневных земных наблюдений. Заглянуть в глубины космоса с помощью таких телескопов более проблематично, так как они не умеют концентрировать слабое свечение от удаленных небесных объектов. Преимущества рефракторов: качество изображения (благодаря высокой контрастности), простота эксплуатации (нет необходимости в частом техническом обслуживании), терпимость к смене температуры (это важно при использовании устройства как в помещениях, так и на улице). Недостатки: «окрашивание» рассматриваемых объектов (при наблюдении может быть заметно синее или фиолетовое окаймление ярких объектов), высокая цена для моделей с диаметром объектива более 100 мм. Ниже приведен пример изображения в телескоп-рефрактор (явно заметна синяя кайма по кромке объекта).
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
Выбор телескопа зависит не только от предполагаемого бюджета покупки, но и от планируемых сценариев наблюдения. При этом важно учитывать не только принадлежность телескопа к одной из групп, но и отдельные технические характеристики каждой модели. При покупке телескопа часто возникают дилеммы. На какие характеристики следует обращать внимание в первую очередь? Учитывать возможности устройства концентрировать свет от далеких небесных объектов или увеличивать эти объекты? Казалось бы, ответ на поверхности: всего и побольше. Впрочем, на практике такое сочетание не всегда возможно, чему преградой в том числе ценовые ограничения.
Рассмотрим основные технические характеристики телескопов подробнее.
Максимальное полезное увеличение. Безусловно, этот параметр играет серьезную роль. Увеличение важно при изучении любых объектов и явлений звездного неба, но первостепенно при условии их достаточной яркости. Например, при изучении планет Солнечной системы можно рассмотреть большее число деталей этих объектов, используя значительное увеличение. Впрочем, ограничивать себя только пределами нашей системы, пожалуй, нелогично. Именно поэтому обращать внимание исключительно на максимальное полезное увеличение неправильно. Важно учитывать, что чрезмерное увеличение еще и накладывает дополнительные ограничения на использование телескопа. В этом случае становится ощутима вибрация трубы при прикосновении к ней, становятся заметны искажения, вызванные турбулентностью атмосферы, и др. Использование телескопа – это всегда умение найти оптимальное увеличение рассматриваемого объекта или явления с целью минимизации искажений.
Тип монтировки телескопа – особенности его установки на поверхности для направления на небесные объекты и явления с целью их изучения. Подобные манипуляции обусловлены вращением Земли и перемещением небесных объектов. То есть при длительном наблюдении за одним и тем же объектом требуется постоянная подстройка с учетом его текущего расположения. Выделяют азимутальные и экваториальные монтировки. Первая позволяет поворачивать телескоп в двух направлениях: по вертикальной и горизонтальной осям (схоже с поворотом камеры на штативе). Особенности конструкции монтировки второго типа подразумевают необходимость поворота телескопа вокруг лишь одной оси, что удобно при наведении телескопа по координатам объекта на звездном небе. Заметим, что вне зависимости от типа монтировки крайне важны ее вес, прочность и надежность. Неустойчивый телескоп, вибрирующий от малейшего прикосновения или дуновения, бесполезен. Кстати, существуют и так называемые моторизованные монтировки, позволяющие автоматически осуществлять подстройку устройства.
Другие параметры телескопов, по сути, являются производными от указанных выше. К ним относятся, например:
— диаметр и максимальное увеличение окуляров;
— относительное отверстие (показывает светосилу объектива);
— предельная звездная величина (характеризует оптическую мощь телескопа, его возможности показать звезду определенной величины в случае оптимальных условий наблюдения) и др.
КРИТЕРИИ ВЫБОРА
Подведем итоги. При покупке оптического телескопа важно определиться не только с бюджетом покупки, но и с целью приобретения. При этом нужно учитывать, что грамотно выбранный телескоп способен прослужить долгие годы. Этот вид устройств, по сути, не устаревает. Даже несмотря на то, что технологии не стоят на месте, и современные исследователи звездного неба могут использовать телескопы с такими дополнительными функциями, как моторизованная монтировка или аудиосопровождение (что, безусловно позволяет наблюдать небесные объекты и явления подчас с большим интересом), с не меньшим успехом долгие годы можно пользоваться и моделями без дополнительных «наворотов». Хороший телескоп часто покупается один раз и на всю жизнь. Именно поэтому к его покупке нужно подойти с должной серьезностью, не ограничивать выбор минимальным бюджетом. Вместе с тем, справедлив и другой подход: составить корректное мнение о возможностях телескопа и сделать оптимальный выбор часто можно ли самостоятельно опробовав возможности данных устройств. И именно поэтому не всегда целесообразна покупка сразу дорогой модели.
Такой выбор позволит без чрезмерной переплаты увлечь ребенка темой изучения звездного неба, а взрослому любителю астрономии определиться с требуемым функционалом телескопа.
Желающим заглянуть в глубины космоса и не ограничивающим себя лишь пределами Солнечной системы подойдут модели среднего ценового диапазона (от 10 до 20 тыс. руб.), использующие оптическую схему типа «рефлектор» с диаметром апертуры 110-120 мм и азимутальной или экваториальной монтировкой. Такой телескоп сможет стать надежным другом для астронома-любителя во многих ситуациях, связанных с его хобби, и позволит развить навыки изучения звездного неба.
Наконец, исследователи космоса, желающие получить устройство с дополнительными возможностями, могут рассмотреть варианты покупки телескопа-катадиоптрика (в значительной степени подходит любителям выезжать за город или даже путешествовать с телескопом),
а также телескопов рефракторного и рефлекторного типа с диаметром апертуры 90-130 мм (в том числе с моторизованной монтировкой) в верхнем ценовом диапазоне (более 20 тыс. руб.).
Телескоп рефлектор – руководство по покупке, плюсы и минусы
Отражающий телескоп рефлектор сегодня является наиболее часто используемым телескопом среди астрономов. Он использует своё главное зеркало для сбора и фокусировки света, а другое используется для отражения этого света обратно к наблюдателю. Однако сегодня на рынке представлено множество телескопов-отражателей, поэтому бывает сложно сделать выбор.
Мы просмотрели большое количество этих устройств в надежде помочь вам сузить область поиска. И сегодня предоставляем подробную информацию десяти моделей, которые нам понравились больше всего.
Как правильно выбрать рефлектор?
Отражающие телескопы, также известные как ньютоновские отражатели, являются хорошими аппаратами для астрономов-любителей, поскольку они предлагают хорошее соотношение апертуры и цены. Они универсальны и могут использоваться для наблюдения за Луной и планетами, а также за объектами глубокого неба. Однако они требуют немного большего обслуживания, чем рефракторы, время от времени нужно проводить коллимацию (выравнивание зеркал). Поскольку труба телескопа открыта, зеркала могут повредиться и испачкаться. Их можно очистить или, через несколько лет, обратиться к профессионалу. Поэтому, если вы впервые выбираете телескоп, вам нужно хорошо подумать о своих потребностях.
Во внимание нужно принять ещё несколько вещей:
Схема телескопа рефлектора
Этот тип устройства использует зеркала для отражения света, собираемого телескопом, в окуляр, расположенный на боковой стороне рядом с передней частью. Именно это тип, изобретённый Исааком Ньютоном, стал известен как «Ньютоновский отражатель».
1) Главное зеркало. 2) Вторичное зеркало. 3) Корректирующая линза.
Что можно увидеть в рефлектор?
Отражатели предназначены для наблюдения практически за всем. Вы можете начать с Луны и её кратеров, но имейте в виду, что если у вас апертура больше 5 или 6 дюймов, вам следует использовать более сильный нейтральный фильтр, чтобы приглушить лунный свет, слишком большая яркость может раздражать. Возможно, вам следует использовать фильтры нейтральной плотности наблюдая за планетами, если ваш «ночной друг» больше 14 дюймов.
В рефлектор также приятно смотреть на планеты, в основном потому, что отражатели не страдают хроматической аберрацией. Если вы заметили какие-либо хроматические аберрации, это может быть вызвано вашим окуляром низкого качества или атмосферой на малых высотах от горизонта. Двойные звёзды и звёздные скопления также очень приятно наблюдать с помощью отражателей, особенно с помощью аппаратов с большим фокусным расстоянием.
И, наконец, объекты глубокого космоса (DSO), такие как туманности, галактики, звёздные скопления, кометы, вот для чего созданы рефлекторы.
Рефлекторы в сочетании с моторизованной экваториальной монтировкой могут довольно успешно использоваться для астрофотографии, но не в лучшую сторону. От паука, удерживающего вторичное зеркало, видны заметные дифракционные выступы. Мы бы посоветовали вам попробовать астрофотографию с рефрактором он является лучшим выбором для астрофотографии.
Рефлекторный телескоп
Рефле́ктор — оптический телескоп, который использует зеркала для фокусировки света. Впервые рефлектор был построен Исааком Ньютоном около 1670, поскольку ранее используемые телескопы-рефракторы имели заметную хроматическую аберрацию.
Большинство современных телескопов являются рефлекторами.
Содержание
Основные оптические системы зеркальных телескопов
Система Ньютона
Как видно из названия, данную схему телескопов предложил Исаак Ньютон в 1667. Здесь плоское диагональное зеркало, расположенное вблизи фокуса, отклоняет пучок света за пределы трубы, где изображение рассматривается через окуляр или фотографируется. Главное зеркало параболическое, но если относительное отверстие не слишком большое, оно может быть и сферическим.
Система Грегори
В системе Грегори лучи от главного вогнутого параболического зеркала направляются на небольшое вогнутое эллиптическое зеркало, которое отражает их в окуляр, помещённый в центральном отверстии главного зеркала. Поскольку эллиптическое зеркало расположено за фокусом главного зеркала телескопа, изображение в рефлекторе Грегори прямое, тогда как в системе Ньютона — перевёрнутое. Наличие вторичного зеркала удлиняет фокусное расстояние и тем самым даёт возможность применять большие увеличения.
Система Кассегрена
Схема была предложена Лорентом Кассегреном в 1672 году. Это вариант двухзеркального объектива телескопа. Главное зеркало большего диаметра вогнутое (в оригинальном варианте параболическое) отбрасывает лучи на вторичное выпуклое меньшего диаметра (обычно гиперболическое). По классификации Максутова схема относится к так называемым предфокальным удлинняющим — то есть вторичное зеркало расположено между главным зеркалом и его фокусом и полное фокусное расстояние объектива больше, чем у главного. Объектив при том же диаметре и фокусном расстоянии имеет почти вдвое меньшую длину трубы и несколько меньшее экранирование, чем у Грегори. Система неапланатична, то есть несвободна от аберрации комы. Имеет большое число как зеркальных модификаций, включая апланатичный Ричи-Кретьен, со сферической формой поверхности вторичного (Долл-Кирхем) или первичного зеркала, так и зеркально-линзовых.
Система Гершеля (Ломоносова)
В 1616 г. Н. Цукки предложил заменить линзу вогнутым зеркалом, наклонённым к оптической оси телескопа. Подобный телескоп-рефлектор был сконструирован Уильямом Гершелем в 1772 г. В нём первичное зеркало имеет форму внеосевого параболоида и наклонено так, что фокус находится вне главной трубы телескопа, и наблюдатель не закрывает собой поступающий свет. В 1762 г. (на 10 лет раньше) данную оптическую схему реализовал Михаил Ломоносов. Недостатком данной схемы является большая кома. Однако, при малом относительном отверстии она почти незаметна.
Система Ричи-Кретьена
Последнее время в зеркальных телескопах широкое применение получила система Ричи — Кретьена, представляющая собой улучшенный вариант системы Кассегрена. В этой системе главное зеркало — вогнутое гиперболическое, а вспомогательное — выпуклое гиперболическое. Окуляр установлен в центральном отверстии гиперболического зеркала. Поле зрения системы Ричи — Кретьена около 4°.
Брахиты
В такой схеме вторичное зеркало вынесено за пределы пучка, падающего на главное зеркало. Такая конструкция сложна в изготовлении, так как требует внеосевых параболического и гиперболического зеркал. Однако, при малых апертуре и относительном отверстии эти зеркала можно заменить на сферические. Кома и астигматизм главного зеркала компенсируются наклонами вторичного зеркала. К положительным качествам брахитов можно отнести отсутствие экранирования, что положительно сказывается на чёткости и контрастности изображения. Данная система была впервые применена в 1877 г. И. Форстером и К. Фричем. Существуют различные конструкции брахитов.
Крупнейшие телескопы
На данный момент крупнейшими в мире телескопами-рефлекторами являются два телескопа Кека, расположенные на Гавайях. Keck-I и Keck-II введены в эксплуатацию в 1993 и 1996 соответственно и имеют эффективный диаметр зеркала 9,8 м. Телескопы расположены на одной платформе и могут использоваться совместно в качестве интерферометра, давая разрешение, соответствующее диаметру зеркала 85 м.
Крупнейший в Евразии телескоп БТА находится на территории России, в горах Северного Кавказа и имеет диаметр главного зеркала 6 м. Он работает с 1976 и длительное время был крупнейшим телескопом в мире.
На конец 2005 планируется ввод в эксплуатацию телескопов Gran Telescopio Canarias на Канарских островах с диаметром зеркала 10,4 м и Southern African Large Telescope в ЮАР с диаметром зеркала 11 м.
См. также
Литература
Ссылки
Полезное
Смотреть что такое «Рефлекторный телескоп» в других словарях:
Рефлекторный телескоп — Телескоп, в котором главным собирающим свет элементом является зеркало … Астрономический словарь
рефлекторный и рефлексивный — Вопрос Как правильно: «рефлекторный» или «рефлексивный характер изображения героев?» В «Справочное бюро» поступил вопрос: «Встретила в тексте фразу Изображение этих героев у Толстого носило нерефлекторный характер. Мне кажется, что слово… … Словарь трудностей русского языка
Бюраканская астрофизическая обсерватория — Координаты: 40°19′49″ с. ш. 44°16′24″ в. д. / 40.330278° с. ш. 44.273333° в. д. … Википедия
Бюраканская обсерватория — Координаты … Википедия
Астрономический союз Каринтии — (нем. Astronomische Vereinigung Kärntens) второй по величине астрономический союз Австрии. Существует с 1961 года. Союзу принадлежат планетарий в Клагенфурте и две обсерватории Креуцбергл (открыта в 1965 году, находится под… … Википедия
Каринтий Астрономический Союз — Астрономический Союз Каринтии (нем. Astronomische Vereinigung Kärntens) второй по величине астрономический союз Австрии. Существует с 1961 года. Союзу принадлежит планетарий в Клагенфурте и две обсерватории Креуцбергл (рефракторный телескоп… … Википедия
Sonnhuette — (Уттендорф,Австрия) Категория отеля: Адрес: Teglweg 2, 5723 Уттендорф, Австрия … Каталог отелей
Медицина — I Медицина Медицина система научных знаний и практической деятельности, целями которой являются укрепление и сохранение здоровья, продление жизни людей, предупреждение и лечение болезней человека. Для выполнения этих задач М. изучает строение и… … Медицинская энциклопедия
РЕФЛЕКТОР — РЕФЛЕКТОР, а, муж. 1. Телескоп с вогнутым зеркалом или системой зеркал. 2. Отражатель лучей в форме вогнутой полированной поверхности. Лампа с рефлектором. | прил. рефлекторный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949… … Толковый словарь Ожегова