Что такое регенерация в химии
Большая Энциклопедия Нефти и Газа
Химическая регенерация
Химическая регенерация углей от многокомпонентного сор-бата более эффективна при последовательной обработке несколькими реагентами в жестких условиях. [2]
Химическую регенерацию абсорбента проводят в тех случаях, когда имеет место химическое взаимодействие компонентов газового сырья и абсорбента. [5]
Под химической регенерацией понимают какую-либо обработку сорбента жидкими или газообразными органическими или неорганическими реагентами при температуре, как правило, не ныше 110 С. В результате этой обработки сорбат либо десорби-руется без изменений, либо десорбируются продукты его взаимодействия с регенерирующим агентом. Химическая регенерация часто протекает непосредственно в адсорбционном аппарате. Большинство методов химической регенерации узко специальны для сорбатов определенного типа. [8]
Нафтенатная схема с химической регенерацией катализатора ( рис. 137, г) является наиболее простой по оформлению реакционного узла. Раствор непрерывно поступает в колонну карбонилирования 12, где образуются карбонилы. Реакционная жидкость с растворенным в ней катализатором выводится из колонны на стадию регенерации катализатора, проводимой химическими методами. Работа по нафтенатной схеме связана с наименьшими капитальными затратами и дает наибольшую степень извлечения кобальта. Недостатком этой схемы является довольно сложная система регенерации с использованием агрессивных реагентов. [9]
Нафтенатная схема с химической регенерацией катализатора ( рис. 133, г) является наиболее простой по оформлению реакционного узла. [11]
К промывной жидкости при химической регенерации предъявляют два основных требования: инертность по отношению к материалу фильтровальной перегородки и способность растворять загрязнения перегородки. Исходя из этих требований, химической регенерации чаще всего подвергают пористые перегородки из синтетических материалов, керамики, металлокерамики некоторых видов. Хлопчатобумажные ткани мало устойчивы к действию кислот, теряют прочность при щелочной обработке, поэтому химическая регенерация их практически невозможна. [12]
Общим для любых способов химической регенерации углей является приготовление, хранение и подача регенерирующих растворов; метод циркуляции этих растворов через слой адсорбента; сбор и очистка отработанных элюатов с возвратом восстановленной части в цикл; ликвидация ( сжигание) кубового остатка; после регенерации АУ должен быть тщательно отмыт паром или водой от остатков реагентов. [13]
химическая регенерация
Смотреть что такое «химическая регенерация» в других словарях:
Химическая эволюция — или пребиотическая эволюция этап предшествовавший появлению жизни[1][2][3], в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу… … Википедия
Химическая промышленность — К X. промышленности обыкновенно относят далеко не все производства, основанные на X. процессах, а лишь те из них, которые изготовляют так назыв. X. продукты: производства кислот, щелочей и солей, красок минеральных и органических, серы, фосфора,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Адсорбция и регенерация сорбентов — Адсорбция Адсорбция (лат. ad на, при; sorbeo поглощаю) процесс концентрирования вещества из объёма фаз на границе их раздела. На свойства веществ оказывает влияние расположение молекул и расстояние между ними. В одних телах… … Википедия
Адсорбация и регенерация сорбентов — Адсорбция Адсорбция (лат. ad на, при; sorbeo поглощаю) процесс концентрирования вещества из объёма фаз на границе их раздела. На свойства веществ оказывает влияние расположение молекул и расстояние между ними. В одних телах… … Википедия
Тема (город в Гане) — Тема (Тема), город в Гане. 58,8 тыс. жителей (1970). Порт на берегу Гвинейского залива Атлантического океана; грузооборот около З млн. т в 1972, главным образом импорт. Ж. д. станция. Алюминиевый и сталелитейный заводы. Переработка нефти… … Большая советская энциклопедия
Тема — I Тема [от греч. théma, буквально то, что положено (в основу)], 1) предмет описания, изображения, исследования, выступления, дискуссии. 2) Объект художественного изображения, круг жизненных явлений, отображенных писателем или художником и … Большая советская энциклопедия
ХРТ — химическая регенерация тепла хим. Источник: http://www.nitu.ru/nitu/s&th/article.phtml?id=440 ХРТ химиорадиотерапия мед., хим. Источник: http://www.nwendoscopy.sp.ru/vypusk/gie content febr2004.htm ХРТ химическое ракетное топливо … Словарь сокращений и аббревиатур
Первичный суп — Химическая эволюция или пребиотическая эволюция первый этап эволюции жизни, в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу… … Википедия
Пребиотическая эволюция — Химическая эволюция или пребиотическая эволюция первый этап эволюции жизни, в ходе которого органические, пребиотические вещества возникли из неорганических молекул под влиянием внешних энергетических и селекционных факторов и в силу… … Википедия
Хлорид натрия — Хлорид натрия … Википедия
Регенерация ионообменной смолы
Процесс очистки воды методом ионного обмена проходит в фильтрах ионообменного действия. В промышленных установках умягчения регенерация ионообменной смолы проводится автоматически с помощью клапанов управления, последовательно проходя стадии сорбции, регенерации и промывания. Аналогично этот процесс происходит в фильтрах умягчения для частных и загородных домов. Домашние фильтры картриджного типа необходимо промывать самостоятельно при утрате ионообменным материалом сорбционных свойств. Регулярность промывки ионообменной смолы зависит от качества поступающей воды, интенсивности использования фильтра.
Что такое ионообменная смола и где она применяется
Ионообменная смола представляет собой синтетическое органическое высокомолекулярное соединение, которое имеет в составе ионогенные группы, диссоциирующие в растворе и способные к обмену подвижных ионов на другие ионы, содержащиеся в водной среде. Свойства ионитов определяются природой функциональных групп:
Ионообменные смолы представляют собой мелкие зерна или гранулы разных геометрических параметров и размеров в зависимости от метода получения: при полимеризации получаются практически идеальные сферы, поликонденсационные смолы имеют гранулы неправильной формы. Размеры варьируются от нескольких микрон до 1,5 мм.
По структуре полимерной основы ионообменные смолы бывают гелевые (непористые) и изопористые. Величина обменной емкости ионита зависит от числа активных групп на поверхности зерен, размера пор, углублений, каналов в его структуре.
Ионообменные смолы применяют для деминерализации, умягчения, обескремнивания водных растворов, избирательного удаления определенных ионов. Применение ионитов в технологических процессах позволяет сократить трудоемкость многих операций, переводя их на непрерывный процесс, и получить конечные продукты в более чистом виде. Ионообменные фильтры используют в быту для получения мягкой воды, применяемой при приготовлении пищи, стирке, на другие хозяйственные нужды.
Как можно регенерировать ионообменную смолу
При насыщении смолы удаляемой группой ионов до проскока их в фильтрат происходит истощение ионита. Процесс восстановления первоначальной формы ионообменной смолы называется регенерацией.
Полезная обменная емкость катионита зависит от:
После истощения катионита его отключают на регенерацию ионообменной смолы. В промышленных установках продолжительность восстановления фильтра с ионообменной смолой составляет примерно 1,5-2 часа:
Взрыхляют катионитовый слой восходящей струей исходной воды, отработанным раствором после регенерации ионообменной смолы или отмывочным водным раствором.
Чем регенерируют ионообменные смолы
Существует несколько реагентов для процесса регенерации ионообменной смолы
Соль таблетированная для регенерации ионообменных смол
В связи с доступностью и небольшой стоимостью хлорида Na, он стал основным реагентом для восстановления фильтров с ионообменными смолами, используемых при водоподготовке. Образующиеся после восстановления поваренной солью MgCl2 и CaCl2 полностью растворяются в воде, в отличие от CaCO3, образуемом при регенерации карбонатом Na, или CaSO4 при применении сульфата Na.
Процесс регенерации ионообменной смолы можно представить:
Восстановление ионообменной смолы кислотой и щелочью
Кроме раствора поваренной соли промывку ионообменной смолы проводят кислотой (соляной, лимонной и т.д.) или щелочь. Это необходимо для регенерации специальных ионообменных смол, которые применяются для деминерализии воды. Данный процесс должен проводиться под контролем специалистов.
Расчет соли для регенерации ионообменной смолы
Расход NaCl (кг) на один цикл регенерации натриевого катионита рассчитывают по формуле:
Как провести регенерацию ионообменной смолы
В промышленных установках ионообменной фильтрации, восстановление сорбционной способности фильтра заложено в технологический процесс работы оборудования. Методику восстановления ионообменной смолы можно описать четырьмя ступенями.
Восстановление ионообменной смолы в домашних условиях
Регенерацию картриджей с ионообменной смолой бытовых фильтров можно проводить самостоятельно по мере их истощения с использованием технической поваренной соли. Также популярным вопросом является «Сколько регенерировать ионообменную смолу?». В зависимости от устройства фильтра, промывание проводится непосредственно в фильтрующем блоке или посредством регенерации ионообменной смолы в отдельном сосуде. Инструкция по регенерации ионообменной смолы:
Регенерация или замена: сколько раз можно регенерировать ионообменную смолу
Необходимая глубина умягчения при фильтровании воды через катионитовый фильтр может быть достигнута только при правильно выбранных и точно рассчитанных параметрах его работы. Регенерацию можно проводить много раз, но после каждого восстановления степень умягчения воды будет снижаться. Когда смола перестала восстанавливать свои первоначальные обменные свойства, картридж или загрузка фильтра подлежит замене на новый.
Мы знаем все о регенерации смол ионного обмена
Мы предлагаем ионообменные фильтры для бытового использования и промышленные установки для умягчения воды разной конструкции и обменной емкости, а также техническую поваренную соль для осуществления своевременной регенерации ионообменной смолы. Получить подробную консультацию и сделать заказ можно по телефону или электронной почте. Оформление заказа также возможно через форму обратной связи на сайте.
Химическая регенерация
Под химической регенерацией понимают обработку сорбента жидким или газообразным органическими или неорганическими реагентами при температуре, как правило не выше 100 0 С. Химически регенирируют как углеродные, так и неуглеродные сорбенты. В результате этой обработки сорбат либо десорбируется без изменений, либо десорбируются продукты его взаимодействия с регенерирующим агентом. Химическая регенерация часто протекает непосредственно в адсорбционном аппарате. Большинство методов химической регенерации узкоспециальны для сорбатов определенного типа. Рассмотрим некоторые примеры химической регенерации активных углей.
Самый простой метод регенерации сорбента — нагревание его в некотором объеме воды. Это приводит к росту степени диссоциации и растворимости сорбата и, в итоге, к десорбции части сорбата. Так при регенерации активного угля нагревают воду и фильтруют ее через активный уголь. Эффект такой регенерации не выше — 20-40 %.
Из всех методов химической регенерации угля наибольшее распространение, особенно в водоподготовке, получила обработка активных углей растворами гидроокиси и карбоната натрия.
Регенерация 2.5% NaOH позволяет в 8 раз использовать уголь КАД-иодный для дезодорации воды (после 4-кратной регенерации) снижение сорбционной емкости составляет 40-50%. Наличие плохоомыляемых примесей снижает со временем емкость угля.
Десорбция органического сорбата с активного угля растворами кислот используется сравнительно редко. (2.5 % раствор Н2SO4 десорбирует некоторые пестициды). Чаще кислоты служат окислителем сорбата на угле. Окислителем органического сорбата может быть и H2O2. В последнее время изучаются методы регенерации с использованием гамма-излучения, под воздействием которого происходит деструкция сорбата. В малых дозах это излучение инициирует окисление кислородом на активном угле органических соединений, присутствующих в воде CO2и H2O. Доза облучения 3•10 4 рад/ч обеспечивает окисление аэрацией кислородом в воде таких соединений как лигнин, лигнинсульфат, бескислородная деструкция их требует дозы 1.1•10 6 рад/час.
Низкотемпературная термическая регенерация Низкотемпературная термическая регенерация — это обработка сорбента паром или газом при 100-4000С. Процедура эта достаточно проста и во многих случаях ее ведут непосредственно в адсорберах.
Водяной пар вследствие высокой высокой энтальпии чаще других используют для низкотемпературной термической регенерации. Он безопасен и доступен в производстве. Для пропарки адсорбера необходимы лишь парогенератор и холодильник-конденсатор. Отработанный конденсат направляется либо на сжигание, либо на выделение ценного сорбата.
Термическая регенерация Химическая регенерация и низкотемпературная термическая регенерация не обеспечивает полного восстановления адсорбционных углей. Термическая регенерация процесс весьма сложный, многостадийный, затрагивающий не только сорбат, но и сам сорбент. Термическая регенерация приближена к технологии получения активных углей.
При карбонизации сорбатов различного типа на угле большая часть примесей разлагается при 200-3500С, а при 4000С обычно разрушается около половины всего адсорбата. CO, CO2, CH4 — основные продукты разложения органического сорбата выделяются при нагревании до 350-6000С. В теории стоимость такой регенерации составляет 50 % стоимости нового активного угля.
Это говорит о необходимости продолжения поиска и разработки новых высокоэффективных методов регенерации сорбентов.
Дата добавления: 2015-07-15 ; просмотров: 350 | Нарушение авторских прав
Регенеративная медицина: в поисках «эликсира жизни»
Регенерация (от лат. regeneratio – «возрождение») – это естественный процесс восстановления клеток, тканей и органов. Конечно, у человека, в отличие от той же саламандры, не происходит восстановления утраченных конечностей, но так называемая физиологическая регенерация идет в каждом из нас: клетки почти всех тканей непрерывно обновляются, срастаются сломанные кости, заживают раны… При этом еще не так давно считалось, что при таких серьезных патологиях, как хроническая почечная недостаточность или сахарный диабет, восстановление пострадавших из-за болезни органов в принципе невозможно. Однако бурное развитие клеточных технологий в последние десятилетия открыло заманчивые перспективы регенеративной медицины в случаях, ранее считавшихся неизлечимыми
Большинство клеток нашего организма выполняют строго определенные, свойственные только им функции. Так, в миоцитах – клетках мышечной ткани, синтезируется сократительный белок миозин; в β-лимфоцитах крови – специфические иммуноглобулины, позволяющие бороться с инфекциями; нейроны – клетки нервной ткани, способны генерировать электрический импульс и т. д. Все такие клетки имеют свои морфофизиологические особенности, т. е. являются высоко дифференцированными и не способны превращаться друг в друга.
Самыми ранними, абсолютно неспециализированными стволовыми клетками являются оплодотворенная яйцеклетка и клетки, возникающие в процессе нескольких первых циклов ее деления. Они называются тотипотентными (от лат. totus – совокупный и potentia – сила, возможность).
При дальнейшем развитии организма эти клетки приобретают более специализированные свойства, превращаясь в мультипотентные стволовые клетки. Такие клетки способны давать начало клеткам одного из трех так называемых зародышевых листков: эктодермы, из которой происходят, в частности, клетки кожи и нервной системы; мезодермы – родоначальницы клеток соединительной и мышечной ткани; эндодермы, из которой развиваются внутренние органы, такие как печень и легкие.
Стволовые клетки, способные быть предшественниками лишь некоторых, «родственных» типов клеток, называются олигопотентными; только одного типа клеток – унипотентными.
Во взрослом организме имеются гемопоэтические стволовые клетки (родоначальницы всех клеток крови), стволовые клетки кожи, скелетной мускулатуры, миокарда, нейрональные стволовые клетки. Все эти клетки, «обитающие» в конкретных тканях, обладают высоким потенциалом к размножению и дифференцировке – и не только в клетки соответствующей ткани! Так, стволовые клетки кожи способны дифференцироваться в нейроны
Однако в организме имеются и клетки совершенно другого типа – стволовые. Стволовая клетка не принадлежит ни к какой конкретной ткани, однако она способна превратиться в специализированную клетку: нейрон, миоцит, гепатоцит и т. д. Именно универсальные стволовые клетки, способные бесконечно делиться и порождать клетки всех тканей организма, стали одной из центральных фигур регенеративной медицины – современного терапевтического направления, занимающегося восстановительными процессами в организме.
Клеточные технологии: «за» и «против»
Исходно все узкоспециализированные клетки организма образуются в процессе эмбрионального развития из неспециализированных стволовых клеток подобно тому, как из ствола дерева растут ветки и листья. Но стволовые клетки присутствуют не только у эмбриона: они обеспечивают развитие ребенка, а в течение всей дальнейшей жизни отвечают за обновление тканей как при естественной убыли клеток (например, популяция эритроцитов обновляется каждые три-четыре месяца), так и при повреждениях.
Наиболее изученной популяцией стволовых клеток во взрослом организме является популяция мультипотентных мезенхимальных стволовых клеток костного мозга. Такие клетки способны мигрировать по кровотоку в отдаленные органы и дифференцироваться во многие специализированные клеточные типы. Восстанавливая численность поврежденных и погибших клеток ткани, они восстанавливают структуру и, следовательно, функцию соответствующего органа.
Полученные за последние десятилетия сведения о свойствах и закономерностях жизнедеятельности стволовых клеток послужили толчком к развитию нового направления в лечении многих заболеваний – клеточной терапии. Но хотя сегодня эта область входит в число наиболее популярных в мировой медицинской науке, здесь имеется много проблем. Для терапевтических целей наиболее идеальными являются стволовые клетки 4—7-дневного эмбриона, так как при их использовании не возникает реакция отторжения трансплантата. Но в этом случае имеется немалый риск возникновения онкологических заболеваний, не говоря уже об этической проблеме использования эмбриональных клеток.
Поэтому наиболее рациональным (и наиболее физиологичным!) подходом к решению задач регенеративной медицины можно считать стимуляцию функций эндогенных, т. е. собственных стволовых клеток организма, имитируя деятельность его естественных регуляторных систем. Именно такими исследованиями занимаются в «НИИ фармакологии» СО РАМН (Томск), где разрабатываются фармакологические средства воздействия на эндогенные стволовые клетки.
Исследования начались с поиска ответа на важный вопрос: как реагируют стволовые клетки взрослого организма на серьезные патологические состояния? Для этого на экспериментальных животных моделировались такие патологии, как тяжелая форма гепатита с начальной стадией цирроза печени или сахарный диабет. При этом фиксировались маркерные показатели: количество мультипотентных стволовых клеток в костном мозге, периферической крови и в пораженном патологией органе.
Оказалось, что независимо от характера повреждений число стволовых клеток гемопоэтической ткани в костном мозге возрастает, однако при этом не наблюдается увеличения их выхода в кровь, миграции к поврежденному органу и дифференцировки в соответствующие типы клеток. Требовалось заставить эндогенные стволовые клетки работать в полную силу – эту задачу удалось решить с помощью препаратов, созданных на основе веществ и в естественных условиях участвующих в процессах кроветворения.
Мобилизация ресурсов
Гранулоцитарный колониестимулирующий фактор (Г-КСФ) – полипептид, который стимулирует пролиферацию (размножение) и запускает дифференцировку кроветворных клеток гранулоцитарного ряда (эритроцитов, сегментоядерных лейкоцитов – нейтрофилов, базофилов, эозинофилов, клеток иммунной системы – моноцитов и макрофагов). Кроме того, он способен стимулировать мобилизацию и миграцию в органы-мишени мультипотентных мезенхимальных стволовых клеток костного мозга, а также их последующую клеточную дифференцировку.
Еще более широкий спектр действия имеет гиалуронидаза – фермент, который разрушает гиалуроновую кислоту, один из компонентов межклеточного матрикса, (вещества, заполняющего пространство между клетками). В нативном виде гиалуроновая кислота способна взаимодействовать со специфическими рецепторами стволовых клеток; расщепляясь на фрагменты в результате действия фермента, она активирует процессы их деления, дифференцировки и миграции. В результате гиалуронидаза способна опосредованно повышать активность мезенхимальных стволовых клеток костного мозга и кроветворных клеток-предшественников, а также усиливать действие гранулоцитарного колониестимулирующего фактора.
Идея использовать эти биологически активные вещества для активации стволовых клеток, достаточной для регенерации тех или иных пораженных органов, кажется очень привлекательной. Однако в дозах, превышающих их нормальное содержание в организме (но необходимых для такой стимуляции!), и Г-КСФ, и гиалуронидаза очень токсичны, настолько, что это делает невозможным их широкое применение в качестве средств регенеративной медицины.
Однако выход из тупика был найден: нужно использовать для этих веществ специальные носители. Создание специфических носителей для лекарств – реальная перспектива приложения нанотехнологий в практической фармакологии. Конечно, в этом случае мы имеем дело не с такими футуристическими продуктами, как оснащенные по последнему слову техники нанороботы, способные работать внутри человеческого организма. Однако благодаря относительно простой манипуляции – «пришиванию» фармакологически активных веществ к долгоживущим полимерным молекулам, удается повысить способность терапевтических молекул преодолевать тканевые барьеры, уменьшить негативные побочные действия (токсичность, аллергенность) лекарства и повысить его эффективность за счет увеличения продолжительности «жизни» в организме.
Следует упомянуть, что классические технологии создания комплексов «лекарство+носитель» очень затратны. Однако специалисты ряда новосибирских научных и научно-производственных организаций – Института ядерной физики СО РАН, Института цитологии и генетики СО РАН и ООО «Саентифик фьючер менеджмент», создали новую технологию радиационного (электронно-лучевого) синтеза, позволяющую в разы снизить затраты на производство таких препаратов при сохранении высокой эффективности.
«Чистые» проигрывают
С использованием технологии радиационного синтеза в «НИИ фармакологии» СО РАМН совместно с ООО «Саентифик фьючер менеджмент» были разработаны нанотехнологичные модификаторы функций стволовых клеток. Это все те же гранулоцитарный колониестимулирующий фактор и гиалуронидаза, но иммобилизованные (химически присоединенные) на полиэтиленгликоле.
Такие модифицированные препараты показали не только более высокую эффективность по сравнению с обычными «чистыми» веществами, но и отличались от них по механизму действия. Так, оказалось, что иммобилизованный на полиэтиленгликоле Г-КСФ в большей степени влияет на пролиферацию и дифференцировку коммитированных стволовых кроветворных клеток, которые более специализированы, чем мультипотентные. В результате снижается риск истощения популяции этих клеток, которые служат «глубоким резервом» регенерации в костном мозге. И хотя пока неизвестно, насколько велика для организма опасность снижения пула недифференцированных мультипотентных стволовых клеток при их искусственной активации, в данном случае разумнее подстраховаться.
Радиационный синтез: быстро, просто, доступно! В фармакологии в качестве носителей лекарств используются наноконструкции двух типов: содержащие неорганические и органические компоненты. Первые представляют наименьший интерес, потому что в организме нет системы для их выведения и, следовательно, они могут неконтролируемо накапливаться в тканях, что чревато негативными последствиями. Кроме того, неорганические вещества часто обладают выраженной реакционной способностью, что ведет к повреждению клеток и их генетического аппарата.Органические наноконструкции сами по себе безопасны, а препараты, сделанные с их использованием, обладают большей стабильностью, растворимостью и меньшей токсичностью. Они также более эффективны по сравнению с немодифицированными лекарствами, так как характеризуются большим периодом полувыведения из организма. Однако технология пегилирования, которая обычно применяется для синтеза таких препаратов, представляет собой сложный, многоступенчатый и дорогостоящий процесс. Кроме того, при этом применяются высокотоксичные реагенты, что требует многочисленных стадий очистки конечного препарата.Пегилирование – это физико-химическая модификация лекарственной молекулы белковой природы путем соединения ее с молекулами полиэтиленгликоля, многоатомного спирта, представляющего собой длинный линейный полимер. Благодаря высокой гидрофильности полиэтиленгликоля вокруг модифицированного препарата образуется «водное облако», которое увеличивает биодоступность препарата и защищает его от воздействия белков иммунной системы.В отличие от классического химического пегилирования, технология радиационного (электронно-лучевого) синтеза «пришивает» лекарственную молекулу к полиэтиленгликолю с помощью потока ионизирующего излучения. Это могут быть ускоренные электроны, а также протоны, нейтроны, гамма-лучи, ультрафиолетовое, лазерное и прочие виды излучения с определенным спектром и энергией в несколько МэВ.Ионизирующее излучение активирует молекулы полимера так, что они ковалентно взаимодействуют с находящимися в определенных положениях атомами азота белковых молекул. Варьируя дозу облучения, можно получать конъюгаты различной молекулярной массы и стереохимической структуры, меняя таким образом свойства препарата.Длительность процесса радиационного пегилирования составляет всего 2—10 мин. Если фармакологически активное вещество «не боится» облучения, процесс проводят в одну стадию. В ином случае сначала проводится облучение только полимерного носителя, который затем смешивается с активной формой лекарственной субстанции
Препараты природной гиалуронидазы (в безопасных дозах) эффективны только при местном применении. Модифицированная же гиалуронидаза обладает в организме системными эффектами, так как не разрушается соответствующими ферментами. Она стимулирует процессы пролиферации и дифференцировки стволовых клеток различных классов, а при патологических состояниях вызывает их выход в кровь и миграцию в орган-мишень.

Результаты применения впечатляют: так, ее пятикратное введение лабораторным животным после экспериментально вызванного токсического гепатита привело практически к полному восстановлению морфологии и функции печени. При этом необходимые дозы препарата очень низки, а сам препарат можно принимать перорально (т. е. через рот), а не только с помощью инъекций.
Споявлением клеточных технологий у человечества появилась реальная надежда на излечение многих недугов, которые до настоящего времени считались неизлечимыми. Работы сибирских ученых по созданию фармакологических модификаторов функций стволовых клеток подтверждают, что таким образом можно нормализовать структуру и, следовательно, функцию практически любого органа – если вмешаться в патологический процесс вовремя.
Например, в условиях эксперимента удалось полностью излечить начальную стадию цирроза печени. Разрабатываются и методы безинсулиновой терапии сахарного диабета: не исключено, что за счет эндогенных стволовых клеток появится возможность восстанавливать структуру пораженной поджелудочной железы, чтобы в организме в достаточном количестве вырабатывался собственный инсулин. Из распространенных патологий нервной системы наиболее перспективными для такого лечения являются энцефалопатии, с возможностью полного восстановления когнитивных функций головного мозга; а в отдаленной перспективе – ряд таких тяжелых патологий, как болезни Паркинсона и Альцгеймера.
Конечно, пока все эти разработки находятся на доклинической стадии исследования: полный же цикл создания нового лекарственного средства долог и требует больших материальных и финансовых вложений. Но, как известно, «дорогу осилит идущий»…
Дыгай А. М., Артамонов А. В., Бекарев А. А. и др. Нанотехнологии в фармакологии. М.: Издательство РАМН, 2011. 136 с.
Дыгай А. М., Зюзьков Г. Н. Клеточная терапия: новые подходы // Наука в России. Москва: Наука, 2009. Т. 169, № 1. С. 4—8.
Дыгай А. М., Зюзьков Г. Н., Жданов В. В. и др. Иммобилизированный гранулоцитарный колониестимулирующий фактор. Фармакологические свойства и перспективы использования. Томск: ООО «Печатная мануфактура», 2011. 149 с.
Дыгай А. М., Жданов В. В., Зюзьков Г. Н. и др. Гепатопротекторные эффекты иммобилизированных препаратов гранулоцитарного колониестимулирующего фактора и гиалуронидазы и механизмы их развития // Клеточные технологии в биологии и медицине. 2012. № 1. С. 14—18.





