Что такое репрезентативная выборка в психологии
Репрезентативность выборки
Согласно теории выборочного метода, неоднократно подтвержденной практикой, опрашивать всех нет необходимости, а можно опросить лишь часть группы, которая может быть в тысячи раз меньше. Эта маленькая часть называется выборкой (или выборочной совокупностью), а большая группа, которую она представляет, называется генеральной совокупностью.
При этом если выборка сформирована правильно, выводы, полученные на основе изучения выборки, могут быть перенесены и на генеральную совокупность. Например, если в выборке женщины значимо чаще, чем мужчины, пользуются дезодорантами, то делается вывод, что и в генеральной совокупности (например, в исследованном городе) присутствует такая закономерность. Процесс переноса выводов с выборки на генеральную совокупность называется генерализацией. А свойство выборки отражать характеристики генеральной совокупности называется репрезентативностью. Для более комфортного запоминания термина на рис.1. приведены иллюстрации, когда выборка отражает свойства генеральной совокупности и когда свойства выборки отличаются от свойств генеральной совокупности.
Рис.1. Иллюстративные примеры соответствия (несоответствия) свойств генеральной совокупности и выборки
Не стоит путать понятие репрезентативности с такими понятиями как валидность и релевантность, хотя они тоже относятся к характеристикам качества исследования. В социальных науках валидность понимается довольно широко, но чаще всего – как обоснованность. Понятие валидности относится не к выборке, а к исследовательской методике. Методика или измерение (анкета, блок вопросов, тест) считается валидным, если фиксирует именно то понятие или свойство, которое планируется измерить. Например, если мы захотим оценить уровень лояльности клиента к магазину и выберем для этого лишь показатель частоты посещения магазина, валидность этого подхода будет неполной: возможно, респондент часто заходит в магазин только из-за банкомата, который там установлен. Валидная методика в данном примере должна включать и другие показатели: предпочтение магазина, суммы покупок в этом и других магазинах, готовность переключиться на другие магазины, готовность рекомендовать магазин и др.
При установлении валидности решающую роль играет обоснование и последующая проверка гипотезы релевантности, то есть соответствия измеряемых параметров характеристикам исследуемого объекта. Житейский пример нерелевантности – измерять уровень счастья человека количеством денег у него (хотя, наверное, не все с этим согласятся). Очевидный пример нерелевантности – попытка измерить массу тела по его температуре.
Но вернемся к понятию репрезентативности. В то время как точность измерений зависит от размера выборки, размер выборки не гарантирует ее репрезентативности. Репрезентативность выборки главным образом обеспечивается способом отбора ее участников (респондентов). Примером явного нарушения репрезентативности может послужить шутка о том, что интернет-опрос показал, что 100% людей пользуется интернетом.
Можно выделить несколько вариантов нарушения репрезентативности выборки: когда опрошены не те люди и когда опрошено слишком много (или мало) определенных людей (например, женщин намного больше, чем мужчин). Кроме того, чем меньше размер выборки, тем меньше вероятность того, что она будет репрезентативной. Например, допустим, 1% населения мог бы заинтересоваться новой услугой. Это 1 из 100 людей. Если размер выборки составляет всего 60 человек, то в вашей выборке может отсутствовать человек, который, скорее всего, будет заинтересован в услуге. Ваша выборка менее репрезентативна, потому что она меньше. Ваши результаты будут разными в зависимости от того, содержит ли ваша выборка одного из этих людей или нет. Пример репрезентативной и нерепрезентативной выборки показан на рис.2.
Рис.2. Пример репрезентативной и нерепрезентативной выборки
На рис.3 показана та же по составу генеральная совокупность, но с другим расположением объектов внутри круга.
Рис.3. Пример репрезентативной и нерепрезентативной выборки при другом расположении объектов генеральной совокупности
Говоря простым языком, репрезентативная выборка – это такая выборка, в которой представлены все подгруппы, важные для исследования. Помимо этого, характер распределения рассматриваемых параметров в выборке должен быть таким же, как в генеральной совокупности.
Простой случайный отбор респондентов представляется оптимальным способом формирования репрезентативной выборки. Поскольку в этом случае у любого представителя генеральной совокупности одинаковая вероятность попасть в выборку, в нее попадут люди с разными характеристиками пропорционально их долям в генеральной совокупности. В итоге выборка будет представлять собой нечто вроде уменьшенной копии генеральной совокупности.
Случайность отбора респондентов в выборку обеспечивается разными способами. Например, для телефонного опроса жителей города берется база данных всех телефонных номеров, и номера респондентов случайным образом выбираются компьютером (с использованием генератора случайных чисел). При уличном опросе интервьюеров распределяют по случайно выбранным точкам и инструктируют опрашивать каждого N-ного прохожего.
Наглядным примером репрезентативной выборки может служить пицца. Если целая пицца – это генеральная совокупность, которую мы хотим изучить, то кусок пиццы – это выборка. Как правило, достаточно одного куска пиццы, чтобы судить обо всей пицце (при условии, что ингредиенты равномерно распределены по ее поверхности). Таким образом, кусок пиццы пиццы на рис.4 – это репрезентативная выборка из пиццы.
Рис.4. Наглядный пример репрезентативной выборки (пицца)
Важно отметить, что не любой кусок пиццы будет репрезентативной выборкой. Разные способы получения куска пиццы могут принципиально повлиять на качество исследования и выводы, которые будут получены при анализе каждого варианта выборки (рис.4)
(рисунок в сушильной камере, готовится к публикации)
Рис.5. Наглядный пример формирования репрезентативной и нерепрезентативной выборки.
Еще один показательный пример формирования репрезентативной выборки – кастрюля, содержимое которой мы должны узнать (допустим, там скрывается борщ). Мы только один раз можем зачерпнуть из кастрюли ложкой (провести исследование). В нашем примере ложка – это выборка, а содержимое кастрюли – генеральная совокупность.
Если мы зачерпнем сверху, то придем к выводу, что в кастрюле бульон. Если снизу – решим, что в кастрюле мясо. Зачерпнув где-то посередине, мы получим картошку или капусту. В любом из трех случаев выводы будут неверны. Чтобы получить достоверный результат, нам стоит хорошенько перемешать содержимое кастрюли, перед тем как пробовать его. Перемешивание в данном случае – аналог процедуры простого случайного отбора, поскольку оно предоставляет всем ингредиентам примерно равную вероятность попадания в ложку-выборку (или тарелку-выборку).
Рис.6. Борщ как модель, демонстрирующая репрезентативность выборки.
В реальности применить простой случайный отбор респондентов не всегда удается в полной мере. Например, мы можем абсолютно корректно отобрать в выборку нужное количество номеров домашних телефонов случайным образом, но при их прозвоне выяснится, что дозвониться и поговорить удается преимущественно с пенсионерами, а «поймать» дома молодежь и работающих людей получается плохо.
Возвращаясь к примеру с борщом, если у нас вместо кастрюли – огромный ресторанный котел, а в руках все та же обычная ложка, перемешивание будет неэффективным. Чтобы решить задачу, потребуются иные подходы. Например, мы можем теоретически разделить глубину котла на несколько слоев и постараться зачерпнуть содержимое из каждого слоя (из случайного места слоя: не только в центре, но и по краям). Таким образом, наша итоговая выборка будет состоять уже из нескольких выборок и при этом адекватно отражать содержимое всех слоев котла. Подобные альтернативные подходы называются типами выборки, которых придумано достаточно много для того, чтобы максимизировать репрезентативность выборки в сложных условиях реального мира.
Последствия нарушения репрезентативности выборки: некорректные выводы исследования, выброшенный на ветер бюджет исследования, финансовые потери вследствие применения неправильных выводов. Вы можете выбрать валидную исследовательскую методику, рассчитать объем выборки, обеспечивающий приемлемую точность измерений, но, если выборка исследования нерепрезентативна, получить достоверную информацию не удастся.
Самым известным примером нарушения репрезентативности выборки является история провала американского журнала «Литературный дайджест».
В 1936 году журнал в очередной раз провел почтовый опрос общественного мнения о вероятных результатах грядущих президентских выборов в США. До 1936 года опрос всегда правильно предсказывал победителя. Опрос 1936 года показал, что победителем с большим отрывом станет кандидат от республиканцев, но в итоге победителем оказался представитель демократов.
Таким образом, гигантская выборка (около 2,4 млн. человек) не обеспечила достоверных результатов. В чем же заключалась причина ошибки?
Называются две основные причины провала: смещение при формировании выборки и смещение вследствие отказа респондентов от участия в опросе.
Прежде всего, журнал включил своих подписчиков в список для рассылки анкет и, желая расширить выборку, использовал два других доступных тогда списка граждан: зарегистрированных автовладельцев и пользователей телефонов. Во времена Великой Депрессии представители этих групп отличались от остального населения более высоким доходом, как и подписчики самого журнала. Таким образом, полученная база для рассылки не являлась корректным отражением структуры населения США.
Вторая проблема с опросом заключалась в том, что из 10 миллионов человек, чьи имена были в первоначальном списке рассылки, только 2,4 миллиона ответили на опрос. Вероятно, высокий процент отказов был связан с тем, что опрос проводился по почте. Уже в те времена американцы относились к почтовым рассылкам как к спаму. Таким образом, размер выборки составил примерно одну четверть от того, что первоначально планировалось. Когда доля ответивших низка (как это было в данном случае), считается, что исследование страдает от необъективности ответов.
У этой истории две морали: Большая, но неправильно сформированная выборка гораздо хуже маленькой, но правильно сформированной выборки. При проведении опроса не упускайте из внимания смещение отбора и смещение в результате отказов.
Пример из военной практики. Во Вторую мировую войну американские военные столкнулись со следующей проблемой. Не все американские бомбардировщики после задания возвращались на базу. На вернувшихся самолетах оставалось множество пробоин от выстрелов противника, но распределены они были неравномерно: больше всего на фюзеляже и прочих частях, меньше в топливной системе и гораздо меньше — в двигателе. Командованию казалось логичным, что в наиболее поврежденных местах нужно установить больше брони.
Привлеченный к решению задачи математик возразил: данные как раз показывают, что самолет, получивший пробоины в этих местах, еще может вернуться на базу. А самолет, которому попали в бензобак или двигатель, выходит из строя и не возвращается. Поэтому укреплять следует те места, которые у вернувшихся самолетов повреждены меньше всего.
Эта задача служит примером нарушения репрезентативности выборки, когда в нее включены не те респонденты: в данном случае, вернувшиеся самолеты, в то время как не вернувшиеся проигнорированы.
Применительно к маркетинговым исследованиям, эта ситуация подобна следующей. При опросе клиентов бизнеса будет ошибкой опрашивать только текущих клиентов и не опрашивать потерянных клиентов (а какие «пробоины» получили они?).
При опросе посетителей ТРЦ важно правильно расставить интервьюеров. Например, если поставить интервьюеров только у главного входа, в выборку не попадут посетители, приехавшие в ТРЦ на автомобиле и попавшие в него через парковку. Как следствие, выводы, полученные на собранных данных, будут корректны только для той части посетителей, которые приходят в ТРЦ пешком, а значит, делают меньше покупок, не покупают габаритные товары, живут ближе к ТРЦ, чем приезжающие на автомобиле.
Другой пример. Бывает, что в разных районах города сбор анкет идет с разной скоростью: где-то (например, в центре города) большой пешеходный поток и у людей есть время на участие в опросе (отдыхающие, в отпуске, офисные сотрудники на обеде), а на окраинах либо мало людей на улицах, либо все спешат на работу и отказываются участвовать. В результате, если не ограничивать доли районов, в выборке будут преобладать люди из центрального района, которые могут значимо отличаться от остальных людей родом занятий, уровнем дохода и образования, уровнем осведомленности о магазинах и др. Таким образом, собранная выборка уже не будет репрезентативной по отношению к населению всего города.
Несмотря на многие положительные стороны онлайн-опросов, такие как экономичность, оперативность сбора информации, удобство ее обработки и т. д., некоторые их особенности напрямую угрожают репрезентативности исследования:
Во-первых, участники онлайн-опросов – это, как правило, активные пользователи интернета, хорошо в нем разбирающиеся и больше подверженные влиянию интернет-культуры, чем обычные люди.
Во-вторых, люди, у которых есть время и желание регулярно участвовать в онлайн-опросах за небольшое вознаграждение, скорее всего, значительно отличаются от остальных людей как по социально-демографическим, так и по психографическим характеристикам.
В-третьих, профессиональное участие в опросах приводит к так называемой профессиональной деформации, когда ответы респондентов на вопросы новых исследований обусловлены предыдущим опытом, но не жизненным, а опытом участия в других опросах.
Таким образом, в данном случае возникает та ситуация, когда опрашиваются не те люди, хотя по формальным характеристикам они подходят под описание целевой аудитории.
Итак, чтобы получить достаточно точные данные об интересующей нас группе людей, необязательно опрашивать их всех, благодаря свойству репрезентативности выборки.
«Чем больше, тем лучше» – неправильный подход к формированию выборки.
Небольшая репрезентативная выборка лучше большой, но нерепрезентативной выборки. Применительно к выборке не стоит пугаться слова «случайная». Это вовсе не значит, что в исследовании будут получены случайные результаты. Напротив, случайный подход к формированию выборки делает ее максимально похожей на генеральную совокупность, а значит, репрезентативной.
При проектировании выборки следует учитывать опасность смещения структуры выборки вследствие особенностей сбора информации и других условий.
СПИСОК ЛИТЕРАТУРЫ ОНЛАЙН
Понятие выборки (применительно к исследованию в психологии)
Психолог-экспериментатор в большинстве случаев изучает какую-то определенную выборку людей, которая всегда отбирается из большей по численности группы. Такая объемлющая группа называется в статистике генеральной совокупностью. Таким образом, генеральная совокупность — это любая группа людей, которую психолог изучает по выборке. Теоретически считается, что объем генеральной совокупности не ограничен. Практически же объем генеральной совокупности всегда ограничен и может быть различным в зависимости от предмета наблюдения и той задачи, которую предстоит решать психологу.
Выборкой называется любая подгруппа элементов (испытуемых, респондентов), выделенная из генеральной совокупности для проведения эксперимента. При этом отдельный индивид из выборки, с которым работает психолог, называется испытуемым (респондентом).
Объем выборки, обычно обозначаемой буквой п, может быть любым, но не меньшим чем два респондента. В статистике различают малую (п 100).
1. Полное исследование
Если психологическому исследованию (наблюдению, измерению, эксперименту) подвергаются все представители изучаемой генеральной совокупности, то такое исследование называют полным, или сплошным.
Предполагается, что, в соответствии с задачами, гипотезами и планом, полное обследование генеральной совокупности позволяет получить исчерпывающую информацию об изучаемых в ней психологических закономерностях. Однако в отечественной и зарубежной психологии еще никогда не проводилось сплошного исследования по той причине, что на практике определить размеры той или иной генеральной совокупности и тем более исследовать её — задача нереальная и, кроме того, в определенной степени избыточная. Если выборка испытуемых по своим характеристикам репрезентативна генеральной совокупности, то есть основания полученные при её изучении результаты распространить на всю генеральную совокупность. Нельзя упускать из вида также и то, что работа психолога, по существу, представляет собой сложный вид деятельности, требующий высокой профессиональной компетентности и нередко много времени для работы с каждым испытуемым.
2. Выборочное исследование
Если психолог производит выбор ограниченного числа элементов из изучаемой (генеральной) совокупности, то такое исследование называют частичным, или выборочным.
Выборочный метод является основным в экспериментальной работе психолога при изучении генеральных совокупностей. Его преимущество перед полным (сплошным) исследованием всех элементов генеральной совокупности заключается в том, что он сокращает как время, так и затраты труда, а главное — позволяет получать информацию о таких группах, полное обследование которых принципиально невозможно или нецелесообразно.
3. Зависимые и независимые выборки
Выборки называются независимыми (несвязными), если процедура эксперимента и полученные результаты измерения некоторого свойства у испытуемых одной выборки не оказывают влияния на особенности протекания этого же эксперимента и результаты измерения этого же свойства у испытуемых (респондентов) другой выборки.
И, напротив, выборки называется зависимыми (связными) если процедура эксперимента и полученные результаты измерения некоторого свойства, проведенные на одной выборке, оказывают влияние на другую. Следует подчеркнуть, что одна и та же группа испытуемых, на которой дважды проводилось психологическое обследование (пусть даже разных психологических качеств, признаков, особенностей), по определению оказывается зависимой, или связной выборкой.
4. Требования к выборке
К выборке применяется ряд обязательных требований, определенных прежде всего целями и задачами исследования. Планирование эксперимента должно включать в себя учет как объема выборки, так и ряда ее особенностей. Так, в психологических исследованиях важно требование однородности выборки. Оно означает, что психолог, изучая, например, подростков, не может, включать в эту же выборку взрослых людей. Напротив, исследование, выполненное методом возрастных срезов, принципиально предполагает наличие разновозрастных испытуемых. Однако и в этом случае должна соблюдаться однородность выборки, но уже по другим критериям, в первую очередь таким, как возраст, пол. Основаниями для формирования однородной выборки могут служить разные характеристики, такие, как уровень интеллекта, национальность, отсутствие определенных заболеваний и т.д., в зависимости от целей исследования.
В общей статистике имеется понятие повторной и бесповторной выборки, или, иначе говоря, выборки с возвратом и без возврата. В качестве примера приводится, как правило, выбор шара, доставаемого из какой-либо емкости. В случае выборки с возвратом каждый выбранный шар опять возвращается в емкость и, следовательно, может быть выбран снова. При бесповторном выборе однажды выбранный шар откладывается в сторону и больше не может участвовать в выборке. В психологических ис следованиях можно найти аналоги подобного рода способам организации выборочного исследования, поскольку психологу нередко приходится несколько раз тестировать одних и тех же испытуемых при помощи одной и той же методики. Однако, строго говоря, повторной в этом случае является процедура тестирования. Выборка испытуемых при полной тождественности состава в случае повторных исследований всегда будет иметь некоторые отличия, обусловленные функциональной и возрастной изменчивостью, присущей всем людям. Подобная выборка по характеру проведения процедуры является повторной, хотя смысл термина здесь, очевидно, иной, чем в случае с шарами.
Важно подчеркнуть, что все требования, предъявляемые к любой выборке, сводятся к тому, что на ее основе психологом должна быть получена наиболее полная, неискаженная информация об особенностях генеральной совокупности, из которой взята эта выборка. Иными словами, выборка должна как можно более полно отражать характеристики изучаемой генеральной совокупности.
5. Репрезентативность выборки
Cостав экспериментальной выборки должен представлять (моделировать) генеральную совокупность, поскольку выводы, полученные в эксперименте, предполагается в дальнейшем перенести на всю генеральную совокупность. Поэтому выборка должна обладать особым качеством — репрезентативность, позволяющим распространить полученные на ней выводы на всю генеральную совокупность.
Репрезентативность выборки очень важна, тем не менее по объективным причинам соблюдать её крайне сложно. Так, хорошо известен факт, что от 70% до 90% всех психологических исследований поведения человека проводились в США в 60-х годах XX века с испытуемыми-студентами колледжей, причем большинство из них были студентами психологами. В лабораторных исследованиях, выполняемых на животных, наиболее распространенным объектом изучения являются крысы. Поэтому неслучайно психологию называли раньше «наукой о студентах-второкурсниках и белых крысах». Студенты психологических колледжей составляют всего 3% от общей численности населения США. Очевидно, что выборка студентов нерепрезентативна в качестве модели, претендующей на представительство всего населения страны.
Репрезентативная выборка, или, как еще говорят, представительная выборка, — это такая выборка, в которой все основные признаки генеральной совокупности представлены приблизительно в той же пропорции и с той же частотой, с которой данный признак выступает в данной генеральной совокупности. Иными словами, репрезентативная выборка представляет собой меньшую по размеру, но точную модель той генеральной совокупности, которую она должна отражать. В той степени, в какой выборка является репрезентативной, выводы, основанные на изучении этой выборки, можно с большой долей уверенности считать применимыми ко всей генеральной совокупности. Это распространение результатов называется генерализуемостью.
В идеале репрезентативная выборка должна быть такой, чтобы каждая из основных изучаемых психологом характеристик, черт, особенностей личности и т.п. была бы представлена в ней пропорционально этим же особенностям в генеральной совокупности. Согласно этим требованиям процедура формирования выборки должна иметь внутреннюю логику, способную убедить исследователя, что при сравнении с генеральной совокупностью она действительно окажется репрезентативной, представительной.
В своей конкретной деятельности психолог действует следующим образом: устанавливает подгруппу (выборку) внутри генеральной совокупности, подробно изучает эту выборку (проводит с ней экспериментальную работу), а затем, если это позволяют результаты статистического анализа, распространяет полученные выводы на всю генеральную совокупность. Это и есть основные этапы работы психолога с выборкой.
Начинающий психолог должен иметь в виду часто повторяющуюся ошибку: каждый раз, когда он осуществляет сбор любых данных любым методом и из любого источника, у него всегда появляется соблазн распространить свои выводы на всю генеральную совокупность. Для того чтобы избежать подобной ошибки, надо не просто обладать здравым смыслом, но, прежде всего, хорошо владеть основными понятиями математической статистики.
6. Формирование и объем репрезентативной выборки
Возникает закономерный вопрос, как сформировать репрезентативную выборку? С точки зрения статистики репрезентативность выборки означает, что представленное в выборке распределение изучаемых признаков соответствует (с определенной долей погрешности) их распределению в генеральной совокупности.
Опишем два метода, обеспечивающие репрезентативность выборки.
Первый метод формирования простой случайной выборки. В этом случае выборка состоит из элементов, отобранных из генеральной совокупности таким образом, чтобы каждый элемент этой совокупности имел бы равные возможности (равную вероятность) попасть в выборку. Полученная таким образом выборка называется простой случайной выборкой.
Получить простую случайную выборку можно путем обычной жеребьевки (по аналогии с лотереей) или с помощью специальных таблиц случайных чисел. В последнем случае элементы генеральной совокупности перенумеровываются и из таблицы случайных чисел, открытой на произвольной странице, выписываются номера элементов, которые должны быть взяты в выборку. Данная процедура трудно осуществима, поскольку для ее реализации необходимо учитывать каждого представителя генеральной совокупности.
Второй метод основывается на понятии стратифицированной случайной выборки. Для этого необходимо разбить элементы генеральной совокупности на страты (группы) в соответствии с некоторыми характеристиками. Например, при обследовании спроса на некоторый товар генеральную совокупность желательно разбить на группы, различающиеся по величине дохода, социальной принадлежности или даже по месту жительства (город, деревня). Если произведена подобная разбивка совокупности и случайная выборка производится отдельно из каждой группы (страты), то полученная в итоге выборка носит название стратифицированная случайная выборка.
Как определяется объем выборки? Подчеркнем, что он зависит прежде всего от задач исследования. Психолог может изучать единичные случаи, если те по каким-либо причинам представляют особый интерес для науки. Так, например, строится работа с одаренными детьми, каждый из которых, как правило, имеет свои неповторимые особенности. Предметом отдельного исследования могут служить также редкие или уникальные случаи нарушения развития. В частности, пристальное внимание известного ученого П.К. Анохина и его сотрудников было сосредоточено на изучении особенностей функционирования организма сросшихся сиамских близнецов Маши и Даши (это пример так называемой минимальной выборки).
Когда психолог ставит целью изучение характеристик, присущих многим представителям генеральной совокупности, возникает вопрос о наиболее приемлемом объеме выборки. В этих случаях очевидно, что больший объем выборки, позволяет получить более надежные результаты. Объем выборки зависит также от степени однородности изучаемого явления. Как правило, чем более однородно изучаемое явление, тем меньше может быть объем выборки. Например, психолог изучает выраженность уровня маскулинности—феминности у мастеров спорта по хоккею. Поскольку подобная группа спортсменов представляет собой достаточно однородную выборку, то ее объем может быть весьма небольшим, например, в пределах одной команды — 12—20 человек.
Кроме того, объем выборки зависит от тех статистических методов, которые предполагается использовать. Одни методы требуют большого количества испытуемых в выборке, другие могут применяться при относительно небольшом их количестве. Например, некоторые непараметрические критерии различий могут использоваться при сравнении групп численностью в 5—7 человек, а факторный анализ наиболее адекватен, если объем выборки составит около 100 человек.
Для психологических исследований рекомендуется использовать экспериментальную и контрольную группы, так чтобы численность обоих сравниваемых групп была не менее 30—35 испытуемых в каждой.