Что такое реверсивный счетчик и каково назначение входов clku и clkd
Реверсивный счётчик, принцип работы.
Реверсивный счётчик с последовательным переносом
Реверсивные счетчики могут работать как в режиме сложения, так и в режиме вычитания. Если за период времени T поступит К импульсов при работе счетчика в режиме суммирования и N импульсов при работе счетчика в режиме вычитания, то состояние счетчика будет равно K-N ( при условии, что число импульсов K и N может однозначно подсчитываться счетчиком). Число K-N может быть как положительным, так и отрицательным.
В режиме вычитания входные импульсы подаются на вход «-1», при этом на вход «+1» подаётся лог. 0. В режиме сложения входные импульсы подаются на вход «+1», а на вход «-1» следует подать лог. 0.
Описанные выше счетчики однонаправленные и считают на увеличение, однако на практике часто необходимо менять направление счета в процессе работы. Счетчики, которые в процессе работы могут менять направление счета называются реверсивными.
Первый эксперимент касается оценки частотных, заметьте не нелинейных, а частотных, искажений, возникающих в усилителе с помощью генератора прямоугольных импульсов.
Посмотрим, как реагируют на прохождение прямоугольных импульсов разные электрические RC цепи (это же относится и к LC, и к LR, и к LCR цепям).
Для этого в программе Qucs мы будем пользоваться источником прямоугольных импульсов и такими компонентами, как резисторы, конденсаторы и индуктивности. Если в вашем арсенале приборов есть осциллограф, генератор прямоугольных импульсов или функциональный генератор, то было бы очень полезно повторить эти простые опыты на макетной плате.
На рисунке представлена обычная интегрирующая RC цепочка из резистора R1 и конденсатора C1. Сопротивление R2 — это сопротивление нагрузки, скажем, входное сопротивление осциллографа. Когда мы говорили о частотных свойствах усилителей, рассматривалиамплитудно-частотныехарактеристики каскадов усилителя, то каждый из них можно было рассматривать как идеальный, нечастотно-зависимыйусилитель, к которому добавляется подобная эквивалентная RC цепь.
Для решения различных измерительных задач, для исследования импульсных характеристик микросхем и электронных приборов, для испытаний логических схем и устройств требуются источники электрических сигналов со строго определенными параметрами. Наиболее широко применяются импульсные генераторы, которые выдают видеоимпульсы прямоугольной формы в широком временном, частотном и амплитудном диапазонах: от долей наносекунд до единиц секунд, от долей герц до сотен мегагерц, от долей милливольт до десятков вольт.
Элементы формы реального прямоугольного импульса определены стандартом (рис. 2.5).
Рис.2.5 – Параметры прямоугольного импульсного сигнала.
Искажения формы сигнала связаны с ограничением полосы пропускания канала У. Ограничение со стороны низких частот влекут за собой осцилляции и спад на вершине. Ограничение со стороны высоких частот вызывает увеличение tф и tср, и появление выбросов на плоской части импульса.
При исследовании импульсных сигналов большое значение приобретает переходная характеристика осциллографа, которая представляет собой изображение единичного скачка напряжения (рис. 2.6).
Рис. 2.6 – Переходная характеристика осциллографа.
Параметром является время нарастания tн – интервал времени, в течение которого луч проходит путь от уровня 0,1 до уровня 0,9 от установившегося значения. Если плоская часть переходной характеристики имеет выброс d или осцилляции, то используется дополнительный параметр tу – время установления, отсчитываемое от момента уровня сигнала 0,1 до момента уменьшения осцилляций до заданного уровня.
При измерении параметров прямоугольных импульсов длительность фронта включает в себя время нарастания переходной характеристики. Когда они соизмеримы, время нарастания необходимо исключить.
При длительности фронта, во много раз превышающей время нарастания переходной характеристики, на изображении импульса никаких выбросов не наблюдается.
Генера́тор (лат. generator «производитель») — устройство, производящее какие-либо продукты, вырабатывающее электроэнергию или преобразующее один вид энергии в другой.
Основными динамическими параметрами, представленными на осциллограмме рис. 12.13, являются:
время задержки включения ИС t 1,0зд
время задержки выключения ИС t 0,1зд
время задержки распространения сигнала при включении ИС t 0,1 зд р
время задержки распространения сигнала при выключении ИС t 1,0 зд р
Измерение передаточной характеристики. Передаточную характеристику элемента И можно получить, как показано на рис. 12.14. Напряжение от генератора линейно изменяющегося напряжения 61 подается на ИС и на Х-пластины ЭЛТ. На вертикально отклоняющие пластины подается напряжение с выхода устройства. По получающейся на экране характеристике можно определить:
выходные напряжения логического нуля U°вых и логической единицы U 1 вых, рабочие точки типовых режимов U1 и U2; пороговые напряжения; ширину активной области; запас статической помехоустойчивости; необходимые напряжения сигналов, переводящие схему из состояния нуля в единицу и наоборот.
Измерение выходной характеристики интегральной микросхемы.
Входное напряжение (рис. 12.15) изменяется от значения логического нуля до значения логической единицы, при этом определяют I 0 вх и I 1 вх
Коэффициент разветвления по выходу, определяющий возможность использования данной ИС в комплексе с другими, т. е. их нагрузочную, способность, может быть определен по данным Iвх и Iвых:
I = I 0 вых/I 0 вх, К = I’вых/I 1 вх
Из значений К 0 и К 1 выбирается минимальное.
Измерение динамических параметров цифровых интегральных микросхем.
Причины ложных срабатываний логических элементов
Рассмотрим логическую конструкцию Y = .
При построении этой функции на элементах И-НЕ ее необходимо преобразовать, представив в виде инверсии конъюнкций.
Y =
Схема, реализующая эту функцию, показана рис. 1.31.
Рис. 1.31 Схема прохождения сигнала двумя путями
Диаграмма переключений приведена на рис. 1.32.
Рис. 1. 32 Диаграмма переключения схемы (рис. 1.31)
Пусть входной сигнал перешел от «0» к «1». В момент
сигнал
достигнет
порогового уровня
и начнется переключение элемента DD1. Сигнал на его выходе
станет
в момент
, отстоящий от
на
. Поэтому в течение времени
на входы DD2 поступают сигналы, превышающие
, то есть соответствующие логическим единицам. Следовательно, DD2 одновременно с DD1 начнет переключаться с 1 на 0. В момент
создадутся условия для обратного переключения элемента DD2. Через время
на выходе
уровень напряжения достигнет
, следовательно на выходе устройства восстановится логическая «1».
Из диаграммы видно, что за время единичный уровень на выходе изменился на нулевой, то есть правильность выполнения логической операции нарушилась, так как на выходе Y =
всегда должна быть логическая «1». Это явление получило название «состязаний» или «гонок».
В триггерах также возможны «состязания» между внешними сигналами и сигналами обратной связи. Устранения ошибок от ложных срабатываний в логических цепях можно добиться путем временного разделения сигналов, исключающих подобные явления. Вырабатываемое логическим устройством напряжение в этом случае передается на последующие устройства не непрерывно и не в произвольные моменты времени, а только в такие моменты, когда искажение правильных значений выходного сигнала за счет «состязаний» заведомо исключено.
Конъюнкция
Это отражает аналогию с арифметическим умножением: умножение любого числа и набора чисел на 0 в результате вернёт всегда 0. Эта логическая операция коммутативна: порядок, в котором она получает входные параметры, никак не повлияет на конечный результат вычисления. Другим свойством этой функции является ассоциативность, или сочетательность. Это свойство позволяет при вычислении последовательности бинарных операций не учитывать порядок вычисления. Поэтому для 3 и более последовательных операций логического умножения нет необходимости учитывать скобки. В программировании эта функция используется зачастую для того, чтобы убедиться в том, что специфические команды выполнятся только при выполнении совокупности определённых условий. Дизъюнкция
Реверсивные счетчики
Описание основных технических характеристик счетчиков, логического цифрового устройства последовательностного типа, их классификация. Изучение принципа действия современного реверсивного счетчика 564ИЕ14 ЭП серии цифровых интегральных микросхем.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | реферат |
Язык | русский |
Дата добавления | 10.12.2014 |
Размер файла | 34,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки
на тему: Реверсивные счетчики
Счетчик (Counter) представляет собой логическое цифровое устройство последовательностного типа, состояние которого циклически повторяется под действием входных импульсов. Новое состояние счетчика, как и любого последовательностного устройства с памятью, зависит не только от действующих входных сигналов, но и от последовательности сигналов, которые поступали на входы счетчика в прошлом.
В стандартных сериях цифровых интегральных микросхем (ИМС), выпускаемых отечественной промышленностью, счетчики обозначаются буквами ИЕ. цифровой счетчик реверсивный
1. Основные характеристики счетчиков
Счетчик содержит n последовательно включенных счетных триггеров, которые называются разрядами. Первый триггер счетчика является младшим разрядом, а справа от него находятся старшие разряды. Счетчики отличаются друг от друга числом разрядов n, модулем счета M и типом счетной последовательности, которая может быть двоичной, двоично-десятичной, в коде Грея или в другом коде. Двоичные коды могут иметь различные веса разрядов, например, 8421 либо 2421 (код Айкена) и т.п.
Выходы разрядных триггеров в счетчиках обычно обозначаются на схемах индексами 0, 1, 2, 3, …, как номера разрядов двоичного кода, тогда Q0 будет выходом триггера младшего нулевого разряда. Допускается обозначение выходов 1, 2, 4, 8, … согласно весовым коэффициентам двоичного кода.
Для n-разрядного двоичного счетчика, имеющего 2n состояний, модуль счета M (или иначе коэффициент счета Ксч) и максимальное число подсчитанных импульсов Nmax, поступивших на вход счетчика, определяются соотношениями
Модуль счета M определяется общим числом состояний (переключений) счетчика за один полный цикл счета, через которые он проходит в последовательности 0, 1, 2, …, 2n-1, 0, 1, 2, …
Общая емкость для каскадно включенных i счетчиков равна
Модуль счета M численно совпадает с коэффициентом деления числа входных импульсов Kд. Для периодических входных сигналов, следующих с частотой Fвх, частота выходных сигналов счетчика-делителя равна
Важным эксплуатационным показателем электронных счетчиков является их быстродействие, зависящее от выбранной элементной базы и схемы построения. Динамическим параметром, определяющим быстродействие счетчика, является время установления выходного кода tk.
2. Классификация счетчиков
Счетчики можно классифицировать по ряду признаков, рассмотрим основные из них.
По быстродействию и способу организации внутренних связей счетчики делятся на следующие группы:
— асинхронные (или последовательные);
— синхронные (или параллельные).
По направлению счета двоичные счетчики подразделяются на:
— суммирующие (прямого счета);
— вычитающие (обратного счета);
— реверсивные (с изменением направления счета).
Отмеченные классификационные признаки независимы и могут встречаться в различных сочетаниях. Согласно указанным классификационным признакам и функциональным назначениям микросхем, в схему сведены широко применяемые в аппаратуре отечественные и зарубежные счетчики средней степени интеграции.
3. Реверсивные счетчики
Реверсивным называется счетчик, позволяющий производить счет как в прямом, так и в обратном направлении. На примере микросхем ИЕ6(двоично-десятичный) и ИЕ7(двоичный) исследуем работу реверсивных счетчиков с предварительной записью.
Рис. 1. Структура, условное обозначение и цоколевка микросхем ИЕ6, ИЕ7, их временные диаграммы работы
Установка счетчиков в нулевые состояния осуществляется подачей на вход сброса R высокого уровня напряжения, так как вход R прямой статический.
Входы предварительной записи /РЕ и сброса R при каскадном соединении ИС объединяются в отдельные шины.
Следовательно, счетчики можно переводить в режимы сброса, параллельной загрузки, а также синхронного счета на увеличение или уменьшение.
4. Современный реверсивный счетчик(564ИЕ14 ЭП)
Технические условия исполнения АЕЯР.431200.610-16 ТУ
Предназначены для применения в радиоэлектронной аппаратуре специального назначения.
Краткие основные характеристики:
Диапазон напряжений питания от 4,2 В до 15 В.
Реверсивный счетчик
Целью работы является:
— теоретическое изучение принципа работы счетчиков и регистров;
— экспериментальное исследование счетчика-регистра на интегральных микросхемах.
2. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ
Регистры и счетчики относятся к разряду цифровых устройств и являются одним из наиболее распространенных элементов вычислительной техники. Они широко используются для построения устройств ввода, вывода и хранения информации, а также для выполнения некоторых арифметических и логических операций.
По сигналу на входе С информация, поступившая на входы DО ё DЗ, записывается в регистр и хранится в нем до тех пор, пока не произойдет запись другой информации, либо не поступит сигнал на вход R, обнуляющий регистр.
Функциональная схема и условно-графическое обозначение регистра сдвига представлены на рис.З.
Последовательный информационный код поступит на вход D регистра. Импульс команды сдвига С подается одновременно на синхронизирующие входы всех триггеров регистра и переводит каждый триггер в состояние, в котором находился триггер предыдущего разряда. Таким образом, каждый импульс команды сдвига «продвигает» записываемое число на один разряд вправо.
Счетный триггер и эпюры сигналов, поясняющие его работу, представлены на рис.4.
У счетного триггера состояние выхода изменяется на противоположное при поступлении на вход С каждого очередного счетного импульса.
Функциональная схема и условнографическое обозначение двоичного счетчика с коэффициентом пересчета 2 3 представлена на рис.5.
Если на счетный вход каждого последующего триггера счетчика подавать сигнал с прямого выхода предыдущего триггера, то счетчик будет производить операцию вычитания. Счетчики, способные выполнять функции сложения и вычитания, называются реверсивными.
3. ОПИСАНИЕ ОБЪЕКТА И СРЕДСТВ ИССЛЕДОВАНИЯ
3.4. При исследовании одного из счетчиков, другой должен находиться в исходном состоянии, что достигается подачей на вход R данного счетчика уровня логической «1» с помощью кнопок SА10 или SA11.
3.5. Запись информации в счетчики производится в параллельном коде путем подачи на входы ДО ё ДЗ логических сигналов «0» и «1» с помощь кнопок SА1 ё SА4 и подачи сигнала логического «0» на вход С с помощью кнопки SА9 (для этого кнопку SА9 надо отжать и снова нажать ).
З.6. Счетные импульсы должны поступать на исследуемую схему с клеммы «непр.имп,» ( «
“ ) в виде непрерывной импульсной последовательности и с клеммы «пачка имп.» ( «_|
|_» ) в виде пачки импульсов с числом импульсов в пачке от 1 до 15. Управление режимом работы входов «+1» и «-1» счетчиков производится о помощью кнопок SA13 ё SА16, которые обеспечивают выполнение следующих функций:
Примечание. Не допускается одновременное нажатие двух и более кнопок SА13 ё S А16.
3.7. Для задания числа импульсов в пачке и посылки необходимой пачки в исследуемый узел используются четыре кнопки с фиксацией «2 0 » ё «2 3 » и две кнопки без фиксации «Пуск» и “Устан.О», расположенные на панели лабораторного стенда под надписью «Программатор СИ».
При этом должна соблюдаться следующая последовательность операций:
3.7.1. Набрать заданное число импульсов в пачке в двоичном коде с помощью кнопок “2 0” ё «2 3 «. Нажатой кнопке соответствует логическая «1» (при этом загорается соответствующий индикатор).
3.7.2. Нажать кнопку «устан.О».
3.1.3. В режиме наблюдения одновременно двух сигналов на экране мультиметра величина и взаимное расположение этих сигналов регулируется ручками «
» и “ Ї “ соответственно в поле надписи «Коммутатор» отдельно для каждого канала ( «Вх1» для КПИ 10 и «Вх2» для КПИ 9 ).
3.2. Исследование элемента ДД3 в статическом и динамическом режиме.
3.2.2. Для подачи положительного импульса ( «_|
|_» ) на вход С триггера необходимо кратковременно перевести соответствующую кнопку из отжатого состояния в нажатое и обратно.
3.2.3. Для индикации логических сигналов на выходе триггера, работающего в статическом режиме ( верхняя часть элемента ДДЗ ), служит левое цифровое табло блока К32. При этом кнопка » IO |_2 «, расположенная непосредственно под табло, должна находиться в нажатом состоянии.
3.2.5. Лабораторный стенд позволяет наблюдать на экране мультиметра одновременно два сигнала с любых двух КПИ из восьми ( двухканальный режим наблюдения ). Выбор двух определенных КПИ производится следующим образом:
3.2.5.1. Нажать кнопку » ВСВ |_ ВНК » под надписью «КВУ», при этом у левых индикаторов обоих цифровых табло начинает светиться знак запятой.
3.2.5.2. При отжатой кнопке»Вх1 |_ Вх2″ набрать с помощью кнопок » 2 0 ё 2 3 » программатора «СИ » двоичный код первого выбранного КПИ и нажать кнопку «Пуск». При этом на левом табло у знака запятой появится номер выбранного КПИ.
3.2.5.3. При нажатой кнопке «Вх1 |_ Вх2» повторить указанную процедуру для второго выбранного КПИ. Номер этого КПИ появится у знака запятой правого табло.
3.2.5.4. Нажать кнопку «Коммутатор» под надписью «Контроль V
«‘. Теперь два выбранных КПИ через каналы коммутатора лабораторного стенда соединены с осциллографом мультиметра. Регулировка величины и расположения сигналов на экране осуществляется раздельно ручками «
3.2.5.5. Для выхода из режима наблюдения сигналов на экране мультиметра перевести кнопку «ВСВ |_ БНК» под надписью «КВУ» в отжатое состояние.
3.3. Исследование элементов ДД4 (статический режим) и ДД5 (счетный режим ).
3.3.2. Сигнал на вход С триггера поступает от встроенного генератора импульсов лабораторного стенда, который вырабатывает серию импульсов положительной полярности. Число импульсов может изменяться от 1 до 15 и устанавливается с помощью кнопок с фиксацией » 2 0 ё 2 3 «, расположенных под надписью «Программатор СИ». Кнопки без фиксации «Пуск» и «Устан.О» служат для задания режима работы генератора. При этом должна соблюдаться следующая последовательность действий:
3.3.2.1. Набрать число импульсов в пачке в двоичном коде с помощью кнопок » 2 0 ё 2 3 «. Кнопки в нажатом состоянии соответствует двоичная единица ( при этом загорается соответствующий светодиод ).
3.3.2.2. Нажать кнопку «Устан.О»и убедиться, что светодиод кнопки «Пуск» погашен. Генератор импульсов готов к работе.
3.3.2.3. Нажать кнопку «Пуск». При этом генератор вырабатывает нужную пачку импульсов. Для повторного включения генератора нажать кнопку «Устан.О», а затем кнопку «Пуск» и т.д.
3.3.3. Контроль выходных сигналов триггеров ДД4 осуществляется с помощью левого цифрового табло на блоке К32.
3.3.4. Счетные импульсы на триггер ДД5, работающий в счетном режиме, поступают через элемент “И», собранный на микросхеме ДД1.
3.7.3. Нажать кнопку «Пуск». При этом в исследуемый узел поступает заданная пачка импульсов.
3.9. Выходные сигналы двоичных разрядов и сигналы переносов счетчиков, а также входные счетные импульсы сложения и вычитания, поступают параллельно на восемь каналов передачи информации КПИ1 ё КПИ8, что дает возможность их наблюдения на экране мультиметра, входящего в состав лабораторного стенда.
Одновременно на экране мультиметра можно наблюдать сигналы двух каналов передачи информации. При этом необходимо выполнить следующие операции:
3.9.1. Нажать кнопку «ВСВ |_ ВНК» под надписью «КВУ»,
3.9.2. При отжатой кнопке «Вх1 |_ Вх2″ набрать с помощью кнопок » 2 0 ё 2 3 «, двоичный код первого выбранного КПИ и нажать кнопку «Пуск». При этом на левом табло появится номер выбранного КПИ.
3.9.3. Повторить указанную процедуру при нажатой кнопке «Вх1 |_ Вх2». Номер второго выбранного КПИ должен появиться на правом табло.
3.9.4. Нажать кнопку «Коммутатор» под надписью «Контроль”. При этом выбранные КПИ подсоединяются к соответствующему входу мультиметра. Размах и ориентация сигналов на экране мультиметра регулируется потенциометрами «
3.9.5. Для выхода из режима наблюдения сигналов на экране мультиметра необходимо отжать кнопку «ВСВ |_ ВНК» под надписью «КВУ».