Что такое ряд чисел
Ряд, в математике
Полезное
Смотреть что такое «Ряд, в математике» в других словарях:
Ряд в математике — Содержание. 1) Определение. 2) Число, определяемое рядом. 3) Сходимость и расходимость рядов. 4) Условная и абсолютная сходимость. 5) Равномерная сходимость. 6) Разложение функций в ряды. 1. Определения. Р. есть последовательность элементов,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Ряд — имеет несколько значений: Ряд совокупность однородных, похожих предметов, расположенных в одну линию. Ряд совокупность каких нибудь явлений, следующих одно за другим в определённом порядке. Ряд некоторое, немалое количество, например «ряд стран» … Википедия
Ряд Тейлора — Ряд Тейлора разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Брука Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а… … Википедия
Ряд Маклорена — Ряд Тейлора разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а также Ньютон. Ряды… … Википедия
Ряд тейлора — разложение функции в бесконечную сумму степенных функций. Ряд назван в честь английского математика Тейлора, хотя ряд Тейлора был известен задолго до публикаций Тейлора его использовали ещё в XVII веке Грегори, а также Ньютон. Ряды Тейлора… … Википедия
Ряд Мёбиуса — Ряд Мёбиуса функциональный ряд вида Этот ряд был исследован Мёбиусом, который нашел для этого ряда формулу обращения: где функция Мёбиуса … Википедия
Ряд — I м. 1. Совокупность однородных предметов, расположенных в одну линию. отт. Строй в одну линию; шеренга. 2. Линейная последовательность мест для сидения в театре, кино и т.п. отт. Лица, занимающие такие места. 3. Расположенные в одну линию ларьки … Современный толковый словарь русского языка Ефремовой
Ряд — I м. 1. Совокупность однородных предметов, расположенных в одну линию. отт. Строй в одну линию; шеренга. 2. Линейная последовательность мест для сидения в театре, кино и т.п. отт. Лица, занимающие такие места. 3. Расположенные в одну линию ларьки … Современный толковый словарь русского языка Ефремовой
Числа. Натуральные числа.
Простейшее число — это натуральное число. Их используют в повседневной жизни для подсчета предметов, т.е. для вычисления их количества и порядка.
Что такое натуральное число: натуральными числами называют числа, которые используются для подсчета предметов либо для указывания порядкового номера любого предмета из всех однородных предметов.
В натуральном ряду каждое число больше предыдущего на единицу.
Сколько чисел в натуральном ряду? Натуральный ряд бесконечен, самого большого натурального числа не существует.
Десятичной так как 10 единиц всякого разряда образуют 1 единицу старшего разряда. Позиционной так как значение цифры зависит от её места в числе, т.е. от разряда, где она записана.
Для подсчета времени в градусной мере углов существует шестидесятеричная система счисления (основа число 60). В 1 часе — 60 минут, в 1 минуте — 60 секунд; в 1 угловом градусе — 60 минут, в 1 угловой минуте — 60 секунд.
Всякое натуральное число легко записать в виде разрядных слагаемых.
Числа 1, 10, 100, 1000. – это разрядные единицы. При их помощи натуральные числа записывают как разрядные слагаемые. Таким образом, число 307 898 в виде разрядных слагаемых записывается так:
307 898 = 300 000 + 7 000 + 800 + 90 + 8
Обозначение натуральных чисел: Множество натуральных чисел обозначают символом N.
Классы натуральных чисел.
Всякое натуральное число возможно написать при помощи 10-ти арабских цифр:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
Сравнение натуральных чисел.
Таблица разрядов и классов чисел.
1-й разряд единицы тысяч
2-й разряд десятки тысяч
3-й разряд сотни тысяч
1-й разряд единицы миллионов
2-й разряд десятки миллионов
3-й разряд сотни миллионов
4-й класс миллиарды
1-й разряд единицы миллиардов
2-й разряд десятки миллиардов
3-й разряд сотни миллиардов
Числа от 5-го класса и выше относятся к большим числам. Единицы 5-го класса — триллионы, 6-го класса — квадриллионы, 7-го класса — квинтиллионы, 8-го класса — секстиллионы, 9-го класса — ептиллионы.
Основные свойства натуральных чисел.
Действия над натуральными числами.
1. Сложение натуральных чисел результат: сумма натуральных чисел.
Формулы для сложения:
В основном, сложение натуральных чисел выполняется « столбиком ».
2. Вычитание натуральных чисел – операция, обратная сложению: разница натуральных чисел.
Формулы для вычитания:
Вычитание натуральных чисел удобно производить « столбиком ».
3. Умножение натуральных чисел : произведение натуральных чисел.
Формулы для умножения:
(а + b) ∙ с= а ∙ с + b ∙ с
(а – b) ∙ с = а ∙ с – b ∙ с
4. Деление натуральных чисел – операция, обратная операции умножения.
Формулы для деления:
Числовые выражения и числовые равенства.
Запись, где числа соединяются знаками действий, является числовым выражением.
Записи, где знаком равенства объединены 2 числовых выражения, является числовыми равенствами. У равенства есть левая и правая части.
Порядок выполнения арифметических действий.
Когда числовое выражение состоит из действий только одной степени, то их выполняют последовательно слева направо.
Когда в выражении есть скобки – сначала выполняют действия в скобках.
Например, 36:(10-4)+3∙5= 36:6+15 = 6+15 = 21.
Числовые ряды
Сумма ряда, или бесконе́чная су́мма, или ряд, — математическое выражение, позволяющее записать бесконечное количество слагаемых и подразумевающее значение их суммы, которое можно получить в предельном смысле. Если значение суммы (в предельном смысле) существует, то говорят, что ряд сходится. В противном случае говорят, что он расходится.
Содержание
Определение
Сходимость
Если ряд сходится, то общий член ряда стремится к нулю. Достаточные признаки сложнее:
Примеры
См. также
Полезное
Смотреть что такое «Числовые ряды» в других словарях:
Числовой ряд — Числовой ряд это числовая последовательность, рассматриваемая вместе с другой последовательностью, которая называется последовательностью частичных сумм (ряда). Рассматриваются числовые ряды двух видов вещественные числовые ряды … … Википедия
СХОДИМОСТЬ — одно из основных понятий математич. анализа, означающее, что нек рый математич. объект имеет предел. В этом смысле говорят о С. последовательности каких либо элементов, С. ряда, С. бесконечного произведения, С. цепной дроби, С. интеграла и т. п.… … Математическая энциклопедия
РЯД — б е с к о н е ч н а я с у м м а, последовательность элементов (наз. ч л е н а м и д а н н о г о р я д а) нек рого линейного топологич. пространства и определенное бесконечное множество их конечных сумм (наз. ч а с т и ч н ы м и с у м м а м и р я… … Математическая энциклопедия
Ряд — I бесконечная сумма, например вида u1 + u2 + u3 +. + un +. или, короче, Одним из простейших примеров Р., встречающихся уже в элементарной математике, является сумма бесконечно убывающей… … Большая советская энциклопедия
Число — I Число важнейшее математическое понятие. Возникнув в простейшем виде ещё в первобытном обществе, понятие Ч. изменялось на протяжении веков, постепенно обогащаясь содержанием по мере расширения сферы человеческой деятельности и связанного … Большая советская энциклопедия
Знакочередующийся ряд — Ряд называется знакочередующимся, если его члены попеременно принимают значения противоположных знаков, т. е.: Признак Лейбница Основная статья: Теорема Лейбница о сходимости знакочередующихся рядов Признак Лейбница признак… … Википедия
Число (матем.) — Число, важнейшее математическое понятие. Возникнув в простейшем виде ещё в первобытном обществе, понятие Ч. изменялось на протяжении веков, постепенно обогащаясь содержанием по мере расширения сферы человеческой деятельности и связанного с ним… … Большая советская энциклопедия
Индикатор деловой перспективы — (Indicator of business prospects, IFO) Определение индикатора деловой перспективы, индекс делового климата Содержание Содержание Экономический Индекс IFO мирового бизнес климата Инвестиционный обзор IFO Индекс IFO германского бизнес климата в… … Энциклопедия инвестора
Основные понятия. Запись нескольких первых членов ряда. Свойства числовых рядов.
Понятие числового ряда. Общий член ряда.
Пример числового ряда: показать\скрыть
Полагаю, сразу же возникнет вопрос: а что будет, если нижний предел суммирования не равен единице? Совпадёт ли выражение под знаком суммы с общим членом ряда? Ответ в общем случае отрицательный: скорее всего, не совпадёт. Советую глянуть пример №2, чтобы выяснить, что же будет в этом случае. Впрочем, в подавляющем большинстве учебных примеров нижний предел суммирования берут равным именно единице.
Теперь нужно указать общий член ряда. Казалось бы, всё просто: вот он, этот общий член – стоит под знаком суммы. Просто перепишем и всё:
Если пропустить все промежуточные выкладки, то мы приходим к простому равенству:
Можете проверить этот результат, найдя несколько первых членов суммы в левой и правой частях равенства.
Частичная сумма ряда. Сходящиеся и расходящиеся ряды. Остаток ряда.
Пусть задан числовой ряд
Вопрос вычисления суммы числового ряда рассмотрен в соответствующей теме.
Теперь перейдём к остаткам. Отбрасывая первый член, получим первый остаток ряда:
Отбрасывая первые два члена, запишем второй остаток ряда:
Отбрасывая первые три члена, запишем третий остаток ряда:
В принципе, при желании остатки можно записать в сжатой форме:
Некоторые свойства числовых рядов
Заметили ошибку, опечатку, или некорректно отобразилась формула? Отпишите, пожалуйста, об этом в данной теме на форуме (регистрация не требуется).
Натуральные числа
Натуральные числа — одно из старейших математических понятий.
В далёком прошлом люди не знали чисел и, когда им требовалось пересчитать предметы (животных, рыбу и т.д.), они делали это не так, как мы сейчас.
Количество предметов сравнивали с частями тела, например, с пальцами на руке и говорили: «У меня столько же орехов, сколько пальцев на руке».
Со временем люди поняли, что пять орехов, пять коз и пять зайцев обладают общим свойством — их количество равно пяти.
Наибольшего натурального числа не существует.
При счёте число ноль не используется. Поэтому ноль не считается натуральным числом.
Затем появились и особые знаки для обозначения чисел — предшественники современных цифр. Цифры, которыми мы пользуемся для записи чисел, родились в Индии примерно 1 500 лет назад. В Европу их привезли арабы, поэтому их называют арабскими цифрами.
Натуральный ряд — это последовательность всех натуральных чисел:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 …
Натуральный ряд бесконечен, наибольшего натурального числа в нём не существует.
Десятичной потому, что 10 единиц каждого разряда образуют 1 единицу старшего разряда. Позиционной потому, что значение цифры зависит от её места в записи числа, то есть от разряда, в котором она записана.
Разряды и классы (включая класс миллионов) подробно разобраны на нашем сайте в материалах для начальной школы.
Класс миллиардов
Если взять десять сотен миллионов, то получим новую разрядную единицу — один миллиард или в записи цифрами.
1 000 миллионов = 1 000 000 000 = 1 млрд
Десять таких единиц — десять миллиардов, десять десятков миллиардов образуют следующую единицу — сто миллиардов.
Миллиарды, десятки миллиардов и сотни миллиардов образуют четвёртый класс — класс миллиардов.
Разряды и классы натурального числа
Рассмотрим натуральное число 783 502 197 048
Название класса | Миллиарды | Миллионы | Тысячи | Единицы | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Название разряда | Сотни миллиардов | Десятки миллиардов | Миллиарды | Сотни миллионов | Десятки миллионов | Миллионы | Сотни тысяч | Десятки тысяч | Тысячи | Сотни | Десятки | Единицы |
Цифра (символ) | 7 | 8 | 3 | 5 | 0 | 2 | 1 | 9 | 7 | 0 | 4 | 8 |
Название класса | Миллиарды | Миллионы | Тысячи | Единицы | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Название разряда | Сотни миллиардов | Десятки миллиардов | Миллиарды | Сотни миллионов | Десятки миллионов | Миллионы | Сотни тысяч | Десятки тысяч | Тысячи | Сотни | Десятки | Единицы |
Цифра (символ) | 7 | 8 | 3 | 5 | 0 | 2 | 1 | 9 | 7 | 0 | 4 | 8 |
C помощью таблицы разрядов прочитаем это число. Для этого надо слева направо по очереди называть количество единиц каждого класса и добавлять название класса.
Название класса единиц не произносят, также не произносят название класса, если все три цифры в его разрядах — нули.
Любое натуральное число можно записать в виде разрядных слагаемых.
Числа 1, 10, 100, 1000 … называются разрядными единицами. С их помощью натуральное число записывается в виде разрядных слагаемых. Так, например, число 307 898 будет выглядеть в виде разрядных слагаемых.
307 898 = 300 000 + 7 000 + 800 + 90 + 8
Проверить свои вычисления вы можете с помощью нашего калькулятора разложения числа на разряды онлайн.
Следующие за миллиардом классы названы в соответствии с латинскими наименованиями чисел. Каждая следующая единица содержит тысячу предыдущих.
Все числа пересчитать невозможно, поскольку за каждым числом следует число на единицу большее, но очень большие числа в повседневной жизни не нужны.
Однако, физики нашли число, которое превосходит количество всех атомов (мельчайших частиц вещества) во всей Вселенной.
Это число получило специальное название — гугол. Гугол — число, у которого 100 нулей.