Что такое самовоспламенение это возникновение горения при нагревании
Что такое самовоспламенение это возникновение горения при нагревании
ОСНОВЫ ПОЖАРНОЙ БЕЗОПАСНОСТИ
6.1. Общие сведения о процессе горения
Горение – химический процесс соединения веществ с кислородом, сопровождающийся выделением тепла и света. Современная физико-химическая теория горения относит к горению все химические процессы, связанные с быстрым превращением и тепловым или диффузионным их ускорением. Это сложный химический процесс, в котором участвуют также и другие, нехимические процессы: диффузия, теплопередача.
Для возникновения горения необходим контакт горючего вещества с окислителем (кислород, фтор, хлор, озон) и с источником зажигания, способный передать горючей системе необходимый энергетический импульс. Наиболее бурно горят вещества в чистом кислороде. По мере уменьшения его концентрации горение замедляется. Большинство веществ прекращают горение при снижении концентрации кислорода в воздухе до 12-14%, а тление – при 7-8% (водород, сероуглерод, оксид этилена и некоторые другие вещества могут гореть в воздухе при 5% кислорода).
При длительном нагреве вещества, возможно, его самовоспламенение.
Вспышка – быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов. Температура вспышки – самая низкая температура горючего вещества, при которой над его поверхностью образуются пары или газы, способные вспыхивать от источника зажигания, но скорость их образования еще недостаточна для последующего горения.
Возгорание – возникновение горения под воздействием источника зажигания.
Воспламенение – возгорание, сопровождающееся появлением пламени. Температура воспламенения – температура горючего вещества, при которой оно выделяет горючие пары или газы с такой скоростью, что после воспламенения их от источника зажигания возникает устойчивое горение.
Температура воспламенения зависит не только от природы вещества, но и от атмосферного давления, концентрации кислорода и других факторов. Например, температура воспламенения дерева колеблется в пределах от 250 до 350 °С, торфа – 250-280 «С, нефти – 120-480 °С и т.д. Чем ниже температура воспламенения материала, тем этот материал более огнеопасен.
Жидкости, способные гореть, делятся на горючие и легковоспламеняющиеся. Горючие жидкости (ГЖ) – жидкости, имеющие температуру вспышки выше 61 «С. Легковоспламеняющиеся жидкости (ЛВЖ) – жидкости, имеющие температуру вспышки ниже 61 0 С.
Самовозгорание – процесс самонагрева и последующего горения некоторых веществ без воздействия открытого источника зажигания. Начальное самонагревание вещества, приводящее к резкому увеличению скорости экзотермических реакций, может быть вызвано химическими, микробиологическими и тепловыми процессами.
Микробиологическому самовозгоранию могут подвергаться многие продукты растениеводства – сырое зерно, сено и другие, в которых при определенной влажности и температуре интенсифицируется жизнедеятельность микроорганизмов и образуется паутинистый глей (гриб). Это вызывает повышение температуры веществ до критических величин, после которых происходит самоускорение экзотермических реакций.
Тепловое самовозгорание происходит при первоначальном внешнем нагреве вещества до определенной температуры. Полувысыхающие растительные масла (подсолнечное, хлопковое и др.), скипидарные лаки и краски могут самовозгораться при температуре 80-100.°С, древесные опилки, линолеум – 100 0 С. Чем ниже температура самовозгорания вещества, тем оно пожароопаснее.
Самовоспламенение – процесс горения, вызванный внешним источником тепла и нагреванием вещества без соприкосновения с открытым пламенем.
Взрыв – это процесс освобождения большого количества энергии в ограниченном объеме за короткий промежуток времени. Характерный признак взрыва – мгновенный рост высокой температуры и высокого давления газов в месте взрыва.
Различают взрывчатые химические соединения и взрывчатые смеси, взрывчатые горючие газы, пары легковоспламеняющихся и горючих жидкостей.
Источник зажигания – средство энергетического воздействия, вызывающее возникновение горения. Их подразделяют на открытые (светящиеся) – пламя, искры, раскаленные поверхности оборудования, предметов, световое излучение и др. и скрытые (несветящиеся) – теплота химических реакций, микробиологических процессов, сжатия, трения, ударов и т.п.
Температура источников зажигания различная, например, пламя спички имеет температуру 620-640°С, древесина горящая – 1000 о С, парафиновая свеча – 1427°С, природный и сжиженный газ – 1200°С и т.д. Этой температуры вполне достаточно для воспламенения большинства горючих веществ. Так, древесина сосны воспламеняется при температуре 255°С, резина – 270°С, хлопок – 260°С и т.д.
Пожароопасность искр зависит от их размеров и температуры. Искры диаметром 2 мм пожароопасны, если имеют температуру 1000°С, 3 мм – 800 °С, 5 мм – 600 °С. Температура искры, образующейся при ударе стальных деталей друг о друга, составляет 1630 °С.
Самовоспламенение
Самовоспламенение – резкое увеличение скорости экзотермических объемных реакций в смеси вещества с воздухом, сопровождающееся пламенным горением и (или) взрывом.
Самовоспламенение возникает при сравнительно умеренном нагревании всей или части массы горючего вещества при отсутствии высокотемпературного внешнего источника зажигания. Процесс самовоспламенения описан теорией теплового взрыва газовых смесей и общей количественной теорией цепных реакций, разработанными одним из основоположников химической физики Н.Н. Семёновым (1896-1986). Согласно тепловой теории возникновение процесса самовоспламенения происходит при условии, когда тепловыделение в результате экзотермической реакции превышает теплопотери из зоны реакции. Согласно цепной теории самовоспламенения обусловливается накоплением активных центров реакции – радикалов и атомарных частиц, обладающих высокой реакционной способностью. Возникновение самовоспламенения характеризуется одним показателем – температурой самовоспламенения. Для её определения предусмотрены стандартные приборы. Температура, при которой наблюдается самовоспламенение, зависит от состава смеси и с повышением давления снижается.
Особую группу наиболее пожароопасных веществ, самовоспламенение которых происходит при контакте с воздухом без нагрева, составляют пирофоры. К ним относятся: из газообразных веществ – моносилан (SiН4), диборан (В2Н6); из жидких – металлоорганические (алюминийорганические – триметилалюминий Аl(СН3) и др.); гидриды бора (пентаборан); из твёрдых – некоторые металлы (эвтектика К и Na), гидриды металлов (АlН3 и др.), белый фосфор, сульфид железа и ряд др. веществ.
Литература: ГОСТ 12.1.044-89. ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения.
Воспламенение, самовоспламенение, самовозгорание веществ и материалов
Самовозгорание, возникновение горения в результате самонагревания горючих твердых материалов, вызванного самоускорением в них экзотермических реакций. Самовозгорание происходит из-за того, что тепловыделение в ходе реакций больше теплоотвода в окружающую среду.
Начало самовозгорания характеризуется температурой самонагревания (Tсн), представляющей собой минимальную в условиях опыта температуру, при которой обнаруживается тепловыделение.
При достижении в процессе самонагревания определенной температуры, называемой температурой самовозгорания (Tсвоз), возникает горение материала, проявляющееся либо тлением, либо пламенным горением. В последнем случае Tсвоз адекватна температуре самовоспламенения (Tсв), под которым понимают возникновение горения газов и жидкостей при нагревании до некоторой критической температуры. В принципе самовозгорание и самовоспламенение по физической сущности сходны и различаются лишь видом горения, самовоспламенение возникает только в виде пламенного горения.
В случае самовоспламенения самонагревание (предвзрывной разогрев) развивается в пределах всего нескольких градусов и поэтому не учитывается при оценке пожаровзрывоопасности газов и жидкостей. При самовозгорании область самонагревания может достигать нескольких сотен градусов (например, для торфа от 70 до 225 °С). Вследствие этого явление самонагревания всегда учитывается при определении склонности твердых веществ к самовозгоранию
Самовозгорание изучают путем термостатирования исследуемого материала при заданной температуре и установления зависимости между температурой, при которой возникает горение, размерами образца и временем его нагрева в термостате.
Основные огнетушащие средства
К огнетушащим веществам относятся, прежде всего, вода, огнетушащие пены (химическая и воздушно-механическая), инертные газы, двуокись углерода и твердые огнетушащие вещества.
Водяной пар в зоне горения уменьшает концентрацию кислорода, поддерживающего горение. Для борьбы с огнем вода может применяться в виде цельной, компактной, а также рассеянной струи.
Для тушения пожаров водой на крупных промышленных предприятиях, а также лесных пожаров может использоваться авиация. Например, самолеты ИЛ-76, оборудованные специальным сливным устройством, вмещают в себя до 40 т воды и могут выливать ее в точно намеченное место, создавая сплошную полосу воды шириной и длиной до 1000 м.
Следует помнить, что вода не всегда может быть использована для тушения огня, так как не все горящие предметы и вещества можно тушить водой.
Нельзя применять воду при тушении пожара в зданиях, где находятся вещества, вступающие с водой в химическую реакцию, в результате которой может произойти воспламенение пожароопасных газов или подняться (развиться) большая температура.
Нельзя тушить водой легковоспламеняющиеся и горючие жидкости с удельным весом меньше 1, потому что вода тяжелее и будет опускаться вниз, а горящая жидкость подниматься вверх, переливаться через края и увеличивать зону горения.
Вода электропроводна, поэтому нельзя тушить водой установки, находящиеся под током, чтобы не быть им пораженным и избежать короткого замыкания.
Когда для ликвидации возгораний нельзя использовать воду, применяют огнетушащие пены.
Химическая пена. Образуется при взаимодействии карбоната и бикарбоната натрия с кислотой в присутствии пенообразователя. Такую пену получают в эжекторных переносных приборах (пеногенераторах) из пенопорошка и воды. Пенопорошок состоит из сухих солей (сернокислотного алюминия, бикарбоната натрия) и лакричного экстракта, или другого пенообразующего вещества, который при взаимодействии с водой растворяется и немедленно реагирует с образованием двуокиси углерода. В результате выделения большого количества двуокиси углерода получается плотный покров устойчивой пены (слой толщиной 7-10 см), малоразрушающийся от действия пламени, не взаимодействующий с нефтепродуктами и не пропускающий пары жидкости.
Тушение инертными газами. Инертные газы и водяной пар обладают свойством быстро смешиваться с горючими парами и газами, понижая при этом концентрацию кислорода, способствуя прекращению горения большинства горючих веществ. Огнетушащее действие инертных газов и водяного пара объясняется также тем, что они разбавляют горючую среду, снижая при этом температуру в очаге пожара, в результате чего происходит затруднение процесса горения.
Двуокись углерода широко применяют для ускорения ликвидации очага горения (в течение 2-10 секунд), что особенно важно при тушении небольших по площади поверхностей горючих жидкостей, двигателей внутреннего сгорания, электродвигателей и других электротехнических установок, а также для предупреждения воспламенения и взрыва при хранении легковоспламеняющихся жидкостей, изготовлении и транспортировке горючих пылей (например, угольных). Для тушения пожаров двуокисью углерода используются автоматические стационарные установки, а также ручные передвижные и переносные огнетушители.
Задача № 3
1. Нормальная продолжительность тушения пожара:
2. Предел огнестойкости:
При К=2, К=1 и К=0,5 для стен и колонн, для перекрытий и покрытий и для перегородок соответственно получаем:
Дата добавления: 2019-02-26 ; просмотров: 1836 ; Мы поможем в написании вашей работы!
Исследование процессов самовоспламенения, самовозгорания и явления пирофорности
«ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Кафедра «Безопасность жизнедеятельности и
защита окружающей среды»
Методические указания к
самовоспламенения, самовозгорания и
САМОВОСПЛАМЕНЕНИЕ — возгорание, вызванное резким увеличением скорости экзотермических реакций, при нагреве материи сопровождающееся пламенем. Возникает от нагревания всей (или части) массы горючего вещества при отсутствии внешнего дополнительного источника зажигания. Нагрев может быть осуществлен как через стенку аппарата, так и посредством адиабатического сжатия. Природа самовоспламенения может быть тепловой или цепной. Представления о причинах теплового самовоспламенения в качественной форме даны Я. Вант-Гоффом (1883). Теорию теплового самовоспламенения разработал (1928). Теплота, выделяющаяся при медленном протекании экзотермической реакции, рассеивается в окружающее пространство. При некоторых условиях температуры, давления и теплоотвода теплота не успевает передаться в окружающее пространство, вследствие чего температура в зоне реакции прогрессивно повышается. С ростом температуры скорость реакции и скорость теплообразования увеличиваются, увеличивается также и скорость теплоотвода, однако медленнее, чем скорость реакции. Температура, начиная с которой выделяющаяся теплота больше отводимой, называется температурой самовоспламенения; она зависит, очевидно, как от химического состава смеси, так и от условий теплоотдачи. Начиная с температуры самовоспламенения происходит прогрессивное саморазогревание смеси и самоускорение реакции, приводящее к тепловому самовоспламенению или взрыву. Теория теплового самовоспламенения позволяет вычислить температуру самовоспламенения, если известны тепловые характеристики горючей газовой смеси (тепловой эффект, теплопроводность) и кинетика реакций горения (константа скорости, энергия активации). Теория цепного самовоспламенения также создана Семеновым (1928). При определённых внешних условиях скорость разветвления цепей становится больше скорости обрыва цепей. Вследствие этого медленно идущая реакция может перейти в самоускоряющуюся. При этом температура смеси не имеет существенного значения и реакция будет идти самоускоряясь из-за разветвления цепей, если даже температура смеси будет поддерживаться постоянной. Наиболее распространённым типом самовоспламенения является комбинированное цепочно-тепловое самовоспламенение. Количественные выводы теории теплового и цепного самовоспламенения имеют большое практическое значение для расчёта производств, связанных с процессами окисления, в частности горения.
САМОВОЗГОРАНИЕ — загорание без внешнего источника зажигания, происходящее в результате самоинициируемых экзотермических процессов, прежде всего жизнедеятельности микроорганизмов внутри большой массы вещества (материала) при длительном хранении без перемещения слоев. Самовозгорание способствует повышенная влажность материала и пористая структура, обеспечивающая диффузию кислорода или большую сорбционную способность. Самовозгоранию предшествует самонагревание (обычно до 80°C), вызываемое жизнедеятельностью микроорганизмов, погибающих при более высоких температурах. Дальнейшее нагревание до температуры самовозгорания обеспечивается за счет окисления воздухом. При недостатке воздуха самовозгорание может не наступить.
Температуры самовоспламенения некоторых жидкостей, газов и твердых веществ, имеющих применение в машиностроительной промышленности, приведены в табл.
Таблица. Температуры самовоспламенения некоторых веществ.
Тема 5. Горение веществ и материалов, общие сведения о горении, показатели пожаровзрывоопасности веществ и материалов
Вопрос №1. Общие сведения о процессе горения. Основные понятия и определения.
Горение – это химическая реакция окисления, сопровождающаяся выделением большого количества теплоты и свечением. Окислителем чаще всего является кислород воздуха, иногда – другие химические элементы: хлор, фтор и др.
Для возникновения процесса горения необходимо наличие горючего вещества, окислителя и источника зажигания. Горючим называется вещество Нажмите для перехода на ПожВики (материал, смесь, конструкция), способное самостоятельно гореть после удаления источника зажигания. Под источником зажигания понимают горячее или раскаленное тело, а также электрический разряд, обладающие запасом энергии и температурой, достаточной для возникновения горения других веществ (пламя, искры, раскаленные предметы, выделяемая при трении теплота и др.).
Необходимым и достаточным условием для горения при пожаре обычно представляют в виде «классического треугольника пожара» (рис. 1): горючее – окислитель – источник воспламенения. Устранив одно из слагаемых треугольника, снижается вероятность возникновения пожара.
Рис. 1 Классический треугольник пожара.
Горение бывает полное и неполное. Полное горение протекает при достаточном количестве кислорода (не менее 14 %), в результате чего образуются вещества, неспособные к длительному окислению (диоксид углерода, вода, азот и др.). При недостаточном содержании кислорода (менее 10 %) происходит неполное беспламенное горение (тление), сопровождающееся образованием токсичных и горючих продуктов (спиртов, кетонов, угарного газа и т. п.).
Пожар – неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства. Пожар следует отличать от сжигания, представляющего собой контролируемое горение внутри или вне специального очага.
Взрыв – это быстрое превращение вещества (взрывное горение), сопровождающееся образованием большого количества сжатых газов, под давлением которых могут происходить разрушения. Горючие газообразные продукты взрыва, соприкасаясь с воздухом, часто воспламеняются, что обычно приводит к пожару, усугубляющему негативные последствия взрыва.
Детонационное горение возникает во взрывоопасной среде при прохождении по ней достаточно сильной ударной волны. При ударном сжатии температура газа может повыситься до температуры самовоспламенения. Происходит химическая реакция. Часть выделившейся теплоты затрачивается на энергетическое развитие и усиление ударной волны, поэтому она перемещается по горючей смеси не ослабевая. Такой комплекс, представляющий собой ударную волну и зону химической реакции, называют детонационной волной, а само явление – детонацией. Детонационное горение вызывает сильные разрушения и поэтому представляет большую опасность при образовании горючих газовых систем.
Следует различать термины «самовозгорание» и «самовоспламенение».
Самовозгорание – это явление резкого увеличения скорости экзотермических реакций, приводящее к горению вещества, материала или смеси в отсутствие источника зажигания. Оно может быть тепловое, химическое и микробиологическое.
Самовоспламенение представляет собой самовозгорание, сопровождающееся появлением пламени. Температура самовоспламенения большинства горючих жидкостей находится в пределах 250. 700 °С (исключения: сероуглерод – 112…150 °С, серный эфир – 175. 205 °С), а твердых горючих веществ – 150. 700 °С, хотя, например, целлулоид способен самовоспламеняться уже при температуре 141 °С.
Вопрос №2. Показатели, характеризующие взрывопожароопасные свойства веществ и материалов.
Изучение взрывопожароопасных свойств веществ и материалов, обращающихся в процессе производства, является одной из основных задач пожарной профилактики, направленной на исключение горючей среды из системы пожара.
В соответствии с ГОСТ 12.1.044-89 по агрегатному состоянию вещества и материалы подразделяются на:
Номенклатура показателей и их применяемость для характеристики пожаровзрывоопасности веществ и материалов приведены в табл. 1.
Показатели и их применяемость для характеристики
взрывопожароопасных свойств веществ и материалов
Концентрационные пределы воспламенения
Условия теплового самовозгорания
Способность взрываться и гореть при взаимодействии с водой, кислородом воздуха и другими веществами
Показатель токсичности продуктов горения полимерных материалов
(Знак «+» обозначает применяемость, знак «—» неприменяемость показателя).
Температура самонагревания – самая низкая температура вещества, при которой самопроизвольный процесс его нагревания не приводит к тлению или пламенному горению.
Безопасной температурой длительного нагрева вещества считают температуру, не превышающую 90% температуры самонагревания.
Коэффициент дымообразования – показатель, характеризующий оптическую плотность дыма, образующегося при пламенном горении или термоокислительной деструкции (тлении) определенного количества твердого вещества (материала) в условиях специальных испытаний.
Различают 3 группы материалов по дымообразующей способности (табл. 2).
Группы материалов по дымообразующей способности
Группы материалов по дымообразующей способности
Коэффициент дымообразования, м 2 /кг (м 3 /кг)
до 50 вкл. (до 10 вкл.)
свыше 50 до 500 вкл. (св. 10 до 100 вкл.)
свыше 500 (свыше 100)
Примеры дымообразующей способности строительных материалов при тлении (горении), м 3 /кг:
Древесное волокно (береза, осина) — 62.
Декоративный бумажно-слоистый пластик — 75.
Фанера марки ФСФ — 140.
ДВП, облицованная пластиком — 170.
Классификация материалов приведена в таблице 3:
Показатели токсичности веществ и материалов
при времени экспозиции, мин
* Для материалов чрезвычайно опасных по токсичности масса не превышает 25 грамм, чтобы создать смертельную концентрацию в объеме 1 м 3 за время 5 мин. Соответственно, за время 15 мин — до 17; 30 мин — до 13; 60 мин — до 10 грамм.
Нижний (верхний) концентрационные пределы распространения пламени (воспламенения) — минимальное (максимальное) содержание горючего вещества в однородной смеси с окислительной средой, при котором возможно распространение пламени по смеси на любое расстояние от источника зажигания.
Температура тления — температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций окисления, заканчивающихся возникновением тления.
Негорючие (несгораемые) — вещества и материалы, не способные к горению в воздухе. Негорючие вещества могут быть пожаровзрыво-опасными (например, окислители или вещества, выделяющие продукты при взаимодействии с водой, кислородом воздуха или друг с другом).
Трудногорючие (трудносгораемые) — вещества и материалы, способные гореть в воздухе при воздействии источника зажигания, но не способные самостоятельно гореть после его удаления.
Горючие (сгораемые) — вещества и материалы, способные самовозгораться, а также возгораться при воздействии источника зажигания и самостоятельно гореть после его удаления.
Горючие жидкости (ГЖ) с Твсп Вопрос №3. Классификация строительных, текстильных и кожевенных материалов по пожарной опасности.
Классификация веществ и материалов по пожаровзрывоопасности и пожарной опасности Нажмите для перехода на ПожВики используется для установления требований пожарной безопасности при получении веществ и материалов, применении, хранении, транспортировании, переработке и утилизации.
Классификация строительных, текстильных и кожевенных материалов по пожарной опасности основывается на их свойствах и способности к образованию опасных факторов пожара.
Пожарная опасность строительных, текстильных и кожевенных материалов характеризуется следующими свойствами:
3) способность распространения пламени по поверхности;
4) дымообразующая способность;
5) токсичность продуктов горения.
По горючести строительные материалы подразделяются на горючие (Г) и негорючие (НГ).
Горючие строительные материалы подразделяются на следующие группы:
1) слабогорючие (Г1), имеющие температуру дымовых газов не более 135 градусов Цельсия, степень повреждения по длине испытываемого образца не более 65 процентов, степень повреждения по массе испытываемого образца не более 20 процентов, продолжительность самостоятельного горения 0 секунд;
2) умеренногорючие (Г2), имеющие температуру дымовых газов не более 235 градусов Цельсия, степень повреждения по длине испытываемого образца не более 85 процентов, степень повреждения по массе испытываемого образца не более 50 процентов, продолжительность самостоятельного горения не более 30 секунд;
3) нормальногорючие (Г3), имеющие температуру дымовых газов не более 450 градусов Цельсия, степень повреждения по длине испытываемого образца более 85 процентов, степень повреждения по массе испытываемого образца не более 50 процентов, продолжительность самостоятельного горения не более 300 секунд;
4) сильногорючие (Г4), имеющие температуру дымовых газов более 450 градусов Цельсия, степень повреждения по длине испытываемого образца более 85 процентов, степень повреждения по массе испытываемого образца более 50 процентов, продолжительность самостоятельного горения более 300 секунд.
По воспламеняемости горючие строительные материалы (в том числе напольные ковровые покрытия) в зависимости от величины критической поверхностной плотности теплового потока подразделяются на следующие группы:
1) трудновоспламеняемые (В1), имеющие величину критической поверхностной плотности теплового потока более 35 киловатт на квадратный метр;
2) умеренновоспламеняемые (В2), имеющие величину критической поверхностной плотности теплового потока не менее 20, но не более 35 киловатт на квадратный метр;
3) легковоспламеняемые Нажмите для перехода на ПожВики (В3), имеющие величину критической поверхностной плотности теплового потока менее 20 киловатт на квадратный метр.
По скорости распространения пламени по поверхности горючие строительные материалы (в том числе напольные ковровые покрытия) в зависимости от величины критической поверхностной плотности теплового потока подразделяются на следующие группы:
1) нераспространяющие (РП1), имеющие величину критической поверхностной плотности теплового потока более 11 киловатт на квадратный метр;
2) слабораспространяющие (РП2), имеющие величину критической поверхностной плотности теплового потока не менее 8, но не более 11 киловатт на квадратный метр;
3) умереннораспространяющие (РП3), имеющие величину критической поверхностной плотности теплового потока не менее 5, но не более 8 киловатт на квадратный метр;
4) сильнораспространяющие (РП4), имеющие величину критической поверхностной плотности теплового потока менее 5 киловатт на квадратный метр.
По дымообразующей способности горючие строительные материалы в зависимости от значения коэффициента дымообразования подразделяются на следующие группы:
1) с малой дымообразующей способностью (Д1), имеющие коэффициент дымообразования менее 50 квадратных метров на килограмм;
2) с умеренной дымообразующей способностью (Д2), имеющие коэффициент дымообразования не менее 50, но не более 500 квадратных метров на килограмм;
3) с высокой дымообразующей способностью (Д3), имеющие коэффициент дымообразования более 500 квадратных метров на килограмм.
По токсичности продуктов горения горючие строительные материалы подразделяются на следующие группы (см. табл. 3):
2) умеренноопасные (Т2);
3) высокоопасные (Т3);
4) чрезвычайно опасные (Т4).
Вопрос №4. Огнестойкость строительных конструкций и способы их огнезащиты.
Для строительных конструкций, а также зданий или сооружений важным фактором является огнестойкость. Огнестойкость – это способность строительных конструкций сохранять свои рабочие функции под действием высоких температур пожара. Огнестойкость зданий и сооружений делят на пять степеней (I, II, III, IV и V), которым должны соответствовать пределы огнестойкости строительных конструкций и пределы распространения огня по ним (табл. 4).
Классификация зданий и пожарных отсеков по конструктивной пожарной опасности
Предел огнестойкости строительных конструкций, не менее
Несущие элементы здания
Наруж-ные не-несущие стены
(в т.ч. чердачные и над подвалами)
Элементы бесчердачных покрытий
Настилы (в том числе с утеплите-лем)
Фермы, балки, прогоны
Марши и площадки лестниц
Огнестойкость строительных конструкций характеризуется пределом огнестойкости «П». Под пределом огнестойкости понимают время, по истечении которого конструкция теряет несущую или ограждающую способность. Потеря несущей способности означает обрушение строительной конструкции при пожаре. Потеря ограждающей способности означает прогрев конструкции при пожаре до температур, превышение которых может вызвать самовоспламенение веществ, находящихся в смежных помещениях, или образование в конструкции трещин, через которые могут проникать в соседние помещения продукты горения.
Нормируемые признаки предельных состояний строительных конструкций [6]:
потеря несущей способности (R);
потеря целостности (Е);
потеря теплоизолирующей способности (I).
Различают фактический и требуемый предел огнестойкости. Требуемая огнестойкость – тот минимальный предел огнестойкости Птр, которым должна обладать соответствующая строительная конструкция, чтобы удовлетворить требованиям пожарной безопасности. Значения требуемых пределов огнестойкости определяют опытным путем. Фактический предел огнестойкости Пф запроектированных или уже функционирующих конструкций определяют расчетным путем.
По пожарной опасности строительные конструкции подразделяются на четыре класса [6]:
Поведение железобетонных конструкций при действии высоких температур различно для разных типов конструкций. Предел огнестойкости центрально сжатых железобетонных колонн с гибкой арматурой зависит от сечения колонн, теплотехнических показателей материала колонн, коэффициента изменения прочности бетона при действии высоких температур. Поэтому при необходимости увеличения пределов огнестойкости колонн рекомендуют увеличение сечения, выбор бетона с меньшим коэффициентом температуропроводности, снижение нагрузки на колонну, выбор бетона с более высокой критической температурой, что достигается подбором вяжущих веществ и соответствующих заполнителей для бетонов или применением жаростойких бетонов.
Повышение пределов огнестойкости свободно опертых плит и балок может быть достигнуто путем увеличения толщины защитного слоя бетона, снижения его температуропроводности, нанесения штукатурок или облицовок из малотеплопроводных материалов, уменьшения нагрузки и выбора арматуры с более высокой критической температурой.
Опыты и наблюдения на пожарах показали, что огнестойкость стальных несущих конструкций незначительна, они в основном под действием высоких температур теряют устойчивость. Предел огнестойкости металлических конструкций ограничивается несколькими минутами и зависит от их сечения и температуры пожара. Особенно неблагоприятные условия работы для металлических конструкций при пожаре создаются в тех случаях, когда они находятся в сочетании с горючими материалами, например деревянные прогоны и обрешетки, горючая кровля, заполнение перекрытий горючими материалами. Такое сочетание вызывает быстрое распространение пожара на значительной площади.
Увеличение огнестойкости металлических конструкций осуществляют с помощью технических и проектных решений. К техническим решениям, замедляющим нагрев конструкций до критических температур, относят применение штукатурки, облицовки вспучивающихся красок (рис. 2). Использование вспучивающихся красок очень выгодно. Окраска слоем 2,5. 3 мм по огнезащитному эффекту равноценна штукатурке или облицовочным плитам толщиной 2,5. 3 см.
Рис. 2. Огнезащита стальных конструкций с применением вспучивающихся красок.
В качестве строительного материала широко применяется древесина. Чтобы предотвратить ее воспламенение, необходимы защитные меры. Древесина, предварительно обработанная защитными средствами, подвергаясь действию огня, будет разлагаться, но не воспламеняется. Вследствие этого горение открытым пламенем не будет возникать и распространяться от действия внешнего источника огня. Кроме общеизвестной и широко применяемой для строительных деревянных конструкций облицовки (штукатурки) обработка древесины может осуществляться с помощью обмазки, окраски, пропитки и минерализации.
Обработка древесины окраской состоит в том, что на поверхность древесины наносят плотный слой обмазки или краски, приготовленной из таких веществ, которые сами по себе не горят, достаточно долго не разрушаются в огне и малотеплопроводны.
Обработка древесины пропитыванием огнезащитными веществами — антипиренами более эффективно защищает от загорания, чем окраска. Но этот способ огнезащитной обработки более дорог и трудоемок.