Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

ΠŸΡ€Π°Π²ΠΈΠ»Π° построСния сСчСний ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ²:

1) ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ прямыС Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости;

2) ΠΈΡ‰Π΅ΠΌ прямыС пСрСсСчСния плоскости сСчСния с гранями ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°, для этого

Π°) ΠΈΡ‰Π΅ΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния прямой ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ плоскости сСчСния с прямой, ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π³Ρ€Π°Π½Π΅ΠΉ (Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости);

Π±) ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ сСчСния пСрСсСкаСт ΠΏΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ прямым.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ построСния сСчСний:

Рассмотрим ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ ABCDA1B1C1D1. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ сСчСниС, проходящСС Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ M, N, L.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ M ΠΈ L, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² плоскости AA1D1D.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

ΠŸΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅ΠΌ ΠΏΡ€ΡΠΌΡƒΡŽ ML ( ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ ΡΠ΅Ρ‡Π΅Π½ΠΈΡŽ) с Ρ€Π΅Π±Ρ€ΠΎΠΌ A1D1, ΠΎΠ½ΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости AA1D1D. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ X1.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π’ΠΎΡ‡ΠΊΠ° X1 Π»Π΅ΠΆΠΈΡ‚ Π½Π° Ρ€Π΅Π±Ρ€Π΅ A1D1, Π° Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΈ плоскости A1B1C1D1, соСдиним Π΅Π΅ сточкой N, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π² этой ΠΆΠ΅ плоскости.

X1 N пСрСсСкаСтся с Ρ€Π΅Π±Ρ€ΠΎΠΌ A1B1 Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ К.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ K ΠΈ M, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости AA1B1B.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

НайдСм ΠΏΡ€ΡΠΌΡƒΡŽ пСрСсСчСния плоскости сСчСния с ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ DD1C1C:

пСрСсСчСм ΠΏΡ€ΡΠΌΡƒΡŽ ML (ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ ΡΠ΅Ρ‡Π΅Π½ΠΈΡŽ) с Ρ€Π΅Π±Ρ€ΠΎΠΌ DD1, ΠΎΠ½ΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости AA1D1D, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ X2;

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

пСрСсСчСм ΠΏΡ€ΡΠΌΡƒΡŽ KN (ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ ΡΠ΅Ρ‡Π΅Π½ΠΈΡŽ) с Ρ€Π΅Π±Ρ€ΠΎΠΌ D1C1, ΠΎΠ½ΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости A1B1C1D1, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ X3;

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Рассмотрим Ρ‚Ρƒ ΠΆΠ΅ ΡΠ°ΠΌΡƒΡŽ Π·Π°Π΄Π°Ρ‡Ρƒ Π½Π° построСниС сСчСния, Π½ΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ свойством ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостСй. Π­Ρ‚ΠΎ ΠΎΠ±Π»Π΅Π³Ρ‡ΠΈΡ‚ Π½Π°ΠΌ построСниС сСчСния.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ M ΠΈ L, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² плоскости AA1D1D.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ N, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΏΡ€ΡΠΌΡƒΡŽ NT ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ прямой ML. ΠŸΡ€ΡΠΌΡ‹Π΅ NT ΠΈ ML Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостях ΠΏΠΎ свойству ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

ΠŸΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅ΠΌ ΠΏΡ€ΡΠΌΡƒΡŽ ML ( ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ ΡΠ΅Ρ‡Π΅Π½ΠΈΡŽ) с Ρ€Π΅Π±Ρ€ΠΎΠΌ A1D1, ΠΎΠ½ΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости AA1D1D. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ X1.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

Π’ΠΎΡ‡ΠΊΠ° X1 Π»Π΅ΠΆΠΈΡ‚ Π½Π° Ρ€Π΅Π±Ρ€Π΅ A1D1, Π° Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΈ плоскости A1B1C1D1, соСдиним Π΅Π΅ сточкой N, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π² этой ΠΆΠ΅ плоскости.

X1 N пСрСсСкаСтся с Ρ€Π΅Π±Ρ€ΠΎΠΌ A1B1 Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ К.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ K ΠΈ M, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости AA1B1B.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΏΡ€ΡΠΌΡƒΡŽ TP Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ T, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ прямой KM ( ΠΎΠ½ΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостях).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ P ΠΈ L ( ΠΎΠ½ΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ГСомСтрия. 11 класс

ΠšΠΎΠ½ΡΠΏΠ΅ΠΊΡ‚ ΡƒΡ€ΠΎΠΊΠ°

ГСомСтрия, 11 класс

Π£Ρ€ΠΎΠΊ β„–18. БСчСния ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ²

ΠŸΠ΅Ρ€Π΅Ρ‡Π΅Π½ΡŒ вопросов, рассматриваСмых Π² Ρ‚Π΅ΠΌΠ΅:

РСшСниС Π·Π°Π΄Π°Ρ‡, сводящихся ΠΊ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Ρƒ, связанному с построСниСм сСчСния ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ сСчСния ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ²

РСшСниС Π·Π°Π΄Π°Ρ‡ Π½Π° Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ сСчСний ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ²

Атанасян Π›.Π‘., Π‘ΡƒΡ‚ΡƒΠ·ΠΎΠ² Π’.Π€., ΠšΠ°Π΄ΠΎΠΌΡ†Π΅Π² Π‘.Π‘. ΠΈ Π΄Ρ€. ГСомСтрия. 10–11 классы : ΡƒΡ‡Π΅Π±.для ΠΎΠ±Ρ‰Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚. ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ : Π±Π°Π·ΠΎΠ²Ρ‹ΠΉ ΠΈ ΡƒΠ³Π»ΡƒΠ±Π». ΡƒΡ€ΠΎΠ²Π½ΠΈ – М.: ΠŸΡ€ΠΎΡΠ²Π΅Ρ‰Π΅Π½ΠΈΠ΅, 2014. – 255, сс. 121-126.

Π¨Π°Ρ€Ρ‹Π³ΠΈΠ½ И.Π€. ГСомСтрия. 10–11 ΠΊΠ». : ΡƒΡ‡Π΅Π±.для ΠΎΠ±Ρ‰Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚. ΡƒΡ‡Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ – М.: Π”Ρ€ΠΎΡ„Π°, 2009. – 235, : ΠΈΠ»., ISBN 978–5–358–05346–5, сс. 178-196.

ΠŸΠΎΡ‚ΠΎΡΠΊΡƒΠ΅Π² Π•.Π’., Π—Π²Π°Π²ΠΈΡ‡ Π›.И. ГСомСтрия. 11ΠΊΠ».: ΡƒΡ‡Π΅Π±. Для классов с ΡƒΠ³Π»ΡƒΠ±Π». И ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½Ρ‹ΠΌ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ ΠΎΠ±Ρ‰Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚. Π£Ρ‡Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠΉ – М.: Π”Ρ€ΠΎΡ„Π°, 2004. – 368 с.: ΠΈΠ»., ISBN 5–7107–8310–2, сс. 5-30.

ΠžΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Π΅ элСктронныС рСсурс:

ВСорСтичСский ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ изучСния

Π‘Π΅Ρ‡Π΅Π½ΠΈΠ΅ β€” это плоская Ρ„ΠΈΠ³ΡƒΡ€Π°, которая образуСтся ΠΏΡ€ΠΈ пСрСсСчСнии пространствСнной Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ ΠΈ Π³Ρ€Π°Π½ΠΈΡ†Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π»Π΅ΠΆΠΈΡ‚ Π½Π° повСрхности пространствСнной Ρ„ΠΈΠ³ΡƒΡ€Ρ‹.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: Π΄Π²Π΅ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, Ссли ΠΎΠ½ΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости ΠΈ Π½Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ. Если Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ прямыС нСльзя провСсти ΠΎΠ΄Π½Ρƒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ прямыС ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‚ΡΡ.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Ρ‚Ρ€Π΅Ρ… прямых: Ссли aβˆ₯b, bβˆ₯c, Ρ‚ΠΎ ΠΈ aβˆ₯c. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: прямая ΠΈ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, Ссли ΠΎΠ½ΠΈ Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ±Ρ‰ΠΈΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямой ΠΈ плоскости: прямая, Π½Π΅ лСТащая Π² плоскости, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° этой плоскости, Ссли ΠΎΠ½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ прямой ΠΈΠ· этой плоскости.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅: Π΄Π²Π΅ плоскости ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, Ссли ΠΎΠ½ΠΈ Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ±Ρ‰ΠΈΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ.

ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π΄Π²ΡƒΡ… плоскостСй: Ссли Π΄Π²Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ прямыС ΠΎΠ΄Π½ΠΎΠΉ плоскости ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ Π΄Π²ΡƒΠΌ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠΌΡΡ прямым ΠΈΠ· Π΄Ρ€ΡƒΠ³ΠΎΠΉ плоскости, Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ плоскости ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

Если Π΄Π²Π΅ плоскости ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ, Ρ‚ΠΎ ΠΈΡ… линия пСрСсСчСния β€” прямая.

Если Π΄Π²Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ плоскости пСрСсСчСны Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ, Ρ‚ΠΎ ΠΈΡ… Π»ΠΈΠ½ΠΈΠΈ пСрСсСчСния ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ (см. рис.)

Если плоскости Ξ± ΠΈ Ξ² ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ ΠΏΠΎ прямой a, Π° плоскости Ξ² ΠΈ Ξ³ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ ΠΏΠΎ прямой b, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ aβˆ₯b, Ρ‚ΠΎ плоскости Ξ± ΠΈ Ξ³ пСрСсСкутся ΠΏΠΎ прямой cβˆ₯aβˆ₯b.

Π‘Π»Π΅Π΄ΠΎΠΌ называСтся прямая, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ сСчСния пСрСсСкаСт ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ любой ΠΈΠ· Π³Ρ€Π°Π½Π΅ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΈ Ρ€Π°Π·Π±ΠΎΡ€ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Π½ΠΈΠΉ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠ³ΠΎ модуля

β„–1 SABCD – Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π°, Π² основании ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π»Π΅ΠΆΠΈΡ‚ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ABCD, Π° Π΄Π²Π΅ Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ SAB ΠΈ SAD ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ с прямым ΡƒΠ³Π»ΠΎΠΌ ∠A. НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ сСчСния ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ Ξ±, Ссли SA=AB=a.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

сначала построим сСчСниС ΠΏΠΎ ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ Π·Π°Π΄Π°Ρ‡ΠΈ.

1)ΠŸΡƒΡΡ‚ΡŒ AC∩BD=O. Π”Π²Π΅ плоскости ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, Ссли Π΄Π²Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ прямыС ΠΎΠ΄Π½ΠΎΠΉ плоскости соотвСтствСнно ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ Π΄Π²ΡƒΠΌ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΠΈΠΌΡΡ прямым Π΄Ρ€ΡƒΠ³ΠΎΠΉ плоскости. Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚.ΠΊ. ∠SAB=∠SAD=90βˆ˜β‡’SAβŠ₯(ABC). ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Π² плоскости SAC ΠΏΡ€ΡΠΌΡƒΡŽ OKβˆ₯SC. Π’.ΠΊ. O – сСрСдина AC, Ρ‚ΠΎ ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ЀалСса K – сСрСдина SA. Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ K Π² плоскости SAB ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ KMβˆ₯SB (ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, M – сСрСдина AB). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, проходящая Ρ‡Π΅Ρ€Π΅Π· прямыС OK ΠΈ KM, ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ искомой ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. НСобходимо Π½Π°ΠΉΡ‚ΠΈ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ этой ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΎΠ΅Π΄ΠΈΠ½ΠΈΠ² Ρ‚ΠΎΡ‡ΠΊΠΈ O ΠΈ M, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΏΡ€ΡΠΌΡƒΡŽ MN. Π’.ΠΊ. Ξ±βˆ₯(SBC),Ρ‚ΠΎ Ξ± пСрСсСчСт ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ SCD ΠΏΠΎ прямой NPβˆ₯SC (Ссли NP∩SCβ‰ βˆ…, Ρ‚ΠΎ α∩(SBC)β‰ βˆ…, Ρ‡Ρ‚ΠΎ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π²Π²ΠΈΠ΄Ρƒ ΠΈΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, KMNP – искомоС сСчСниС, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ KPβˆ₯ADβˆ₯MNβ‡’ это трапСция.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ2)Π’.ΠΊ. всС Ρ‚ΠΎΡ‡ΠΊΠΈ K,M,N,P – сСрСдины ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ² SA,AB,CD,SD соотвСтствСнно, Ρ‚ΠΎ: Π°) MN=AD=a Π±) KP=1/2AD=a/2 Π²) KM=1/2SB=a 2/2 Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠΎ Ρ‚Ρ€Π΅Ρ… пСрпСндикулярах SBβŠ₯BCβ‡’KMβŠ₯MN. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, KMNP – ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ трапСция. SKMNP=(KP+MN)* KM/ 2 =3 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽa 2 /8

ΠžΡ‚Π²Π΅Ρ‚:3 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽa 2 /8

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

боковая Π³Ρ€Π°Π½ΡŒ прямой ΠΏΡ€ΠΈΠ·ΠΌΡ‹ являСтся ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ высоты ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Π½Π° сторону основания.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π’ΠΎ Π΅ΡΡ‚ΡŒ большая боковая Π³Ρ€Π°Π½ΡŒ содСрТит Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ сторону основания.

По ΡƒΡΠ»ΠΎΠ²ΠΈΡŽ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ=120Β°, – Ρ‚ΡƒΠΏΠΎΠΉ, Π° ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½Π°ΠΏΡ€ΠΎΡ‚ΠΈΠ² большСй стороны Π»Π΅ΠΆΠΈΡ‚ больший ΡƒΠ³ΠΎΠ», Ρ‚ΠΎ большСй стороной основания Π±ΡƒΠ΄Π΅Ρ‚ сторона АБ. Вычислим Π΄Π»ΠΈΠ½Ρƒ стороны АБ ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ косинусов.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π΄Π»ΠΈΠ½Π° стороны АБ=7см.

Зная Π±ΠΎΠ»ΡŒΡˆΡƒΡŽ сторону основания ΠΈ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ наибольшСй Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ ΠΏΡ€ΠΈΠ·ΠΌΡ‹, Π΄Π»ΠΈΠ½Ρƒ высоты ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ Π½Π΅Ρ‚Ρ€ΡƒΠ΄Π½ΠΎ.

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π΄Π»ΠΈΠ½Π° высоты ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Ρ€Π°Π²Π½Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

НайдСм ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ основания, Π° ΠΎΠ½ΠΎ Ρ€Π°Π²Π½ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ сСчСния, ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

ΠœΡ‹ Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Π²Ρ‚ΠΎΡ€ΠΎΠΉ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ основания Ρ€Π°Π²Π½Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

ΠžΡ‚Π²Π΅Ρ‚: 15 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ/4 см 2

β„–3 На Ρ€Π΅Π±Ρ€Π΅ AB ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABCD с основаниСм ABCD ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° Ρ‚ΠΎΡ‡ΠΊΠ° Q, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ AQ:QB=1:2. Π’ΠΎΡ‡ΠΊΠ° P β€” сСрСдина Ρ€Π΅Π±Ρ€Π° AS.

НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ сСчСния DPQ, Ссли ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ сСчСния DSB Ρ€Π°Π²Π½Π° 6.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

ΠΏΡƒΡΡ‚ΡŒ сторона основания ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Π° 3Π°, Π° высота ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ Ρ€Π°Π²Π½Π° h. Π’ΠΎΠ³Π΄Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ сСчСния DSB Ρ€Π°Π²Π½Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽS=BD*SO/2= 3 =6

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ сСчСния DPQ Ρ€Π°Π²Π½Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

ΠžΡ‚Π²Π΅Ρ‚: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π”Π°Π½Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Π° SABC с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ S. Π§Π΅Ρ€Π΅Π· сСрСдину Ρ€Π΅Π±Ρ€Π° AC ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния ΠΌΠ΅Π΄ΠΈΠ°Π½ Π³Ρ€Π°Π½Π΅ΠΉ ASB ΠΈ CSB ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ. НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ сСчСния ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ этой ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, Ссли AB=21,AS=12 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

ΠΏΡƒΡΡ‚ΡŒ LK∩SO=H. Π’ΠΎΠ³Π΄Π° ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠΎ Ρ‚Ρ€Π΅Ρ… пСрпСндикулярах HKβŠ₯AC ΠΊΠ°ΠΊ наклонная (HOβŠ₯(ABC),OKβŠ₯AC ΠΊΠ°ΠΊ проСкция). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΈ LKβŠ₯AC.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽΠ§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽΠ’ΠΎΠ³Π΄Π° SALC=ACβ‹…LK/2 Рассмотрим β–³SKB: BK=ABβ‹… /2=21 /2β‡’cosB=7 /12 Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ.

Π’ΠΎΠ³Π΄Π° ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ косинусов для β–³KLB: KL 2 =729/4β‡’KL=27/2

Π”Π°Π½Π° ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΈΠ·ΠΌΠ° ABCDA1B1C1D1. На Ρ€Π΅Π±Ρ€Π΅ AA1 ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° Ρ‚ΠΎΡ‡ΠΊΠ° K Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ AK : KA1 = 1 : 2. ΠŸΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ Ξ± ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ B ΠΈ K ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ прямой AC. Π­Ρ‚Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ пСрСсСкаСт Ρ€Π΅Π±Ρ€ΠΎ DD1 Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ M, АВ=4, АА1=6. НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ сСчСния.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠΎ Ρ‚Ρ€Π΅Ρ… пСрпСндикулярах прямыС BM ΠΈ AC пСрпСндикулярны, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, прямыС BM ΠΈ KL пСрпСндикулярны. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π²Π·Π°ΠΈΠΌΠ½ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹, Ρ€Π°Π²Π½Π° ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ произвСдСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ. НайдСм ΠΈΡ…: KL=AC=4 ΠΊΠ°ΠΊ диагональ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°, Π»Π΅ΠΆΠ°Ρ‰Π΅Π³ΠΎ Π² основании ΠΏΡ€ΠΈΠ·ΠΌΡ‹, Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽΡ‚ΠΎΠ³Π΄Π°

ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

ΠžΡ‚Π²Π΅Ρ‚: 8Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π‘Π΅ΠΊΡƒΡ‰Π΅ΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° называСтся любая ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, ΠΏΠΎ ΠΎΠ±Π΅ стороны ΠΎΡ‚ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. БСкущая ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ пСрСсСкаСт Π³Ρ€Π°Π½ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°ΠΌ. ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, сторонами ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΡΠ²Π»ΡΡŽΡ‚ΡΡ эти ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ, называСтся сСчСниСм ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°.

ВСтраэдр ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π³Ρ€Π°Π½ΠΈ, поэтому Π΅Π³ΠΎ сСчСниями ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΈ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ (рис. 1). ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ ΠΈΠΌΠ΅Π΅Ρ‚ ΡˆΠ΅ΡΡ‚ΡŒ Π³Ρ€Π°Π½Π΅ΠΉ. Π•Π³ΠΎ сСчСниями ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, ΠΏΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ ΠΈ ΡˆΠ΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ (рис. 2).

Π’Π΅ΠΎΡ€Π΅ΠΌΡ‹, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΡ€ΠΈ построСнии сСчСний

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 1. Если Π΄Π²Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ плоскости пСрСсСчСны Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ, Ρ‚ΠΎ Π»ΠΈΠ½ΠΈΠΈ ΠΈΡ… пСрСсСчСния ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ сСкущая ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ пСрСсСкаСт плоскости ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ ΠΏΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ прямым.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 2. Если ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Π΄Π°Π½Π½ΡƒΡŽ ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ Π΄Ρ€ΡƒΠ³ΠΎΠΉ плоскости, ΠΈ пСрСсСкаСт эту ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, Ρ‚ΠΎ линия пСрСсСчСния плоскостСй ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° Π΄Π°Π½Π½ΠΎΠΉ прямой.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 3. Если прямая l ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° ΠΊΠ°ΠΊΠΎΠΉ Π»ΠΈΠ±ΠΎ прямой m, ΠΏΡ€ΠΎΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠΉ Π² плоскости Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽΡ‚ΠΎ ΠΎΠ½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° ΠΈ самой плоскости Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 4. Если прямая, лСТащая Π² плоскости сСчСния, Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° плоскости Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ, Ρ‚ΠΎ ΠΎΠ½Π° пСрСсСкаСтся со своСй ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ Π½Π° эту Π³Ρ€Π°Π½ΡŒ.

Алгоритм построСния сСчСний

Для построСния сСчСний Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΠ΅ΠΌ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠΎΠΌ.

1. Если Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ сСкущСй плоскости Π»Π΅ΠΆΠ°Ρ‚ Π² плоскости ΠΎΠ΄Π½ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ, Ρ‚ΠΎ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ Ρ‡Π΅Ρ€Π΅Π· Π½ΠΈΡ… ΠΏΡ€ΡΠΌΡƒΡŽ. Π§Π°ΡΡ‚ΡŒ прямой, лСТащая Π² плоскости Π³Ρ€Π°Π½ΠΈ β€” сторона сСчСния.

2. Если прямая a являСтся ΠΎΠ±Ρ‰Π΅ΠΉ прямой сСкущСй плоскости ΠΈ плоскости ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ Π³Ρ€Π°Π½ΠΈ, Ρ‚ΠΎ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния прямой a с прямыми, содСрТащими Ρ€Π΅Π±Ρ€Π° этой Π³Ρ€Π°Π½ΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ β€” Π½ΠΎΠ²Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ сСкущСй плоскости, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² плоскостях Π³Ρ€Π°Π½Π΅ΠΉ.

3. Если Π½ΠΈΠΊΠ°ΠΊΠΈΠ΅ Π΄Π²Π΅ ΠΈΠ· Π΄Π°Π½Π½Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π΅ Π»Π΅ΠΆΠ°Ρ‚ Π² плоскости ΠΎΠ΄Π½ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ, Ρ‚ΠΎ строим Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ сСчСниС, содСрТащСС Π»ΡŽΠ±Ρ‹Π΅ Π΄Π²Π΅ Π΄Π°Π½Π½Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π° Π·Π°Ρ‚Π΅ΠΌ выполняСм шаги 1, 2.

Для контроля ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ построСнного сСчСния, провСряйтС, Ρ‡Ρ‚ΠΎ:

– всС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ сСчСния Π»Π΅ΠΆΠ°Ρ‚ Π½Π° Ρ€Ρ‘Π±Ρ€Π°Ρ… ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°;

– всС стороны сСчСния Π»Π΅ΠΆΠ°Ρ‚ Π² гранях ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°;

– Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° Π»Π΅ΠΆΠΈΡ‚ Π½Π΅ Π±ΠΎΠ»Π΅Π΅ ΠΎΠ΄Π½ΠΎΠΉ стороны сСчСния.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹ построСния сСчСний ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ²

Π Π°Π·Π΄Π΅Π»Ρ‹: ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°

ΠœΠ΅Ρ‚ΠΎΠ΄ сСчСний ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² Π² стСрСомСтрии ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… Π½Π° построСниС. Π’ Π΅Π³ΠΎ основС Π»Π΅ΠΆΠΈΡ‚ ΡƒΠΌΠ΅Π½ΠΈΠ΅ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡ‚ΡŒ Π²ΠΈΠ΄ сСчСния.

построСниС плоскости сСчСния ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Π² зависимости ΠΎΡ‚ задания этой плоскости. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ всС способы построСния сСчСний ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹.

ΠŸΠ΅Ρ€Π²Ρ‹Π΅ Π΄Π²Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΡΠ²Π»ΡΡŽΡ‚ΡΡ разновидностями АксиоматичСского ΠΌΠ΅Ρ‚ΠΎΠ΄Π° построСния сСчСний.

Рассмотрим ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅ ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠΈ Π›.Π‘, Атанасяна ΠΈ ΠŸΠΎΠ³ΠΎΡ€Π΅Π»ΠΎΠ²Π° А.Π’.

Π’ ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ΅ Π›.Π‘. Атанасяна Π½Π° Ρ‚Π΅ΠΌΡƒ β€œΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ сСчСний многогранников” Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΎ Π΄Π²Π° часа. Π’ 10 классС Π² Ρ‚Π΅ΠΌΠ΅ β€œΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ прямых ΠΈ плоскостСй” послС изучСния тСтраэдра ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° отводится ΠΎΠ΄ΠΈΠ½ час Π½Π° ΠΈΠ·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π³Ρ€Π°Ρ„Π° β€œΠ—Π°Π΄Π°Ρ‡ΠΈ Π½Π° построСниС сСчСний”. Π Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°ΡŽΡ‚ΡΡ сСчСния тСтраэдра ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π°. И Ρ‚Π΅ΠΌΠ° β€œΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ прямых ΠΈ плоскостСй” Π·Π°Π²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ΡΡ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ΠΌ Π·Π°Π΄Π°Ρ‡ Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ»ΠΈ Π΄Π²ΡƒΡ… часах (всСго Π·Π°Π΄Π°Ρ‡ Π½Π° построСниС сСчСний Π² ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ΅ восСмь).

Π’ ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ΅ ΠŸΠΎΠ³ΠΎΡ€Π΅Π»ΠΎΠ²Π° А.Π’. Π½Π° построСниС сСчСний отводится ΠΎΠΊΠΎΠ»ΠΎ Ρ‚Ρ€Π΅Ρ… часов Π² Π³Π»Π°Π²Π΅ β€œΠœΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΈβ€: ΠΎΠ΄ΠΈΠ½ – Π½Π° ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΡ‹ β€œΠ˜Π·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ·ΠΌΡ‹ ΠΈ построСниС Π΅Π΅ сСчСний”, Π²Ρ‚ΠΎΡ€ΠΎΠΉ – Π½Π° ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ‚Π΅ΠΌΡ‹ β€œΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΈ Π΅Π΅ плоских сСчСний” ΠΈ Ρ‚Ρ€Π΅Ρ‚ΠΈΠΉ – Π½Π° Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡. Π’ спискС Π·Π°Π΄Π°Ρ‡, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… послС Ρ‚Π΅ΠΌΡ‹, Π·Π°Π΄Π°Ρ‡ Π½Π° сСчСниС насчитываСтся всСго ΠΎΠΊΠΎΠ»ΠΎ дСсяти.

ΠœΡ‹ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌ систСму ΡƒΡ€ΠΎΠΊΠΎΠ² ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅ β€œΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ сСчСний многогранников” для ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ° ΠŸΠΎΠ³ΠΎΡ€Π΅Π»ΠΎΠ²Π° А.Π’.

Π‘Π’Π•Π Π•ΠžΠœΠ•Π’Π Π˜Π§Π•Π‘ΠšΠ˜Π• Π—ΠΠ”ΠΠ§Π˜ НА ΠŸΠžΠ‘Π’Π ΠžΠ•ΠΠ˜Π• Π‘Π•Π§Π•ΠΠ˜Π™ ΠœΠΠžΠ“ΠžΠ“Π ΠΠΠΠ˜ΠšΠžΠ’ И ΠœΠ•Π’ΠžΠ”Π˜ΠšΠ ИΠ₯ Π˜Π‘ΠŸΠžΠ›Π¬Π—ΠžΠ’ΠΠΠ˜Π― НА УРОКАΠ₯ Π’ 10-11 ΠšΠ›ΠΠ‘Π‘ΠΠ₯.

(систСма ΡƒΡ€ΠΎΠΊΠΎΠ² ΠΈ Ρ„Π°ΠΊΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… занятий ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅ β€œΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ сСчСний многогранников”)

Π’Π΅ΠΌΠ° ΡƒΡ€ΠΎΠΊΠ°: β€œΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ сСчСний многогранников”.

ЦСль ΡƒΡ€ΠΎΠΊΠ°: ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠ»Π΅Π½ΠΈΠ΅ с ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ построСний сСчСний ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ².

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π˜ΠΠ’Π•Π ΠΠšΠ’Π˜Π’ΠΠ«Π• ΠœΠžΠ”Π•Π›Π˜ Π’ ΠžΠ‘Π£Π§Π•ΠΠ˜Π˜

ΠŸΡ€ΠΈΠΌΠ΅Ρ€: ΠΌΠΎΠ΄Π΅Π»ΠΈ МК Π² элСктронном ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

БСчСния ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ²

Π’Π•ΠžΠ Π˜Π―

Π’ этом Ρ€Π°Π·Π΄Π΅Π»Π΅ ΠΌΡ‹ рассмотрим ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ построСния сСчСний ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠ². ΠŸΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ сСчСния, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Π±ΡƒΠ΄Π΅Ρ‚ Π·Π°Π΄Π°Π²Π°Ρ‚ΡŒΡΡ трСмя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ – K, L, M. Π‘Π»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ опрСдСляСтся располоТСниСм Ρ‚ΠΎΡ‡Π΅ΠΊ, Π·Π°Π΄Π°ΡŽΡ‰ΠΈΡ… ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ сСчСния.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

Π‘Π°ΠΌΡ‹ΠΉ простой случай – ΠΊΠΎΠ³Π΄Π° Ρ‚ΠΎΡ‡ΠΊΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π½Π° Ρ‚Ρ€Ρ‘Ρ… смСТных Ρ€Ρ‘Π±Ρ€Π°Ρ… ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ – Π½Π΅ нуТдаСтся Π² Ρ€Π°Π·Π±ΠΎΡ€Π΅.

Основной ΠΌΠ΅Ρ‚ΠΎΠ΄, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΏΡ€ΠΈ построСнии сСчСний, называСтся ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ слСдов.

Π‘Π»Π΅Π΄ΠΎΠΌ называСтся прямая, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ сСчСния пСрСсСкаСт ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ любой ΠΈΠ· Π³Ρ€Π°Π½Π΅ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Если Ρ‚Π°ΠΊΠΎΠΉ слСд Π½Π°ΠΉΠ΄Π΅Π½, Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΅Π³ΠΎ пСрСсСчСния с ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ Ρ€Ρ‘Π±Ρ€Π°ΠΌΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΈ Π±ΡƒΠ΄ΡƒΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ искомого сСчСния.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

ΠŸΡƒΡΡ‚ΡŒ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Ρ‚ΠΎΡ‡ΠΊΠΈ K ΠΈ M Π»Π΅ΠΆΠ°Ρ‚ Π½Π° Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Ρ€Ρ‘Π±Ρ€Π°Ρ… ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Π° Ρ‚ΠΎΡ‡ΠΊΠ° L – Π½Π° сторонС основания.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΌ шагС построСния ΠΏΡ€ΠΈΡ‘ΠΌ часто Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостСй. Рассмотрим Π΅Ρ‰Ρ‘ ΠΎΠ΄ΠΈΠ½ ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π³Π΄Π΅ ΠΎΠ½ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4

Рассмотрим Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ самый ΠΎΠ±Ρ‰ΠΈΠΉ случай, ΠΊΠΎΠ³Π΄Π° всС Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ K, L ΠΈ M Π»Π΅ΠΆΠ°Ρ‚ Π½Π° гранях ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостСй ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ сСчСния, Β«Π½Π΅ выходя» Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. ВСрнёмся Π² связи с этим ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ 2.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2’

Π’ΠΎΡ‡ΠΊΠΈ K ΠΈ M Π»Π΅ΠΆΠ°Ρ‚ Π½Π° Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Ρ€Ρ‘Π±Ρ€Π°Ρ… ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹, Π° Ρ‚ΠΎΡ‡ΠΊΠ° L – Π½Π° сторонС основания. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ сСчСниС, Β«Π½Π΅ выходя» Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°.

МоТно ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Ρƒ ΠΆΠ΅ ΡΠ°ΠΌΡƒΡŽ идСю ΠΈΠ½Π°Ρ‡Π΅. ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ Π² Π½Π°Ρ‡Π°Π»Π΅ Π°Π½Π°Π»ΠΈΠ· построСнного сСчСния – Ρ‚.Π΅. Π½Π°Ρ‡Π½Ρ‘ΠΌ с ΠΊΠΎΠ½Ρ†Π°. Допустим, Ρ‡Ρ‚ΠΎ ΠΏΠΎ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌ K, L ΠΈ M построСно сСчСниС KLMN.

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Ρ‡Π΅Ρ€Π΅Π· F Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° KLMN. ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ ΠΏΡ€ΡΠΌΡƒΡŽ CF ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Ρ‡Π΅Ρ€Π΅Π· F1 Ρ‚ΠΎΡ‡ΠΊΡƒ Π΅Ρ‘ пСрСсСчСния с Π³Ρ€Π°Π½ΡŒΡŽ SAB. Π‘ Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны, Ρ‚ΠΎΡ‡ΠΊΠ° F1 совпадаСт с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ пСрСсСчСния прямых KB ΠΈ MA, исходя ΠΈΠ· Ρ‡Π΅Π³ΠΎ Π΅Ρ‘ ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ.

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Π½Ρ‹ΠΉ Π² этом Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΈΡ‘ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅Π³ΠΎ проСктирования. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ с Π΅Π³ΠΎ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ сСчСниС ΠΈΠ· ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° 4, ΠΊΠΎΠ³Π΄Π° всС Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ Π»Π΅ΠΆΠ°Ρ‚ Π½Π° гранях ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3’

Π’ΠΎΡ‡ΠΊΠΈ K, L ΠΈ M Π»Π΅ΠΆΠ°Ρ‚ Π½Π° гранях ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ сСчСниС, Β«Π½Π΅ выходя» Π·Π° ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°.

Допустим, Ρ‡Ρ‚ΠΎ сСчСниС ΡƒΠΆΠ΅ построСно.

ΠŸΡƒΡΡ‚ΡŒ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ сСчСния пСрСсСкаСт Ρ€Π΅Π±Ρ€ΠΎ CB Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ P. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Ρ‡Π΅Ρ€Π΅Π· F Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния KM ΠΈ LP. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠΌ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡Π΅ΠΊ K, F ΠΈ M ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ C Π½Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ SAB ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ ΠΈΡ… K1, F1 ΠΈ M1. Π’ΠΎΡ‡ΠΊΠΈ K1 ΠΈ M1 Π»Π΅Π³ΠΊΠΎ находятся, Π° Ρ‚ΠΎΡ‡ΠΊΡƒ F1 ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΊΠ°ΠΊ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния K1M1 ΠΈ LB.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ

Π£ΠŸΠ ΠΠ–ΠΠ•ΠΠ˜Π―

Π‘ΠΎΠ»Π΅Π΅ слоТныС упраТнСния ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ Π·Π²Ρ‘Π·Π΄ΠΎΡ‡ΠΊΠΎΠΉ.

1. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ сСчСниС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ K, L ΠΈ M (см. ΠΌΠΎΠ΄Π΅Π»ΠΈ).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
a
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
b
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
c
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
d

2. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ сСчСниС ΠΊΡƒΠ±Π° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ K, L ΠΈ M (см. ΠΌΠΎΠ΄Π΅Π»ΠΈ).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
a
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
b
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
c
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
d
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
e

3. На Ρ€Ρ‘Π±Ρ€Π°Ρ… ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABC ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ K, L ΠΈ M. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
(a) ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ плоскости CSK ΠΈ MLA;
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
(b) Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния плоскостСй ACM, CSK ΠΈ ASL;
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
(c) Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния плоскостСй AML, CKM ΠΈ SKL.

4*. На Ρ€Ρ‘Π±Ρ€Π°Ρ… ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABC ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ K, L, M, P, N ΠΈ Q. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
(a) ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ плоскости KLM ΠΈ PNQ;
Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ сСчСниС ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ° ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ
(b) Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния плоскостСй ALM, CNP ΠΈ SKQ.

5*. На Ρ€Π΅Π±Ρ€Π΅ AB Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABC ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° Ρ‚ΠΎΡ‡ΠΊΠ° K. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ K ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ BC ΠΈ SA.

6*. На Ρ€Ρ‘Π±Ρ€Π°Ρ… AB ΠΈ CS Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ SABC ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ K ΠΈ M. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ сСчСниС ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ K ΠΈ M ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ AS.

7*. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ сСчСниС Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΠΈΡ€Π°ΠΌΠΈΠ΄Ρ‹ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ, проходящСй Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ K, L ΠΈ M, Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π² плоскостях Π΅Ρ‘ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ (Π½ΠΎ Π½Π΅ Π½Π° самих гранях!).

8*. На плоскости ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ Ρ‚Ρ€ΠΈ Π»ΡƒΡ‡Π° с ΠΎΠ±Ρ‰ΠΈΠΌ Π½Π°Ρ‡Π°Π»ΠΎΠΌ – a, b ΠΈ с – ΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ Ρ‚Ρ€ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ – A, B ΠΈ C. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΉΡ‚Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π»Π΅ΠΆΠ°Ρ‚ Π½Π° этих Π»ΡƒΡ‡Π°Ρ…, Π° стороны проходят Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ A, B ΠΈ C.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *