Что такое седиментация бурового раствора
Седиментация в буровых промывочных жидкостях, ее значение в процессе приготовления и применения жидкостей;
Тиксотропные свойства буровых промывочных жидкостей, способы их улучшения.
Реологические свойства буровых промывочных жидкостей. Аномалия вязкости.
Вязкость – имеет большое значение для обеспечения подъемной силы бурового раствора. Вязкость определяется концентрацией, качеством и степенью гидратации взвешенных частиц;
Условная вязкость – характеризует гидравлическое сопротивление бурового раствора течению;
Эффективная вязкость – косвенно характеризует вязкость бурового раствора как ньютоновской жидкости;
Пластическая вязкость – это та часть сопротивления течению жидкости, которая вызывается механическим трением;
Предел текучести или предельное динамическое напряжение сдвига – вторая составляющая сопротивления течению бурового раствора – является мерой электрохимических сил притяжения в буровом растворе;
Показатель фильтрации – косвенно характеризует способность раствора отфильтровываться через стенки скважины;
Толщина фильтрационной корки – косвенно характеризует способность раствора к созданию малопроницаемой фильтрационной корки на стенках скважины;
Показатель седиментации – косвенно показывает стабильность бурового раствора.
Специфическим свойством коагуляционных структур является тиксотропия – способность структур к восстановлению после разрушения механическим воздействием. Наличие структуры промывочных жидкостей обеспечивает удержание частиц выбуренной породы, утяжелителя во взвешенном состоянии при остановке циркуляции раствора.
Способность дисперсной системы сохранять равномерное распределение частиц твердой фазы по всему объему называется седиментационной или кинетической устойчивостью. Седиментационная устойчивость буровых растворов характеризуется способностью частиц дисперсной фазы удерживаться во взвешенном состоянии.
Если в буровой раствор добавлен утяжелитель, для получения необходимой плотности, то в условиях седиментационной неустойчивости – утяжелитель выпадает из раствора. Это тоже может привести к осложнениям в процессе бурения.
Чем выше степень дисперсности дисперсной фазы и интенсивнее броуновское движение частиц, тем более кинетически устойчива промывочная жидкость.
Свойства бурового раствора
Свойства бурового раствора имеют решающее значение при бурении.
Раствор, на протяжении всего бурения контролируется специальной службой. В процессе бурения раствор обрабатывается для поддержания заданных свойств.
Если плотность будет меньше заданной, уменьшится вес столба жидкости на забой, в связи с этим возможно ГНВП (газонефтеводопроявление).
Увеличение плотности сверх заданной, увеличит вес столба жидкости на забой, что в свою очередь может привести к разрыву пласта, поглощению раствора.
Вязкость влияет на способность выноса продуктов бурения от забоя.
Фильтрационные свойства влияют на стойкость стенок скважины к обваливанию и на способность бурового раствора впитываться в породу.
Удельная теплоемкость — количество теплоты, необходимой для нагревания единицы массы бурового раствора на один градус. Единица измерения — Дж/(кг∙°С)
Коэффициент теплопроводности – удельный тепловой поток, направленный по нормали к изотермической поверхности при градиенте температур, равном 1° на 1 м длины вдоль теплового потока.
Термический коэффициент объемного расширения — величина, характеризующая изменение объема бурового раствора с изменением температуры при постоянном внешнем давлении и определяемая относительным изменением объема при нагревании на 1К, отнесенного к объему бурового раствора при данной температуре.
Термический коэффициент давления — величина, характеризующая изменения давления постоянного объема бурового раствора при изменении температуры, определяемая относительным изменением давления в системе при нагревании на 1К, отнесенного к давлению при данной температуре.
Условная вязкость — величина, косвенно характеризующая гидравлическое сопротивление течению, определяемая временем истечения заданного объема бурового раствора через вертикальную трубку. Единица измерения – с
Пластическая вязкость — величина, характеризующая темп роста касательных напряжений сдвига, при увеличении скорости сдвига, когда зависимость касательного напряжения сдвига от градиента скорости сдвига представлена в виде прямой (не проходящей через начало координат), определяемая углом наклона этой прямой. Единица измерения — Па∙с
Динамическое напряжение сдвига — величина, косвенно характеризующая прочностное сопротивление бурового раствора течению, определяемая отрезком на оси касательного напряжения сдвига, отсекаемым прямой, отображающей зависимость касательной напряжения сдвига от градиента скорости сдвига при течении бурового раствора. Единица измерения — Па
Эффективная вязкость — величина, косвенно характеризующая вязкость бурового раствора, определяемая отношением касательного напряжения сдвига к соответствующему градиенту скорости сдвига. Один из наиболее важных показателей, характеризующий сумму вязкостного и прочностного сопротивлений течению бурового (цементного) раствора. Единица измерения – Па∙с
Статическое напряжение сдвига — величина, характеризующая прочностное сопротивление бурового раствора, находящегося в покое заданное время. Также можно описать, как касательное напряжение сдвига, соответствующее началу разрушения структуры бурового раствора, находящегося в покое определенное время. Единица измерения – Па
Коэффициент коллоидальности твердой фазы — величина, равная отношению показателя коллоидальности дисперсной фазы бурового раствора к показателю коллоидальности эталонной дисперсной фазы бурового раствора.
Показатель коллоидальности твердой фазы — величина, косвенно характеризующая физико-химическую активность дисперсной фазы бурового раствора, определяемая количеством вещества, адсорбированного единицей массы дисперсной фазы.
Показатель консистенции — коэффициент степенной функции, отображающей зависимость касательного напряжения сдвига от градиента скорости сдвига в выбранном интервале скоростей при течении бурового раствора. Единица измерения – Па
Показатель неньютоновского поведения — показатель степени функции, отображающей зависимость касательного напряжения сдвига от градиента скорости сдвига при течении бурового раствора.
Касательное напряжение сдвига — величина, характеризующая сопротивление бурового раствора сдвигу, определяемая силой, вызывающей этот сдвиг и приложенной к единице поверхности сдвига. Единица измерения – Па
Показатель седиментации — величина, косвенно характеризующая стабильность бурового раствора и определяемая количеством дисперсной фазы, отделившейся от определенного объема бурового раствора в результате гравитационного разделения компонентов за определенное время.
Показатель фильтрации — величина, косвенно характеризующая способность бурового раствора отфильтровываться через стенки ствола скважины, определяемая количеством дисперсионной среды, отфильтрованной через проницаемую перегородку ограниченной площади под действием определенного перепада давления за определенное время. Единица измерения – см 3
Толщина фильтрационной корки — величина, косвенно характеризующая способность бурового раствора к образованию временной крепи на стенках скважины, определяемая толщиной слоя дисперсной фазы, отложившейся на ограниченной поверхности проницаемой перегородки под действием определенного перепада давления за определенное время. Единица измерения – мм
Удельное электрическое сопротивление — сопротивление бурового раствора проходящему через него электрическому току. Единица измерения – Ом
Нарпяжение электропробоя — величина, косвенно характеризующая стабильность пробоя буровых растворов на углеводородной основе, определяемая разностью потенциалов в момент разряда тока между расположенными на определенном расстоянии электродами, погруженными в буровой раствор. Единица измерения – В
Показатель минерализации — величина, косвенно характеризующая содержание водорастворимых солей в буровом растворе, условно определяемая эквивалентным содержанием солей хлористого натрия.
Водородный показатель — величина, характеризующая активность или концентрацию ионов водорода в буровом растворе, равная отрицательному десятичному логарифму активности или концентрации ионов водорода
Щелочность — объединенная способность основания, измеряемая максимальным количеством эквивалентов кислоты, с которой оно вступает в реакцию и образует соль. В анализах воды она представляет карбонаты, бикарбонаты, гидроокислы, а иногда силикаты и фосфаты в воде. Определяется титрованием со стандартной кислотой до определенных точек.
Определение показателей стабильности и седиментации
Показатель стабильности S, г/см 3 – величина, определяемая разностью плотностей нижней и верхней частей отстоявшегося в течение определенного времени бурового раствора, косвенно характеризует способность раствора сохранять свою плотность.
Для определения показателя стабильности используется цилиндр стабильности ЦС-2.
Для определения показателя седиментации используется стеклянный мерный цилиндр.
Цилиндр стабильности ЦС-2.
вместимость цилиндра, см 3 | 720; |
масса, кг | 0,36; |
влиять пробу раствора в цилиндр 1 до края, предварительно тщательно перемешав ее;
установить заполненный цилиндр в спокойном месте, отметить по часам время и оставить его в покое на сутки;
через 24 часа открыть пробку, слить верхнюю часть пробы раствора вместе с отстоявшейся водой в кружку;
тщательно перемешать слитый раствор и определить его плотность;
закрыть отвод пробкой, тщательно перемешать оставшуюся в цилиндре нижнюю половину раствора и определить ее плотность;
при определении плотности ареометром АР-3ПП обязательно погружать его при всех измерениях в одну и ту же воду;
вымыть цилиндр и вытереть насухо.
Показатель стабильности бурового раствора определяется по разности плотностей нижней и верхней половин раствора.
Стеклянный мерный цилиндр.
вместимость, см 3 | 100; |
цена деления, см 3 |
тщательно перемешанную пробу бурового раствора налить в цилиндр до 100-го деления по шкале;
поставить цилиндр с раствором в спокойное место, отметить время и оставить на 24 часа;
через 24 часа прочесть по шкале цилиндра отсчет положения уровня раздела раствора;
цилиндр вымыть и высушить.
Показатель седиментации бурового раствора находится по формуле:
где S – показатель седиментации, %;
100 – вместимость мерного цилиндра, см 3 ;
V – положение уровня раздела раствора, см 3
Определение концентрации газа
Для определения концентрации газа могут быть использованы:
прибор ПГР-1 ( рис. 13);
Принцип работы ПГР-1 и ВГ-1М основан на свойства газов сниматься под действием избыточного давления.
Прибор ПГР-1.
диапазон измерения, % | от 0 до 10; |
абсолютная погрешность измерения, % | ±0,5; |
цена деления шкалы, % | 0,5; |
температура бурового раствора, 0 С | от +5 до +80; |
давление в рабочей емкости, МПа (кГ/см 2 ) | до 0,3 (3) |
заполнить стакан до краев буровым раствором и соединить с корпусом прибора;
вращая маховик против часовой стрелки, следить за показаниями манометра и прекратить вращение при достижении избыточного давления в 0,3 МПа;
прочесть по шкале показания концентрации газа в буровом растворе;
сбросить давление, повернув маховик по часовой стрелке до упора;
отсоединить кран от корпуса, вылить раствор, вымыть стакан и разделитель и высушить их.
Прибор ВГ-1М.
Основные характеристики и порядок подготовки прибора к работе изложены выше.
навинтить цилиндр на горловину стакана, заполнить его маслом и надеть плунжер с грузом-шкалой;
клапан, находящийся под решеткой фильтрационного стакана, при измерении должен быть закрыт;
деление шкалы «газ», остановившееся при опускании плунжера против риски на верхнем крае втулки, укажет концентрацию газа в буровом растворе.
Метод разбавления
Метод основан на уменьшении объема бурового раствора в результате удаления газа из пробы раствора, разбавленного водой.
Для измерения необходимы:
мерный цилиндр вместимостью 250 см 3 с притертой пробкой;
мерный цилиндр вместимостью 200 см 3 без пробки;
в мерный цилиндр с притертой пробкой налить 50 см 3 бурового раствора, отмеренного мензуркой;
отмерить 200 см 3 воды и вылить в цилиндр, предварительно обмыв этой водой мензурку, которой отмерялся буровой раствор;
закрыть цилиндр с разбавленным раствором притертой пробкой, энергично взболтать в течение 1 мин. и оставить в покое на некоторое время;
после опадения пены отметить объем жидкости в цилиндре.
Концентрацию газа вычисляют по формуле:
где С0— концентрация газа, %;
250 – суммарный объем бурового раствора с газом и водой, см 3 ;
Vж – объем бурового раствора и воды после удаления газа, см 3 ;
2 – множитель для получения результата в процентах.
Буровые растворы для бурения, заканчивания и капитального ремонта скважин
В процессе бурения необходимо производить контроль реолологических параметров бурового раствора с целью предупреждения обвалов стенок и размыва устья скважины.
После утяжеления раствора за счет выбуренной породы до необходимой плотности необходимо обеспечить качественную очистку бурового раствора.
В случаи поглощения бурового раствора применять вязкие пачки с наполнителем (кордовое волокно, резиновая крошка, древесные опилки, ореховая скорлупа).
Перед спуском обсадной колонны рекомендуется обработать буровой раствор смазывающей добавкой FK-Lube или иными смазывающими добавками.
В процессе бурения на репрессии с промывкой любым типом бурового раствора в околоскважинной зоне формируется зона кольматации и зона проникновения фильтрата, физико-химический состав и глубина которых определяют как устойчивость приствольной зоны, так и снижение гидропроводности и фазовой проницаемости продуктивного пласта.
На основе анализа фундаментальных исследований в области химии и биохимии углеводов, обобщения практики бурения скважин в качестве полимерных реагентов для регулирования фильтрационных и реологических свойств безглинистых и малоглинистых буровых растворов используются полисахариды.
Основной причиной выбора полисахаридов является их способность к химической и биологической деструкции, за счет чего обеспечивается возможность разрушения и удаления кольматационного слоя, образующегося в процессе бурения, и практически полное восстановление коллекторских свойств пласта.
Разработана технология получения комплексных полисахаридных реагентов с использованием ингибиторов термоокислительной деструкции, в качестве которых использованы водорастворимые силикаты, бораты щелочных металлов, формиаты натрия и калия.
Комплексные реагенты содержат также гидрофобизирующие добавки на основе калиевых солей жирных кислот и неионогенного ПАВ.
Применение этих реагентов обеспечивает сохранение регламентированных реологических и фильтрационных свойств полисахаридных систем при t =90-1800 о C в течение длительного времени (исследования проводились в течение 45 суток).
На основе этих реагентов предлагается ряд рецептур безглинистых и малоглинистых буровых растворов для различных условий бурения, особенности состава и свойств которых приведены ниже.
Полимер-эмульсионный буровой раствор (ПМГ) для бурения надпродуктивного интервала
В качестве основного средства промывки скважины при бурении надпродуктивного интервала наиболее эффективно применение бурового раствора со свойствами, обеспечивающими устойчивость глинистых отложений, снижение проницаемости водоносных пластов, качественную очистку ствола скважины.
Высокопроницаемые водоносные пласты, неизолированные к моменту первичного вскрытия продуктивного пласта, требуют больших затрат обрабатывающих реагентов, завышения сверх необходимого его структурных показателей, добавления в раствор кольматантов, оказывающих отрицательное влияние на качество вскрытия пласта.
Входящие в состав раствора полимерные и ингибирующие реагенты придают раствору необходимые свойства.
Реагент-гидрофобизатор Синтал выполняет роль стабилизатора неустойчивых отложений, кольматирующей, гидрофобизирующей и смазывающей добавки.
Дополнительная кольматация водоносных пластов и упрочнение стенок скважины достигается водорастворимыми силикатами (силикаты натрия, калия или их смеси).
Применение полианионной целлюлозы в сочетании с Синтал и силикатами обеспечивает буровому раствору необходимые реологические характеристики.
С использованием гидравлических программ (программа Landmark) рассчитываются оптимальные показатели реологических свойств раствора для бурения наклонных, пологих и горизонтальных участков стволов скважин.
Компонентный состав для конкретного месторождения уточняется по результатам анализа геолого-технической документации и проведения дополнительных исследований кернового материала или шлама.
Выбор комплекса ингибиторов проводится по стандартам АНИ и отечественным методикам.
Буровой раствор характеризуется низкими значениями показателя фильтрации (Ф = 2,0-8,0 см 3 по АРI), регулируемыми в широком диапазоне реологическими показателями (η=10-40 мПа*с; τ0=25-180,0 дПа ), низким коэффициентом трения (Ктр = 0,07-0,1 по API).
Положительно то, что этот раствор легко модифицируется в буровой раствор для вскрытия продуктивного пласта путем дополнительного ввода крахмала, карбоната кальция и биополимера.
Раствор БР-ПМГ успешно применяли при проводке скважин в неустойчивых глинизированных отложениях значительной протяженности с зенитным углом 50-70º с сохранением номинального диаметра скважин при бурении пологих и горизонтальных участков ствола скважины, в тч при бурении дополнительных стволов на месторождениях Пермской области, при этом исключается необходимость установки цементных мостов в верейском горизонте, которые при бурении по традиционной технологии были обязательны.
В настоящее время этот раствор применяется на месторождениях республики Коми, Казахстана.
Буровые растворы на основе полисахаридов для вскрытия продуктивного пласта
Выбор оптимальной рецептуры бурового раствора для вскрытия продуктивного пласта рассматривается как ключевой момент сохранения коллекторских свойств пласта.
В лаборатории разработано несколько типов безглинистых систем на основе полисахаридов (ББР), которые предназначены для вскрытия продуктивных пластов.
Методически выбор компонентного состава бурового раствора для вскрытия продуктивного пласта обосновывается по результатам оценки его влияния на изменение проницаемости пористой среды и по коэффициенту восстановления проницаемости образцов керна после фильтрации бурового раствора при реальных перепадах давлений, возникающих при первичном вскрытии.
Для предотвращения глубокого проникновения дисперсной фазы и дисперсионной среды бурового раствора в пласт предусматривается ввод кислоторастворимого кольматанта, фракционный состав которого выбирается по результатам исследования кернового материала конкретного месторождения.
Применение полимерных реагентов из класса полисахаридов и правильный подбор фракционного состава кольматанта обеспечивает быстрое формирование в призабойной зоне пласта незначительной по глубине и низкопроницаемой зоны кольматации, которая предупреждает глубокое проникновение бурового раствора и его фильтрата в пласт в период первичного вскрытия, но легко разрушается в период освоения.
Зона кольматации, сформированная ББР на основе полисахаридов, может быть легко разрушена в процессе освоения при использовании специальных деструктурирующих реагентов, например, комплексного реагента КДС, который предлагается в качестве основы перфорационной среды.
В зависимости от геолого-технических условий, конструкции скважины разработано несколько вариантов ББР.
БЕЗГЛИНИСТЫЙ БУРОВОЙ РАСТВОР ББР-СКП
Присутствие ингибиторов набухания и диспергирования глин (КС1, силикаты и др.) обеспечивает устойчивость глинистых отложений и предупреждает набухание глины в коллекторе пласта. ББР-СКП стабилен при любой минерализации, фильтрационная корка устойчива к воздействию тампонажного раствора.
Дополнительное физико-химическое модифицирование фильтрационной корки ББР в процессе подготовки ствола скважины к цементированию обеспечивает плотный контакт цементного камня с породой.
БЕЗГЛИНИСТЫЙ БУРОВОЙ РАСТВОР РЕОГЕЛЬ
Уникальные структурно-реологические и низкие фильтрационные свойства раствора обеспечивают минимальное проникновение его в пласт, одновременно раствор характеризуется высокими капсулирующими свойствами, обеспечивая незначительную смачиваемость выбуренной породы, тем самым препятствуя диспергированию шлама, но обеспечивая полное осаждение шлама при низкой скорости течения (в отстойниках, желобах и приемных емкостях буровых насосов).
Буровой раствор не создает в проницаемых пластах на стенке скважины толстой фильтрационной корки и способствует высокой степени замещения бурового раствора тампонажным.
Входящий в состав бурового раствора антиоксидант предотвращает ферментативное разложение полисахаридов.
Эффективность этого раствора с точки зрения сохранения коллекторских свойств пласта не ниже, чем у известных систем буровых растворов с биополимером и мраморной крошкой, но стоимость раствора значительно ниже за счет использования только отечественных реагентов.
ПОЛИМЕР-ЭМУЛЬСИОННЫЙ БУРОВОЙ РАСТВОР ЭМУЛГЕЛЬ
Для строительства скважин в сложных гидрогеологических и технико-технологических условиях (например, при бурении через кыновские аргиллиты, глауконитовые глины) при необходимости решения основной проблемы сохранения устойчивости ствола скважины в интервалах залегания неустойчивых глинистых отложений при больших зенитных углах и обеспечения выноса шлама из сильно искривленного участка ствола скважины разработан полимер-эмульсионный буровой раствор ЭМУЛГЕЛЬ.
Исследования показали, что наибольший эффект по сохранению стабильности сланцев достигается в углеводородсодержащих средах в присутствии ингибирующих добавок (KCl, силикаты, CaCl2).
За счет повышенного содержания углеводородсодержащей составляющей раствор обладает усиленными ингибирующими свойствами и оптимальными структурно-реологическими показателями, необходимыми для качественной очистки забоя при больших зенитных углах.
Полученная прямая эмульсия типа «масло в воде» обладает положительными свойствами растворов на нефтяной основе, но при этом исключаются такие негативные свойства РНО, как экологическая и пожарная опасность.
Этот раствор может быть использован и для бурения горизонтального участка при вскрытии продуктивного пласта, т. к. по своим физико-химическим и технологическим показателям отвечает требованиям для качественного вскрытия продуктивного пласта.
УТЯЖЕЛЕННЫЕ БУРОВЫЕ РАСТВОРЫ ДЛЯ ВСКРЫТИЯ ПРОДУКТИВНЫХ ПЛАСТОВ
Для ведения работ в условиях АВПД традиционно используют глинистые буровые растворы, содержащие в качестве добавок баритовый, железистый и другие утяжелители. Эти системы отличают относительно невысокая стоимость, широкий спектр обрабатывающих реагентов и большой опыт применения.
Однако использование таких растворов приводит к необратимой кольматации продуктивных пластов (особенно низкопроницаемых, трещиноватых и трещино-поровых коллекторов) и требует дополнительных дорогостоящих операций по восстановлению проницаемости пласта.
Безглинистые буровые растворы, плотность которых регулируется концентрацией водорастворимых солей и кислоторастворимых утяжелителей, имеют принципиальное преимущество перед глинистыми при заканчивании скважин за счет исключения из состава кольматанта, трудноудаляемого из ПЗП при освоении.
Дополнительным преимуществом таких буровых растворов является более высокое качество крепления скважин.
Разработаны утяжеленные безглинистые буровые растворы плотностью до 1600 кг/м 3 на основе пластовой воды, растворов неорганических солей (хлориды натрия, калия, кальция, магния) и карбоната кальция для доутяжеления.
Оптимизация реологических и фильтрационных свойств этих растворов проводится комплексом полисахаридных реагентов.
Высокую плотность растворов могут обеспечивать не только неорганические соли, но и органические, в частности, формиаты щелочных металлов.
Формиаты обладают рядом преимуществ по сравнению с тяжелыми неорганическими солями, и в частности, экологической безопасностью, высокой ингибирующей способностью по отношению к глинистым сланцам, повышением термостабильности полисахаридных реагентов, низкой коррозионной активностью, совместимостью с пластовыми флюидами, снижением коэффициента трения буровых растворов.
Разработаны технологические жидкости на основе формиатов, которые содержат комплекс полисахаридных реагентов для регулирования фильтрационных, реологических, псевдопластичных и капсулирующих свойств и мраморную крошку для временной кольматации ПЗП.
Буровые растворы на основе формиатов сохраняют термостабильность при температурах до 200 о С, имеют низкие значения показателя фильтрации (0,5-3,5 см 3 при DР = 0,7 МПа), регулируемые в широких пределах значения пластической вязкости (h=15-95 мПа*с) и динамического напряжения сдвига (τ0=60-200 дПа), при этом буровые растворы имеют низкие гидравлические сопротивления (коэффициент консистенции К =0,008-0,227 при скорости сдвига 511/1022с-1), низкие значения коэффициента трения (Ктр=0,09- 0,207), фильтрат раствора имеет низкое поверхностное натяжение на границе с углеводородной жидкостью (σ=0,0083-0,013 Н/м).
Предлагается несколько рецептур:
— Системы без твердой фазы на основе формиата натрия (r = 1300 кг/м 3 ), формиата калия (r = 1670 кг/м 3 ), формиатов калия и цезия (r = 2200 кг/м 3 );
— Системы с частичной заменой формиатов на кислоторастворимый карбонатный утяжелитель (r = 1800 кг/м3). В качестве утяжелителя использовали мраморную крошку;
— Системы с пониженным содержанием кислотонерастворимой твердой фазы (r = 2200 кг/м 3 ). Для доутяжеления используется барит, Магбар, сидерит (карбонат железа), гематит.
не ужесточаются требования со стороны природоохранных организаций, так как при их использовании и при использовании совместно с другими компонентами бурового раствора не образуется экологически опасных отходов;
появляется возможность многократного и многоцелевого использования бурового раствора ввиду его высокой ферментативной устойчивости и устойчивости к термоокислительной деструкции;
для приготовления и очистки бурового раствора в процессе бурения не требуется дополнительного оборудования буровых установок;
буровой раствор на основе формиатов может быть использован в качестве жидкости глушения или жидкости перфорации, т. к. он не оказывает отрицательного влияния на коллектор.
РЕЗУЛЬТАТЫ ПРОМЫШЛЕННОГО ПРИМЕНЕНИЯ БУРОВЫХ РАСТВОРОВ НА ОСНОВЕ ПОЛИСАХАРИДОВ
С использованием безглинистых и малоглинистых буровых растворов на основе полисахаридных реагентов в гг в Пермском Прикамье пробурено более 300 скважин, в тч пологие и горизонтальные скважины.
Растворы применялись также в ЛУКОЙЛ-Западная Сибирь, и КРС (п. Самарский), Удмуртии, республиках Коми и Казахстан.
Анализ результатов применения буровых растворов на основе полисахаридов при бурении вертикальных, наклонно-направленных и горизонтальных скважин позволил отметить следующие преимущества предлагаемых систем буровых растворов:
— Высокие ингибирующие и низкие фильтрационные характеристики растворов позволили сохранить устойчивость стенок ствола скважины на весь период бурения. Каротажный материал (каверномер) показал, что средний диаметр скважин в интервале залегания терригенных отложений близок к номинальному.
— Поддержание реологических характеристик на уровне проектных значений обеспечило высокую выносную и удерживающую способности безглинистых буровых растворов, что позволило избежать осложнений в процессе бурения, связанных с зашламлением ствола скважины при зенитных углах 30-700.
— Вскрытие продуктивного пласта проходит без остановок в бурении, так как раствор ББР-ПМГ, используемый для бурения надпродуктивного интервала, совместим с безглинистыми буровыми растворами, используемыми для вскрытия продуктивного пласта, в тч для горизонтальных участков стволов скважины.
Поэтому для проводки горизонтального участка и первичного вскрытия продуктивного пласта не требуется сброс циркулирующей в скважине промывочной жидкости и, соответственно, сократились временные затраты по приготовлению раствора.
— Использование растворов позволило повысить технико-экономические показатели работы долот за счет высокой смазывающей способности и низкого значения коэффициента трения.
— Проведенные гидродинамические исследования коллекторских свойств продуктивного пласта показали отсутствие загрязнения ПЗП (фильтрационно-емкостные характеристики призабойной и удаленной зон продуктивного пласта практически одинаковы); после освоения скважин полученные дебиты соответствовали или превышали проектные, время освоения сократилось в 1,5-2 раза, при этом освоение скважины проходит, как правило, без дополнительных воздействий на пласт.
применяемого для вскрытия продуктивного пласта