Что такое сектор в геометрии
Сектор (геометрия)
Сектор в геометрии — часть круга, ограниченная дугой и двумя радиусами, соединяющими концы дуги с центром круга.
Свойства
См. также
Полезное
Смотреть что такое «Сектор (геометрия)» в других словарях:
Сегмент (геометрия) — У этого термина существуют и другие значения, см. Сегмент. Сегмент круга закрашен жёлтым цветом Сегмент плоская фигура, заключённая между кривой и её хордой. Как частный сл … Википедия
Жёсткий диск — Запрос «HDD» перенаправляется сюда; см. также другие значения … Википедия
Польша — (Polska) Польская Народная Республика (Polska Rzeczpospolita Ludowa), ПНР. I. Общие сведения П. социалистическое государство в Центральной Европе, в бассейне рр. Висла и Одра, между Балтийским морем на С., Карпатами и… … Большая советская энциклопедия
БЕСКОНЕЧНО МАЛЫХ ИСЧИСЛЕНИЕ — термин, ранее объединявший различные разделы математич. анализа, связанные с понятием бесконечно малой функции. Хотя метод бесконечно малых (в той или иной форме) с успехом применялся учеными Древней Греции и средневековой Европы для решения… … Математическая энциклопедия
Кравец, Торичан Павлович — В Википедии есть статьи о других людях с такой фамилией, см. Кравец. Торичан Павлович Кравец Дата рождения: 10 (22) марта 1876( … Википедия
Югославия — (Jugoslavija, Jyгославиja) Социалистическая Федеративная Республика Югославия, СФРЮ (Socialistička Federativna Republika Jugoslavija, Социjaлистичка Федеративна Република Jyгославиja). I. Общие сведения Ю.… … Большая советская энциклопедия
Цфасман, Михаил Анатольевич — В Википедии есть статьи о других людях с такой фамилией, см. Цфасман. Михаил Анатольевич Цфасман Дата рождения: 23 июля 1954(1954 07 23) (58 лет) Место рождения: Москва, СССР Страна … Википедия
Что такое сектор в геометрии
Круг — это часть плоскости, ограниченная окружностью. Центр данной окружности называется центром круга, а расстояние от центра до любой точки окружности — радиусом круга:
O — центр круга, OA — радиус круга.
Площадь круга
Площадь круга равна произведению числа π на квадрат радиуса. Формула нахождения площади круга:
где S — площадь круга, а r — радиус круга.
Так как диаметр круга равен удвоенному радиусу, то радиус равен диаметру, разделённому на 2:
D = 2r, значит r = | D | . |
2 |
Следовательно, формула нахождения площади круга через диаметр будет выглядеть так:
S = π( | D | ) 2 = π | D 2 | = π | D 2 | . |
2 | 2 2 | 4 |
Сектор круга. Площадь сектора
Сектор — это часть круга, ограниченная двумя радиусами и дугой. Два радиуса разделяют круг на два сектора:
Чтобы найти площадь сектора, дуга которого содержит n°, надо площадь круга разделить на 360 и полученный результат умножить на n.
Формула площади сектора:
S = | πr 2 | · n = | πr 2 n | , |
360 | 360 |
где S — площадь сектора. Выражение
можно представить в виде произведения
πr 2 n | = n · | πr | · | r | , |
360 | 180 | 2 |
где | nπr | — это длина дуги сектора. |
180 |
Следовательно, площадь сектора равна длине дуги сектора, умноженной на половину радиуса:
где S — это площадь сектора, s — длина дуги данного сектора, r — радиус круга.
Сегмент. Площадь сегмента
Сегмент — это часть круга, ограниченная дугой и стягивающей её хордой. Любая хорда делит круг на два сегмента:
Площадь сегмента равна половине радиуса, умноженной на разность между дугой сегмента и половиной хорды двойной дуги.
Площадь сегмента AMB будет вычисляться по формуле:
где S — это площадь сегмента, r — радиус круга, s — длина дуги AB, а BC — длина половины хорды двойной дуги.
Нахождение площади сектора круга
В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить площадь сектора круга, а также разберем примеры решения задач для демонстрации их практического применения.
Определение сектора круга
Сектор круга – это часть круга, образованная двумя его радиусами и дугой между ними. На рисунке ниже сектор закрашен зеленым цветом.
Формулы нахождения площади сектора круга
Через длину дуги и радиус круга
Площадь (S) сектора круга равняется одной второй произведения длины дуги сектора (L) и радиуса круга (r).
Через угол сектора (в градусах) и радиус круга
Площадь (S) сектора круга равняется площади круга, умноженной на угол сектора в градусах ( α°) и деленной на 360°.
Через угол сектора (в радианах) и радиус круга
Площадь (S) сектора круга равняется половине произведения угла сектора в радианах (aрад) и квадрата радиуса круга.
Примеры задач
Задание 1
Дан круг радиусом 6 см. Найдите площадь сектора, если известно, что длина его дуги составляет 15 см.
Решение
Воспользуемся первой формулой, подставив в нее заданные значения:
Решение
Выведем формулу для нахождения центрального угла из второй формулы, рассмотренной выше:
Площадь круга и его частей. Длина окружности и ее дуг
Основные определения и свойства
Фигура | Рисунок | Определения и свойства | ||||||||||||||
Окружность | ||||||||||||||||
Дуга | ||||||||||||||||
Часть окружности, расположенная между двумя точками окружности | ||||||||||||||||
Круг | ||||||||||||||||
Конечная часть плоскости, ограниченная окружностью | ||||||||||||||||
Сектор | ||||||||||||||||
Часть круга, ограниченная двумя радиусами | ||||||||||||||||
Сегмент | ||||||||||||||||
Часть круга, ограниченная хордой | ||||||||||||||||
Правильный многоугольник | ||||||||||||||||
Выпуклый многоугольник, у которого все стороны равны и все углы равны Около любого правильного многоугольника можно описать окружность Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами. Формулы для площади круга и его частей
|