Что такое селективность в системе электроснабжения
Селективность защиты электрической сети: что это такое?
В электрике и энергетической отрасли селективность относится к важнейшим понятиям, так как основное ее назначение — защита от выхода из строя электроприборов по причине каких-либо неисправностей при функционировании электроустановок. Благодаря такой функции продляется срок службы приборов, повышается надежность их работы.
Общее понятие селективности
Как уже было сказано, под селективностью понимают особенность релейной защиты. Она определяется возможностью выискивать неисправный элемент во всей электросети и отключать именно аварийный участок, а не всю систему.
Селективная защита может быть абсолютной и относительной.
Основная характеристика
Предохранители, дифавтоматы, УЗО и прочие устройства необходимы для предупреждения сгорания устройств. Правильно подключенная схема приборов позволяет отключать только определенные участки цепи, не нарушая работы остальной системы. Селективность защиты электрической сети — это отлаженная работа оборудования.
Ее основные задачи:

Такие меры помогают предупредить возникновение пожаров и сохранить технику.
Функции селективности
К основным функциям селективности относятся:
Виды селективных схем подключения
Защитная аппаратура по селективности подразделяется на несколько видов. К таковым относятся следующие виды защит:
На каждом из них нужно остановиться отдельно.
Защита полная и частичная
При такой защищённости цепи подразумевается последовательное подключение аппаратов. В случае возникновения сверхтока сработает тот автомат, который ближе всего к месту повреждения.
Важно! Частичная избирательная защита отличается от полной селективности тем, что срабатывает лишь до установленного значения сверхтока.
Токовый тип селективности
Выстраивая в убывающем порядке величины токов от источника к нагрузке, обеспечивают работу токовой избирательности. Главной мерой здесь является предельное значение токовой метки.
Например, начиная от источника питания или ввода, автоматические выключатели устанавливают в последовательности: 25А, 16А, 10А. Все автоматы могут иметь одинаковое время на срабатывание.
Важно! Между автоматами должно быть высокое сопротивление цепи. Тогда они будут иметь эффективную избирательность. Повышают сопротивление путём увеличения протяжённости линии, включения участков с проводом меньшего диаметра или вставкой трансформаторной обмотки.
Временная и времятоковая селективность
Что значит селективная защита по времени? Особенностью такого построения схемы релейной защиты является привязка ко времени срабатывания каждого защитного элемента. Автоматические выключатели обладают одинаковыми токовыми параметрами, но имеют разную выдержку времени при срабатывании. Время срабатывания увеличивается по мере удаления от нагрузки. К примеру, самый ближний рассчитан на срабатывание после 0,2 с. В случае его отказа через 0,5 с. должен сработать второй. Работа третьего автоматического выключателя рассчитана через 1 секунду в случае несрабатывания первых двух.
Очень сложной считается времятоковая избирательность. Чтобы её организовать, необходимо выбирать приборы групп: A, B, C, D. У группы А наивысшая защита (применяется в электроцепях). Каждая из этих групп имеет индивидуальную реакцию на величину электрического тока и временную задержку.
Энергетическая селективность автоматов
Такая защита обусловлена свойствами выключателей, которые заложены производителем. Быстрое срабатывание – до того, как токи КЗ достигли максимума. Счёт идёт на миллисекунды, согласовать такую избирательность очень сложно.
Что такое зонная селективность
Определение данного покрытия избирательной защитой сети связано с особенностью её построения. Это достаточно дорогой и сложный способ. В результате обработки сигналов, поступающих от каждого выключателя, определяется зона повреждения, и отключение происходит только в ней.
Информация. Для обустройства такой защиты требуется дополнительное питание. Сигнал от каждого выключателя подаётся в контрольный центр. Отключения производятся электронными расцепителями.
Такие схемы рациональнее всего использовать на промышленных предприятиях, где системы обладают высокими значениями токов КЗ и значительными рабочими токами.
Пример и график зонной избирательности
Комбинированная селективность
Этот вид основывается на комбинировании селективности компонентов, входящих в ее состав. Такие комбинации позволяют выполнить значительные улучшения:
Варианты применения комбинированной селективности:
Материал одинаково подойдет начинающим электрикам, и энергетическим отделам крупных предприятий. Разумеется, в домашних условиях нет необходимости усложнять схему: достаточно обеспечить селективность по току отсечки.
Расчет селективности автоматов
Грамотный выбор автомата и правильная настройка — основной принцип соблюдения селективности автоматических выключателей. Избирательность для выключателя, находящегося вблизи источника, гарантирует выполнение требования: Iс.о.послед ≥ Kн.о.∙ I к.пред.
Здесь Iс.о послед. — такая величина тока, за которой следует срабатывание защиты. I к.пред. — ток КЗ в конечной точке зоны, на которую распространяется действие автомата, расположенного далеко от энергоисточника. Kн.о. — коэффициент надежности. Его величина находится в зависимости от разброса параметров.
Номинал автомата для цепи подбирают не только путем расчета, но и по такой таблице, ориентируясь на разрез кабелей в схеме
Расклад tс.о.послед ≥ tк.пред.+ ∆t демонстрирует селективность в случае регулировки АВ по времени. tс.о.послед, tк.пред. — интервалы времени срабатывания выключателей, находящихся на большой дистанции от источника питания и расположенных рядом. ∆t — параметр, который берут из каталога и обозначающий временную степень селективности.
Карта селективности
Все характеристики токовых устройств вносятся в определенную схему. Она позволяет создать максимальную защиту автоматов. Основной ее принцип — это последовательность подключения аппаратов.
При создании карты учитываются определенные правила:
Отсутствие грамотно построенной карты приводит к нарушениям электроснабжения. Наглядная схема позволяет увидеть согласованность установок и сравнить работу автоматов. Сама схема состоит из двух осей:
Не стоит пренебрегать ее изготовлением, так как отсутствие точности в расчетах приведет к некорректной работе защитной системы. Карту легко вычертить в специальной программе.
Редко применяемые системы защиты
Выводы и полезное видео по теме
Неполадки при работе автоматических выключателей и их устранение:
Вычерчивание карты селективности посредством специальной программы:
Надежное, безопасное использование электрической проводки невозможно без учета избирательности автоматов. Зная об основных моментах создания селективной защиты, можно грамотно выполнить подбор оборудования для своего технического проекта.
Селективные автоматы
Рассмотрим работу селективной защиты на примере автомата АВВ S750DR, в которых обеспечивается селективность автоматов за счет наличия дополнительного токового пути, не размыкающегося после сработки главного контакта при коротком замыкании.
При выключении расположенной ниже аварийной зоны селективной клеммой создается задержка по времени сработки. Основная клемма селективного автомата при этом под действием пружины возвращается в исходное положение. При продолжении поступления сверхтока тепловая защита и в главной, и во вспомогательной цепях отключается. Селективная пластина при этом продолжает препятствовать механизму размыкания — пружина не может обратно изолировать основную клемму.
Ограничение автомата по току обеспечивается наличием селективного резистора на 0,5 Ом и значительного дугового сопротивления внутри самого устройства.
Релейная защита
К релейной защите, отключающей цепь при повреждениях, предъявляются такие требования:
Селективность можно назвать главным условием, обеспечивающим бесперебойность и непрерывность питания электрооборудования при наличии запасного источника.
Использование выключателей и реле с высокой скоростью реагирования исключается нарушение динамической устойчивости функционирующих параллельно синхронных агрегатов. Так устраняется основная причина самых тяжелых системных аварий с точки зрения непрерывной работы потребителей.
Релейная защита также должна обладать достаточной чувствительностью к повреждениям и нештатным режимам функционирования, возникающих на подлежащих защите элементах системы. Соответствия требованию необходимого уровня чувствительности во вновь создаваемых современных электросетях добиться очень сложно.
Требование надежности предъявляется в связи с тем, что защита сети должна безотказно и корректно функционировать и отключать оборудование при любом его повреждении и возникновении нарушений, препятствующих нормальному рабочему режиму.
Принцип дифференцирования
Его применяют там, где используются цепи с потребителями большой мощности. К таким потребителям относятся:
В этом решении используют отклонения фазных и амплитудных параметров тока в различных точках. Отклонение таких величин в точке А и точке В, на участке АВ, считается аварийным, и аппаратура выполняет отключение. Использование трансформаторов тока позволяет выполнять фильтрацию от различных посторонних электромагнитных процессов.
Защита срабатывает только на участке АВ, если IA>IB.
Дифференциальная селективная защита мощного оборудования
Защита, созданная по дифференциальному принципу, может быть двух видов: продольная и поперечная.
Что такое селективность защит в электроустановках

Например, когда мобильный телефон стоит на зарядке, то ее протекание контролирует встроенная в аккумулятор защита. Она отключает зарядный ток по окончании набора емкости. Когда же внутри АКБ возникнет короткое замыкание, то установленный в зарядное устройство предохранитель перегорает и обесточивает схему.
Если это по каким-либо причинам не произойдет, то возникшую неисправность в розетке контролирует автоматический выключатель квартирного щитка, а его работу страхует главный автомат. Эту последовательность поочередного срабатывания защит можно рассматривать и дальше.
Методы избирательности электрических защит формируется во время создания проекта и поддерживается при эксплуатации таким образом, чтобы своевременно выявить место возникновения неисправности в электрооборудовании и отделить его от действующей схемы с наименьшими потерями для нее.
При этом зону обхвата защит по селективности подразделяют на:
Первый тип защиты полностью контролирует свой рабочий участок и устраняет повреждения только в нем. По этой закономерности работают встроенные в электроприборы предохранители.
Устройства, созданные по относительному принципу, выполняют больше функций. Они отключают неисправности внутри своей зоны и соседних, но когда в них не отработали защиты абсолютного типа.
Качественно настроенная защита определяет:
1. место и вид повреждения;
2. отличие ненормального, но допустимого режима от ситуации, способной нанести весьма серьезные повреждения оборудованию электроустановки внутри контролируемой зоны.
Устройства, настроенные только по первому действию, работают обычно в неответственных сетях до 1000 вольт. Для высоковольтных электроустановок стараются внедрить оба этих принципа. С этой целью в состав защиты вводят:
схемы взаимных блокировок;
точные измерительные органы;
системы обмена информацией;
специальные логические алгоритмы.
Между двумя последовательно подключенными силовыми выключателями выполняется зашита от сверхтоков, превышающих номинальные значения нагрузки по любой причине. При этом ближний к потребителю с повреждением выключатель должен размыканием своих контактов обесточивать неисправность, а дальний — продолжать подачу напряжения на своем участке.
В этом случае рассматривается два вида селективности:
Если ближняя к неисправности защита способна полностью ликвидировать повреждения на всем диапазоне уставок без задействования удаленного выключателя, то ее считают полной.
Частичная избирательность присуща ближним защитам, настроенным на срабатывание до какого-то предельного тока селективности Is. Если он превышен, то вступает в работу удаленный выключатель.
Зоны перегрузки и короткого замыкания в селективных защитах
Пределы токов, назначенные для срабатывания автоматических выключателей защит, разделяют на две группы:
1. режим перегрузок;
2. зону коротких замыканий.
Для упрощения разъяснения применим этот принцип к токовым характеристикам автоматических выключателей.
Они настраиваются на работу в зоне перегруза номинальных токов на величину до 8÷10 крат.
На этом участке работают в основном тепловые или термомагнитные расцепители защит. Токи коротких замыканий в эту зону попадают очень редко.
Область возникновения КЗ обычно сопровождается токами, превышающими в 8÷10 раз номинальные нагрузки автоматических выключателей и характеризуется серьезными повреждениями в электрической схеме.
Для их отключения применяются электромагнитные или электронные расцепители.
Методы создания селективности
Для области перегрузок по току создаются защиты, работающие по принципу времятоковой селективности.
Зона коротких замыканий формируется на основе:
4. зонной избирательности.
Временна́я селективность создается за счет выбора разных выдержек времени для срабатывания защиты. Этот способ может быть применен даже к устройствам с одной уставкой тока, но разным временем, как показано на рисунке.
Например, ближайшая к оборудованию защита №1 налаживается на работу при коротком замыкании со временем, близким к 0,02 с, а ее работу страхует более отдаленная №2 с настройкой на 0,5 с.
Самая дальняя защита со временем отключения в одну секунду резервирует работу предыдущих устройств при их возможном отказе.
Токовая селективность налаживается для срабатывания по превышению допустимых нагрузок. Довольно грубо этот принцип можно пояснить следующим примером.
Три защиты последовательно контролируют ток КЗ и настроены на отключение со временем 0,02 с, но с разными токовыми уставками в 10, 15 и 20 ампер. За счет этого оборудование будет отключаться вначале от защитного устройства №1, а №2 и №3 будут избирательно его страховать.
Реализация временно́й или токовой селективности в чистом виде требует использования чувствительных датчиков или реле тока и времени. При этом создается довольно сложная электрическая схема, которая на практике обычно объединяет оба рассмотренных принципа, а не применяется в чистом виде.
Времятоковая селективность защит
Для защиты электроустановок с напряжением до 1000 вольт применяют автоматические выключатели, которые обладают объединенной времятоковой характеристикой. Рассмотрим этот принцип на примере двух последовательно включенных автоматов, разнесенных по концам линии со стороны нагрузки и питания.
Времятоковая избирательность определяет способ срабатывания выключателя, настроенного на более быстрое отключение при расположении около потребителя электроэнергии, а не на генераторном конце.
На левом графике показан случай наибольшего времени отключения верхней кривой защиты со стороны нагрузки, а на правом — наименьшего времени выключателя на конце подвода питания. Это позволяет более детально анализировать проявление селективности защит.
Выключатель «В», расположенный ближе к питаемому оборудованию, за счет применения времятоковой селективности работает раньше и быстрее, а выключатель «А» резервирует его в случае отказа.
Токовая селективность защит
При этом способе избирательность может формироваться за счет создания определенной конфигурации сети, например, включенной в схему кабельной или воздушной линии электропередач, обладающей электрическим сопротивлением. В этом случае значение тока короткого замыкания между генератором и потребителем зависит от места возникновения повреждения.
На кабельном конце со стороны питания оно будет иметь максимальное значение, например, 3 кА, а на противоположном — минимальное, допустим, 1кА.
При возникновении КЗ около выключателя А не должна работать защита конца В (I кз1кА), то он и должен снимать напряжение с оборудования. Для точной работы защит необходимо учесть величину реальных токов, проходящих через выключатели при аварийном режиме.
Следует понимать, что для обеспечения полной избирательности по этому методу необходимо иметь большое сопротивление между обоими выключателями, которое может образоваться за счет:
протяженной линии электропередачи;
вставкой обмотки трансформатора;
включением в разрыв кабеля уменьшенного сечения или другими способами.
Поэтому при таком способе селективность чаще всего бывает частичной.
Временна́я селективность защиты
Этот метод избирательности обычно дополняет предыдущий способ с учетом времен:
определения защитой места и начала развития неисправности;
срабатывания на отключение.
Формирование алгоритма работы защиты производится за счет постепенного приближения уставок по току и времени при перемещениях токов КЗ к источнику питания.
Избирательность по времени может создаваться автоматами одних номиналов по току, когда у них есть возможность регулировки задержки на срабатывание.
При этом способе защиты выключателя В отключают неисправность, а выключателя А — контролируют весь процесс и находятся в готовности к работе. Если за время, отведенное для срабатывания защит В короткое замыкание не устранилось, то повреждение ликвидируется работой защит стороны А.
Энергетическая селективность защит
Метод основан на использовании специальных новых видов автоматических выключателей, выполненных в литом корпусе и способных максимально быстро работать, когда токи коротких замыканий еще даже не успели достичь своих максимальных значений.
Подобные скоростные автоматы работают в течение нескольких миллисекунд, когда еще действуют апериодические составляющие переходных процессов. В таких условиях из-за высокой динамичности протекания нагрузок сложно согласовать реально действующие времятоковые характеристики защит.
Конечный пользователь практически не может отследить характеристики энергетической селективности. Их предоставляет производитель в виде графиков, программ расчета, таблиц.
При этом способе для расцепителей термомагнитного и электронного принципа, расположенных на стороне питания необходимо учесть специфические условия работы.
Зонная селективность защиты
Этот тип избирательности является разновидностью временно́й характеристики. Для его работы используются измерительные устройства тока на каждой стороне, между которыми постоянно происходит обмен информацией и сравнение векторов токов.
Зонная селективность может быть сформирована двумя способами:
1. в логическое устройство контроля защиты поступают одновременно сигналы с обоих концов контролируемого участка. Оно сравнивает значения поступивших токов и определяет выключатель, который должен быть отключен;
2. сведения о завышенных значениях векторов тока от обеих сторон поступают в виде блокировочного сигнала на логическую часть защиты более высокого уровня иерархии по стороне питания. Если на ней присутствует блокировочный сигнал снизу, то отключается нижерасположенный выключатель. Когда запрета на отключение снизу не поступило, то напряжение снимает вышерасположенная защита.
При этих способах отключение происходит намного быстрее, чем при временно́й избирательности. Это обеспечивает меньшие повреждения электрооборудования, снижение динамических и тепловых нагрузок внутри системы.
Однако, способ зонного разделения селективности требует создания дополнительных сложных технических систем измерения, логики и обмена информацией, что удорожает стоимость оборудования. По этим причинам такие методы, основанные на высокочастотной блокировке, применяются на высоковольтных линиях электропередач и подстанциях, передающих большие потоки мощности электроэнергии в непрерывном режиме.
Для этого используются быстродействующие воздушные, масляные или элегазовые выключатели, способные коммутировать огромные токовые нагрузки.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Селективность автоматических выключателей
Как известно профессиональным электрикам, используя автоматические выключатели бытового назначения, обеспечить гарантированную селективную защиту при коротких замыканиях невозможно.
Обеспечить, с помощью автоматических выключателей бытового назначения, можно лишь частичную селективность при небольших перегрузках и небольших токах короткого замыкания. Почему так, а не иначе – я расскажу далее в этой статье.
Теория. Что такое селективность?
О полной селективности.
Согласно [1] и ГОСТ IEC 60898-1-2020 [2], определим, что такое полная селективность:
Полная селективность (автоматического выключателя) (total selectivity) — это селективность при сверхтоке двух автоматических выключателей, включенных последовательно, когда защиту от сверхтока осуществляет автоматический выключатель, расположенный ближе к месту перегрузки или короткого замыкания, без срабатывания другого автоматического выключателя, расположенного перед ним со стороны источника питания.
При коротких замыканиях и перегрузках следует стремиться к обеспечению селективного оперирования последовательно включенных автоматических выключателей. Второй автоматический выключатель, расположенный ближе к месту возникновения сверхтока, должен срабатывать раньше – так, чтобы не успевал сработать первый автоматический выключатель, расположенный перед ним ближе к источнику питания. Условия селективного оперирования последовательно включенных автоматических выключателей при сверхтоке можно формализовать посредством терминологии.
В стандартах МЭК 60898‑1 и МЭК 60898‑1:2003 определены следующие термины [1,2]:
Время размыкания представляет собой интервал времени между моментом, когда электрический ток в главной цепи автоматического выключателя достигает уровня срабатывания расцепителя сверхтока, и моментом, когда происходит размыкание дуговых контактов во всех его полюсах.
Время расцепления равно интервалу времени между моментом инициирования времени размыкания и моментом, когда команда на размыкание автоматического выключателя становится необратимой. Момент инициирования времени размыкания представляет собой тот момент времени, когда электрический ток в главной цепи автоматического выключателя достигает значения, при котором срабатывает его расцепитель сверхтока.
Момент времени, когда команда размыкания становится необратимой, представляет собой момент срабатывания расцепителя сверхтока, воздействующего на удерживающее приспособление автоматического выключателя и побуждающего разомкнуться его главные контакты. Поэтому время расцепления фактически является интервалом времени между моментом, когда электрический ток в главной цепи автоматического выключателя достигает уровня срабатывания его расцепителя сверхтока, и моментом, когда срабатывает расцепитель сверхтока.
При отключении многополюсным автоматическим выключателем сверхтока на размыкаемых главных контактах загораются электрические дуги. После загорания электрическая дуга в каждом полюсе затягивается в дугогасительную камеру, где происходит ее интенсивное гашение. Загорание и гашение электрических дуг в полюсах многополюсного автоматического выключателя, как правило, происходит в разные промежутки времени. Время дуги многополюсного автоматического выключателя отсчитывается от момента инициирования первой электрической дуги в одном из полюсов автоматического выключателя до момента гашения последней дуги в каком-то его полюсе.
Время отключения представляет собой интервал времени между началом времени размыкания автоматического выключателя и концом времени дуги. Началом времени размыкания считается момент, когда электрический ток в главной цепи автоматического выключателя достигнет уровня срабатывания его расцепителя сверхтока. Концом времени дуги является момент гашения электрических дуг во всех полюсах автоматического выключателя. Поэтому время отключения однополюсного автоматического выключателя приблизительно равно сумме времени размыкания и времени дуги полюса, а многополюсного автоматического выключателя – сумме времени размыкания и времени дуги многополюсного автоматического выключателя.
Сверхток будет протекать через последовательно включенные автоматические выключатели в течение времени отключения второго автоматического выключателя. При этом он будет инициировать автоматическое оперирование первого автоматического выключателя, расцепитель сверхтока которого может сработать. Главные контакты первого автоматического выключателя начнут размыкаться под воздействием энергии, накопленной в его механизме при замыкании. Поэтому для гарантированного обеспечения селективного оперирования время расцепления первого автоматического выключателя Tt1 должно быть больше времени отключения второго автоматического выключателя Tb2:
Иными словами, полную селективность оперирования автоматических выключателей можно обеспечить в том случае, если время расцепления любого сверхтока первым автоматическим выключателем, размещенным ближе к источнику питания, превышает время отключения этого сверхтока включенным за ним вторым автоматическим выключателем, расположенным ближе к месту короткого замыкания или перегрузки. То есть, как условно показано на рисунке 1, время-токовая характеристика первого автоматического выключателя должна быть расположена «выше» время-токовой характеристики второго автоматического выключателя. Для выполнения этого условия первый автоматический выключатель должен быть категории применения В, а второй – категории применения А или бытового назначения.

На рисунке 1 обозначено:
Автоматические выключатели категории применения А и В выпускают в соответствии с международными требованиями стандарта МЭК 60947‑2, который применяют совместно со стандартом МЭК 60947‑1, и национальными требованиями ГОСТ Р 50030.2-2010 и ГОСТ IEC 60947-1-2017. Стандарт МЭК 60947‑2 и ГОСТ Р 50030.2 классифицируют автоматические выключатели по следующим категориям применения:
Автоматические выключатели категории применения В специально предназначены для обеспечения селективного оперирования при коротких замыканиях с включенными после них автоматическими выключателями категории применения А или автоматическими выключателями бытового назначения. Селективность при коротких замыканиях обеспечивается за счет наличия у автоматических выключателей категории применения В кратковременной задержки времени срабатывания, предпочтительные значения которой установлены в стандарте МЭК 60947‑2 и ГОСТ Р 50030.2-2010 равными 0,05 (минимальное значение); 0,10; 0,25; 0,50 и 1,00 с.
В течение этого промежутка времени автоматические выключатели, установленные после автоматических выключателей категории применения В ближе к месту короткого замыкания, отключают токи коротких замыканий.
Автоматический выключатель категории применения В обеспечивает селективное оперирование вплоть до величины его номинального кратковременно выдерживаемого тока Icw. Для автоматических выключателей, имеющих номинальный ток In до 2500 А включительно, значение номинального кратковременно выдерживаемого тока должно быть не менее следующих значений: или Icw = 12 In, или Icw = 5000 А (выбирают бóльшее значение). Для автоматических выключателей, номинальный ток которых превышает 2500 А, минимальное значение номинального кратковременно выдерживаемого тока установлено в стандартах равным 30000 А.
Однако автоматические выключатели, соответствующие требованиям стандарта МЭК 60947‑2 и ГОСТ Р 50030.2-2010, как правило, нельзя применять в местах, доступных обычным лицам, например, в низковольтных распределительных устройствах электроустановок индивидуальных жилых домов и квартир. В таких случаях используют автоматические выключатели бытового назначения, соответствующие требованиям стандартов МЭК 60898‑1 и МЭК 60898‑2, ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898-2-2011. Однако посредством этих автоматических выключателей можно обеспечить только частичную селективность в области малых сверхтоков, представляющих собой токи перегрузки.
О частичной селективности.
Согласно [1] и ГОСТ IEC 60898-1-2020 [2], определим, что такое частичная селективность:
Частичная селективность (автоматического выключателя) (partial selectivity) — это селективность при сверхтоке двух автоматических выключателей, включенных последовательно, когда защиту от сверхтока до заданного уровня сверхтока осуществляет автоматический выключатель, расположенный ближе к месту перегрузки или короткого замыкания, без срабатывания другого автоматического выключателя, расположенного перед ним со стороны источника питания.
Селективное оперирование последовательно включенных автоматических выключателей бытового назначения при токах перегрузки обеспечить достаточно легко. Для этого автоматический выключатель, размещенный ближе к источнику питания, должен иметь номинальный ток, превышающий номинальный ток расположенного за ним второго автоматического выключателя. Сложнее обеспечить их селективное оперирование при токах короткого замыкания. Бóльший номинальный ток первого автоматического выключателя не является достаточным условием для обеспечения селективного оперирования при коротких замыканиях.
Рассмотрим широко распространенный вариант последовательного включения двух автоматических выключателей бытового назначения, имеющих время-токовые характеристики, условно показанные на рис. 2, которые соответствуют требованиям стандартов МЭК 60898‑1 и МЭК 60898‑2, ГОСТ IEC 60898-1-2020 и ГОСТ IEC 60898‑2-2011.

На рисунке 2 показано:
1, 2 – автоматические выключатели соответственно QF1 и QF2.
При возникновении в электрической цепи (после автоматического выключателя QF2) любого тока перегрузки или тока короткого замыкания, меньшего, чем ток мгновенного расцепления 1 IIT1 автоматического выключателя QF1, автоматические выключатели будут оперировать по-разному. Расцепление автоматического выключателя QF2 в области сверхтоков, ограниченной его током мгновенного расцепления IIT2, инициирует тепловой расцепитель перегрузки, являющийся составной частью расцепителя сверхтока автоматического выключателя. В области сверхтоков, превышающей ток мгновенного расцепления IIT2, но меньшей тока мгновенного расцепления IIT1, расцепление автоматического выключателя QF2 инициирует его электромагнитный расцепитель короткого замыкания. Расцепление автоматического выключателя QF1 в рассматриваемой области сверхтоков инициирует его тепловой расцепитель перегрузки.
Примечание 1. Ток мгновенного расцепления представляет собой минимальный электрический ток, вызывающий автоматическое срабатывание автоматического выключателя без выдержки времени.
Поэтому время расцепления первого автоматического выключателя превышает время отключения второго автоматического выключателя. Более того, в области малых токов перегрузки первый автоматический выключатель не будет срабатывать, поскольку эти токи меньше его условного тока нерасцепления1 равного 1,13 In, а в некоторых случаях – меньше его номинального тока. То есть при появлении в электрической цепи любого сверхтока, значение которого меньше тока мгновенного расцепления автоматического выключателя QF1 IIT1, обеспечено селективное оперирование автоматических выключателей QF1 и QF2.
Если сверхток в электрической цепи превышает ток мгновенного расцепления автоматического выключателя QF1, оба автоматических выключателя оперируют одинаково. Их расцепление инициируют электромагнитные расцепители короткого замыкания, побуждая автоматические выключатели расцепиться за промежуток времени менее 0,1 с. Современные автоматические выключатели при указанных сверхтоках, как правило, срабатывают одновременно, поскольку их фактическое время расцепления обычно не превышает 0,01 с, т. е. при появлении в электрической цепи любого сверхтока, значение которого превышает ток мгновенного расцепления автоматического выключателя QF1, нельзя обеспечить селективное оперирование автоматических выключателей QF1 и QF2.
Следовательно, при последовательном включении автоматических выключателей бытового назначения, можно обеспечить только частичную селективность.
Основываясь на параметрах стандартных время-токовых зон, можно очертить области сверхтоков, в которых автоматические выключатели бытового назначения будут оперировать как селективно, так и не селективно. На рис. 3 условно показаны стандартные время-токовые зоны последовательно включенных автоматических выключателей. Оценку области сверхтоков, в которой автоматические выключатели будут работать селективно, можно осуществить на основе стандартного диапазона токов мгновенного расцепления первого автоматического выключателя.
Минимально возможное значение тока мгновенного расцепления IIT1 min первого автоматического выключателя немного превышает нижнюю границу стандартного диапазона токов мгновенного расцепления ISR IT1 min, равную 3 In, 5 In или 10 In соответственно при типах мгновенного расцепления B, C или D. Максимально допустимое значение тока мгновенного расцепления IIT1 max автоматического выключателя QF1 равно верхней границе стандартного диапазона токов мгновенного расцепления ISR IT1 max, т. е. 5 In, 10 In и 20 In при типах мгновенного расцепления B, C и D. Фактическое значение тока мгновенного расцепления IIT1 первого автоматического выключателя расположено между указанными границами стандартного диапазона токов мгновенного расцепления:
ISR IT1 max ≥ IIT1 > ISR IT1 min.

На рисунке 3 показано:
1, 2 – автоматические выключатели соответственно QF1 и QF2.
Область сверхтоков, в которой не может быть обеспечена селективная работа автоматических выключателей, начинается от верхней границы стандартного диапазона токов мгновенного расцепления, установленной для автоматического выключателя QF1. Любой качественный автоматический выключатель под воздействием сверхтока, возникающего в этой области, будет срабатывать за промежуток времени менее 0,1 с (фактически – за 0,01 с и менее), т. е. при любом сверхтоке, равном или превышающем верхнюю границу стандартного диапазона токов мгновенного расцепления первого автоматического выключателя ISR IT1 max, нельзя обеспечить селективное оперирование рассматриваемых автоматических выключателей. Они, как правило, будут срабатывать одновременно.
Область сверхтоков, в которой можно обеспечить селективное оперирование указанных автоматических выключателей, заканчивается на нижней границе стандартного диапазона токов мгновенного расцепления, установленной для автоматического выключателя QF1. В этой области сверхтоков любой автоматический выключатель QF1 будет иметь время расцепления, превышающее время отключения любого автоматического выключателя QF2, т. е. при сверхтоке, который не превышает нижнюю границу стандартного диапазона токов мгновенного расцепления первого автоматического выключателя ISR IT1 min, всегда можно обеспечить селективное оперирование автоматических выключателей.
Если в электрической цепи автоматических выключателей появляется сверхток, превышающий нижнюю границу стандартного диапазона токов мгновенного расцепления автоматического выключателя QF1, но меньший верхней границы его стандартного диапазона токов мгновенного расцепления (ISR IT1 max > I > ISR IT1 min ), автоматические выключатели могут оперировать как селективно, так и не селективно, т. е. указанная область сверхтоков представляет собой ту сверхтоковую область, для которой нельзя дать однозначного ответа о возможности обеспечения селективного оперирования последовательно включенных автоматических выключателей. Фактически они будут оперировать селективно при любом сверхтоке, значение которого меньше тока мгновенного расцепления IIT1 автоматического выключателя QF1. Однако на стадии проектирования электроустановки здания его значение не известно.
О селективности при сверхтоке.
Согласно [1] и ГОСТ IEC 60898-1-2020 [2], определим, что такое селективность при сверхтоке:
Селективность при сверхтоке (автоматического выключателя) (overcurrent discrimination) — это координация характеристик оперирования нескольких автоматических выключателей, включенных последовательно, таким образом, чтобы при возникновении сверхтоков в пределах установленных границ срабатывал только тот автоматический выключатель, который предназначен для оперирования в пределах этих границ, в то время как другие автоматические выключатели не срабатывают.
При последовательном включении автоматических выключателей следует обеспечить их селективное оперирование при перегрузках, коротких замыканиях, а также при замыканиях на землю. Первым должен срабатывать автоматический выключатель, расположенный ближе к месту перегрузки, короткого замыкания или замыкания на землю, обычно находящемуся в конечной электрической цепи. Вторым должен оперировать автоматический выключатель, расположенный ближе к источнику питания, например установленный на вводе в электроустановку здания, или автоматический выключатель, защищающий какую-то распределительную электрическую цепь.
В противном случае, если первым сработает вводной автоматический выключатель или автоматический выключатель, установленный в распределительной электрической цепи, то вместо одной конечной электрической цепи, в которой произошла перегрузка, короткое замыкание или замыкание на землю, будет отключена вся электроустановка здания или какая-то ее часть, состоящая из нескольких конечных электрических цепей. Аналогичное нежелательное отключение произойдет также в том случае, если оба автоматических выключателя сработают одновременно. Поэтому при проектировании электроустановок зданий вопросам обеспечения селективного оперирования автоматических выключателей следует уделять должное внимание.
В нормативной документации различают полную и частичную селективность. При обеспечении полной селективности последовательно включенные автоматические выключатели селективно оперируют во всем диапазоне сверхтоков. При частичной селективности их селективное оперирование возможно в ограниченном диапазоне сверхтоков, обычно представляющем собой токи перегрузки.
Целесообразно также обеспечить избирательную селективность при замыканиях на землю в электроустановках зданий, соответствующих типам заземления системы TN‑S и TN‑C‑S, между автоматическими выключателями и устройствами дифференциального тока без встроенной защиты от сверхтока. Сверхтоки короткого замыкания на землю должны отключать УДТ. В противном случае, при одновременном срабатывании автоматических выключателей и устройств дифференциального тока, сложно установить причину их оперирования, поскольку УДТ без встроенной защиты от сверхтока могут сработать при токах перегрузки и короткого замыкания, более чем в 6 раз превышающих их номинальные токи.
Реальный пример
Вооружившись терминологией далее можно переходить к простому реальному примеру. Условимся, что у нас есть 2 последовательно подключенных автоматических выключателя. Возьмем для примера, что первый автоматический выключатель QF1, установленный на вводе вводно-распределительного устройства электроустановки индивидуального жилого дома, имеет номинальный ток 50 А и тип мгновенного расцепления C, а второй автоматический выключатель QF2, установленный в вводно-распределительном устройстве и защищающий от сверхтока конечную электрическую цепь штепсельных розеток, имеет номинальный ток 16 А и тип мгновенного расцепления B.
Наша задача обеспечить надлежащую координацию (селективность) между этими 2 последовательно соединенными устройствами защиты от сверхтоков.
Это нужно сделать таким образом, чтобы в случае перегрузки или короткого замыкания, АВ, который находится ближе к месту появления сверхтока (наш автоматический выключатель на 16 А), срабатывал раньше автоматического выключателя, который находится ближе к источнику питания (QF1 на вводе в ВРУ). То есть, QF1 в итоге сработать не должен и электроустановка здания продолжит работу за исключением одной из электрических цепей штепсельных розеток, которую обесточил в результате селективного оперирования QF2. Это то, что мы хотели бы. Теперь читайте далее при каких условиях это возможно.
В п. 5.3.5 ГОСТ IEC 60898-1-2020 для каждого типа мгновенного расцепления уставлены следующие стандартные диапазоны токов мгновенного расцепления (для простоты назовем его Iм.р):
Важно: этот график действителен для случая, когда мы подключаем последовательно автоматический выключатель с типом мгновенного расцепления C (QF1) и автоматический выключатель с типом магнитного расцепления B (QF2). При этом QF1 находится ближе к источнику питания, а QF2 к потенциальному месту возникновения сверхтока. И к тому же выполняется требование по номинальным токам автоматических выключателей: In1 > In2, где
Таким образом, между QF1 и QF2 можно обеспечить селективное оперирование при сверхтоках до 250 А, так как в этом диапазоне сверхтоков время расцепления QF1 ( Tt1) будет всегда больше времени отключения QF2 (Tb2), то есть Tt1 > Tb2. Другими словами в этом диапазоне сверхтоков QF2 «сработает» первым, а QF1 не сработает вообще, то есть будет обеспечена селективность.
В диапазоне сверхтоков от 251 до 499 селективное срабатывание возможно (тут дать однозначного ответа нельзя!). При сверхтоке от 500 А селективное срабатывание невозможно, так как в таком случае оба QF1 и QF2 сработают почти одновременно (менее чем за 0.1 секунду).
Как итог, используя автоматические выключатели бытового назначения можно обеспечить частичную селективную защиту только при незначительных перегрузках и небольших токах КЗ.
Использованная литература
При подготовке данной статьи я использовал следующие источники:


















