Что такое сетевые данные
Национальная библиотека им. Н. Э. Баумана
Bauman National Library
Персональные инструменты
Сетевая модель данных
Наиболее известными сетевыми СУБД являются IDMS, DBMS и db_VISTA III.
Содержание
История
Сетевая модель была одним из первых подходов, использовавшимся при создании баз данных в конце 50-х — начале 60-х годов. Исторически на разработку этого стандарта большое влияние оказал американский ученый Ч.Бахман. Идеи Бахмана послужили основой для разработки стандартной сетевой модели под эгидой организации CODASYL. После публикации отчетов рабочей группы этой организации в 1969, 1971 и 1973 годах многие компании привели свои сетевые базы данных более-менее в соответствие со стандартами CODASYL. До середины 70-х годов главным конкурентом сетевых баз данных была иерархическая модель данных, представленная ведущим продуктом компании IBM в области баз данных — IBM IMS.
В конце 60-х годов Эдгаром Коддом была предложена реляционная модель данных и после долгих и упорных споров с Бахманом реляционная модель приобрела большую популярность и теперь является доминирующей на рынке СУБД.
Основные понятия используемые в сетевой модели данных
Элемент данных – минимальная информационная единица доступная пользователю.
Агрегат данных – это именованная совокупность данных внутри одной записи. Имя агрегата используется для его идентификации в схеме структуры данного более высокого уровня. Агрегат данных может быть простым, если состоит только из элементов данных, и составным, если включает в свой состав другие агрегаты.
Тип записей – это совокупность логически связанных экземпляров записей. Тип записей представляет некоторый класс реального мира.
Особенности сетевой модели данных
Управление сетевыми данными
Операции с сетевыми данными можно разделить на две группы: навигационные операции с данными и операции модификации данных.
Навигационные операции с данными
Навигационные операции сетевых баз данных осуществляют переход по связям, определенных в схеме баз данных, в результате таких переходов определяется запись, которую называют текущей.
Операции модификации данных
Операций модификации сетевых баз данных осуществляют добавление новых записей данных, добавление новых наборов данных, удаление записей данных и наборов записей, модификация агрегатов и элементов данных.
IT-блог о веб-технологиях, серверах, протоколах, базах данных, СУБД, SQL, компьютерных сетях, языках программирования и создание сайтов.
Сетевая база данных. Сетевая модель данных
Здравствуйте, уважаемые посетители моего скромного блога для начинающих вебразработчиков и web мастеров ZametkiNaPolyah.ru. Продолжаем рубрику Заметки о MySQL, в которой уже были публикации: Нормальные формы и транзитивная зависимость, избыточность данных в базе данных, типы и виды баз данных, настройка MySQL сервера и файл my.ini, MySQL сервер, установка и настройка, Архитектура СУБД и архитектура баз данных. Сегодня я бы хотел более подробно остановиться на сетевых базах данных, в общем-то, в одной из прошлых публикация я практически вскользь упоминал о них, но особой ясности не вносил. Следует сказать, что сетевая база данных относится к теоретико-графовым моделям, про то, что такое графы я постараюсь объяснить в другой публикации, сейчас этот момент не столь важен, но если хотите, то почитайте учебник математики. В этой публикации я постараюсь доступным и понятным языком рассказать о сетевых базах данных и принципе их работы, как обычно всю математику я сведу к минимуму и все умные термины оставлю за пределами данной публикации. Там, где я не смогу что-то объяснить без специфической терминологии, а такие моменты могут появиться, я все обязательно поясню.
Так вот, сетевые базы данных относятся к теоретико-графовым моделям баз данных, помимо сетевых баз данных сюда еще входят иерархические базы данных. Кстати, на основе математики сетевых баз данных существуют различные СУБД, это в основном коммерческие версии. У сетевых баз данных существуют характерные операции навигации, манипуляции и управления данными, с которыми мы и постараемся разобраться в данной публикации. Стоит сказать, что помимо теоретико-графовой модели баз данных существует еще и теоретико-множественная модель, к которой относятся реляционные базы данных, математика которых заложена в MySQL сервере, но до них мы еще обязательно дойдем. А теперь приступим к рассмотрению сетевой модели данных.
Сетевая модель данных
Прежде чем перейти к описанию процессов, которые происходят внутри сетевой модели данных, давайте ознакомимся со структурой сетевой базы данных, чтобы иметь представление о том, с чем предстоит иметь нам дело. Прежде всего, следует разобраться со словом сети, которое присутствует в название: «сетевая модель». Сети – это естественный способ представления отношений между объектами базы данных и связей между этими объектами. Под словом объекты следует понимать таблицы баз данных или сущности. В общем, как вам удобно, так и называйте, вас везде поймут правильно.
Сетевые базы данных опираются на математику графов, конкретнее, сетевую модель данных можно представить в виде ориентированного графа. Направленный граф состоит из узлов и ребер. Узлы направленного графа – это ни что иное, как объекты сетевой базы данных, а ребра такого графа показывают связи между объектами сетевой модели данных, причем ребра показывают не только саму связь, но и тип связи (связь один к одному или связь один ко многим). Взгляните на рисунок, чтобы лучше осознать суть написанного выше:
Структура сетевой базы данных, пример
Стоит заметить, что иерархическая модель баз данных является частным и упрощенным случаем сетевых баз данных.
Структура сетевых баз данных
Сетевые базы данных имеют достаточно простую структуру, во всяком случае, сетевая модель имеет более простую структуру, нежели реляционная модель. Структура сетевых баз данных состоит из четырех компонентов, то есть в сетевой модели используют четыре типа структур данных. Два из которых являются главными и два, если можно так сказать, не главными. Главные типы структур сетевых данных – это запись и набор. Вспомогательные типы структур сетевой модели данных, которые используются для построения главных структур – это элемент данных и агрегат данных. Сама структура сетевой базы данных выглядит так:
Сетевая модель данных, пример
Пять элементов структуры сетевой модели данных образуют саму базу данных. Теперь пройдемся по каждому из типов структуры сетевых баз данных.
Элемент данных – это наименьшая информационная именованная единица данных, доступная пользователю, если провести аналогию с файловой системой, то это поле в файловой системе, если проводит аналогию с реляционной базой данных, то элемент данных – один столбец таблицы реляционной БД. Если говорить точнее, то это подстолбец. Не знаю, как правильно выразиться, вообще, я косноязычен.
Агрегат данных – это следующий уровень обобщения данных сетевой модели. Агрегат данных – это именованная совокупность данных внутри одной записи. Аналогию с реляционными БД тут не проведешь, поскольку агрегат данных – это столбец над столбцами, который объединяет элементы данных по логике их содержимого, следующий рисунок внесет ясность во все выше написанное:
Агрегат данных сетевой модели данных
На данном рисунке видно, что дата – это агрегат данных структуры сетевой модели, а день, месяц и год – это элемент данных сетевой БД.
Запись в сетевой модели данных – это конечный уровень обобщения данных, что-то наподобие таблицы в реляционной базе данных. Каждая запись в сетевой базе данных должна обладать или содержать в себе, как минимум один именованный элемент данных, если элементов внутри записи более одного, то каждый элемент данных должен обладать уникальным форматом.
Давайте разбираться со структурой сетевых баз данных на примере, поскольку так будет более понятно и доступно. Представим, что мы хотим создать запись в сетевую базу данных, назовем ее скажем «Сотрудник», в которую обязательно должен входить агрегат данных, который представлен на рисунке выше, его мы назовем «Дата». В эту запись нам необходимо будет добавить: табельный номер, ФИО и адрес сотрудника. Выглядеть такая запись в сетеовой модели данных будет следующим образом:
Записей сетевой базы данных
Прежде, чем переходить к набору записей, нужно разобраться с тем, что такое тип записи и для чего нужен тип записи в сетевой базе данных. И так, тип записей – это совокупность логически связанных экземпляров записей. Проще сказать – это все записи, которые связаны между собой по смыслу и, которые дополняют друг друга. Если переложить термин тип записей на реальный мир, то это информационная модель (иначе, полное описание) какого-либо объекта из реального мира, например сотрудника фирмы.
Как видно из рисунка выше: в качестве элементов данных сетевой модели могут быть использованы только простые типы, если хотите данных, но это не совсем так. Потому что в качестве агрегатов данных можно использовать сложные типы. Сложные типы в структуре сетевых баз данных бывают двух видов: вектор и повторяющаяся группа. Агрегат типа вектор соответствует линейному набору элементов данных, такой агрегат вы уже видели, он называется у нас «Дата», ну это чтобы вы представляли себе, что такое линейный набор элементов данных.
Агрегат типа повторяющаяся группа – это совокупность векторов данных (то есть несколько векторов). Для большей ясности давайте представим новый агрегат данных, который назовем, ну скажем «Товар»:
Агрегат типа повторяющаяся группа
Товары обычно хранятся на складе или их продают, зачастую по нескольку штук. Я хочу подвести к тому, что агрегат типа повторяющаяся группа – это несколько агрегатов типа вектор, объединенных вместе, допустим, у нас покупают 5 товаров, значит, если наш агрегат «Товар» будет иметь тип повторяющаяся группа, то он будет состоять из 5 агрегатов типа вектор, примерно так.
Перейдем к дальнейшему рассмотрению структуры сетевой модели данных. Набор записей – это именованная двухуровневая иерархическая структура, которая содержит управляемую и управляющую записи. При помощи наборов указывается тип связи между записями. Что это означает? Проще говоря, набор это две записи, между которыми есть связь: один ко многим или один к одному. Представим, что у нас имеется две записи в сетевой базе данных: запись «Сотрудник», структуру которой я привел выше и запись «Отдел», структура которой в данном контексте нам не важна.
Перед нами стоит задача: осуществить логическую связь между двумя этими записями, то есть определить какая запись будет управляемой, а какая управляющей. Логично предположить, что запись «Отдел» должна быть управляющей, поскольку сотрудник работает в отделе, а не отдел в сотруднике. И понятно, что связь между этими записями должна быть один ко многим, потому что отдел один, а сотрудников много, назовем эту связь «Работает». И так, мы приходим к выводу, что набор записей сетевой модели данных определяет: управляющую запись, в нашем случае это «Отдел», подчиненную запись, которую мы назвали «Сотрудник», а так же тип связи между этими записями, которую мы обозвали «Работает». «Работает» — это не только имя связи, но еще и метка, которая именует сам набор данных сетевой модели. Впрочем, рисунок должны внести ясность в мои несколько путаные пояснения:
Набор записей сетевой модели данных
В данном случае связь один ко многим говорит нам о том, что с одним экземпляром записи «Отдел» может быть связано ноль, один или несколько экземпляров записи «Сотрудник». Экземпляр записи – это что-то наподобие кортежа (строки таблицы) из реляционной БД. Использую понятия сетевой модели данных, приведенные выше, можно нарисовать набор записей по-другому. На рисунке можно отобразить логические типы данных для обеих записей, структуру записей сетевой модели данных и указать связь между записями, которую мы обозвали «Работает»:
Теперь обобщим все то, что было написано выше про структуру сетевой базы данных, собственно обобщает все база данных. База данных сетевой модели данных – это именованная совокупность экземпляров записей различного типа и экземпляров наборов, хранящих в себе типы связей между записями. Проще говоря, это все записи и все связи между записями. Что же, мы познакомились со структурой сетевой модели данных, рассмотрели несколько примеров и заодно ознакомились с самыми простыми основами проектирования сетевых баз данных. Жаль, что я ничего не писал про концептуальное проектирование баз данных и концептуальную модель данных. В дальнейшем постараюсь исправить этот недостаток, потому что следующий раздел будет связан с концептуальной моделью.
Преобразование концептуальной модели в сетевую модель данных
На детальное рассмотрение концептуальное модели данных и концептуального проектирования баз данных может потребоваться пара публикаций, а ограничиваться общими словами я не хочу, поэтому сейчас, уважаемые посетители, я буду считать, что вы имеете представление о том, что такое концептуальная модель, если не знаете, то тут два выхода: либо вы ждете соответствующую публикацию на моем блоге, либо пользуетесь поисковыми системами. Думаю, на других сайтах люди пишут не хуже меня, а может быть и лучше. Если вы ничего не знаете про концептуальную модель данных, то смело пропускайте данный раздел.
Сетевую модель данных можно легко получить из концептуальной модели, причем нужно соблюсти всего лишь одно условие: в концептуальной модели данных должны использоваться только бинарные связи, которые принадлежат к типам: «один к одному» или «один ко многим». При этом вместо сущностей концептуальной модели данных следует использовать типы записей сетевой базы данных, собственно, имена сущностей из одной будут являться именами типов записей другой модели данных. Атрибуты, которые есть у сущностей (иначе столбцы таблицы) превращаются в поля записей сетевой модели данных, а связи между сущностями становятся связями между типами записей.
Бинарные связи концептуальной модели данных без затруднений переносятся на сетевую модель данных. Связь один ко многим переносится следующим образом: тип записи со стороны один становится управляющей записью, а тип записи со стороны многим становится подчиненной записью. Для связи один к одному запись владелец и подчиненная запись определяется произвольно.
Управление сетевыми данными
И последнее, о чем я бы хотел поговорить в этой публикации – управление сетевыми данными. Стоит сказать, что для манипулирования и управления данными в сетевой модели данных используется ряд типичных операций (о специфических операциях, присущих различным сетевым СУБД, мы говорить не будем), которые присущи для всех систем управления сетевыми базами данных. Все операции с сетевыми данными можно разделить на две группы: навигационные операции с данными и операции модификации данных.
Навигационные операции сетевых баз данных осуществляют переход по связям, определенных в схеме баз данных, в результате таких переходов определяется запись, которую называют текущей (запись сетевой модели, с которой мы будем работать). К навигационным операциям можно отнести:
При помощи операций модификации сетевых баз данных осуществляется добавление новых записей данных, добавление новых наборов данных, удаление записей данных и наборов записей, модификация агрегатов и элементов данных. Для реализации этих операций в системе текущее состояние детализируется путем запоминания трех его составляющих: текущего набора, текущего типа записи, текущего экземпляра типа записи. В такой ситуации возможны следующие операции:
Сетевая модель данных
В случае необходимости обсуждения целесообразности объединения, замените этот шаблон на шаблон <<к объединению>> и добавьте соответствующую запись на странице ВП:КОБ.
Сетевая модель данных — логическая модель данных, являющаяся расширением иерархического подхода, строгая математическая теория, описывающая структурный аспект, аспект целостности и аспект обработки данных в сетевых базах данных.
Разница между иерархической моделью данных и сетевой состоит в том, что в иерархических структурах запись-потомок должна иметь в точности одного предка, а в сетевой структуре данных у потомка может иметься любое число предков.
Сетевая БД состоит из набора экземпляров определенного типа записи и набора экземпляров определенного типа связей между этими записями.
Тип связи определяется для двух типов записи: предка и потомка. Экземпляр типа связи состоит из одного экземпляра типа записи предка и упорядоченного набора экземпляров типа записи потомка. Для данного типа связи L с типом записи предка P и типом записи потомка C должны выполняться следующие два условия:
Содержание
Аспект манипуляции
Примерный набор операций манипулирования данными:
Аспект целостности
Имеется (необязательная) возможность потребовать для конкретного типа связи отсутствие потомков, не участвующих ни в одном экземпляре этого типа связи (как в иерархической модели).
Достоинства
Достоинством сетевой модели данных является возможность эффективной реализации по показателям затрат памяти и оперативности.
Недостатки
Недостатком сетевой модели данных являются высокая сложность и жесткость схемы БД, построенной на ее основе.
Ссылки
Полезное
Смотреть что такое «Сетевая модель данных» в других словарях:
Сетевая модель данных — логическая модель данных в виде произвольного графа. См. также: Структуры баз данных Финансовый словарь Финам … Финансовый словарь
сетевая модель данных — Модель данных, предназначенная для представления данных сетевой структуры и манипулирования ими. [ГОСТ 20886 85] Тематики организация данных в сист. обраб. данных … Справочник технического переводчика
Сетевая модель данных — 60. Сетевая модель данных Модель данных, предназначенная для представления данных сетевой структуры и манипулирования ими Источник: ГОСТ 20886 85: Организация данных в системах обработки данных. Термины и определения … Словарь-справочник терминов нормативно-технической документации
Модель данных — В классической теории баз данных, модель данных есть формальная теория представления и обработки данных в системе управления базами данных (СУБД), которая включает, по меньшей мере, три аспекта: 1) аспект структуры: методы описания типов и… … Википедия
Сетевая модель OSI — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия
Сетевая модель — У этого термина существуют и другие значения, см. Модель. Сетевая модель теоретическое описание принципов работы набора сетевых протоколов, взаимодействующих друг с другом. Модель обычно делится на уровни, так, чтобы протоколы вышестоящего уровня … Википедия
Иерархическая модель данных — Иерархическая модель данных представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней. Между объектами существуют связи, каждый объект может включать в себя несколько объектов… … Википедия
Реляционная модель данных — (РМД) логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики как теории множеств и логика первого порядка. На реляционной модели данных строятся… … Википедия
Ассоциативная модель данных — (англ. Associative model of data) это предложенная Саймоном Уильямсом[1]:2 модель представления данных, в которой база данных состоит из двух типов структур данных элементов и ссылок, хранимых в единой однородной общей… … Википедия
Сетевая СУБД — Необходимо перенести содержимое этой статьи в статью «Сетевая модель данных». Вы можете помочь проекту, объединив статьи. В случае необходимости обсуждения целесообразности объединения, замените этот шаблон на шаблон <<к объединению>> … Википедия
Основы компьютерных сетей. Тема №1. Основные сетевые термины и сетевые модели
Всем привет. На днях возникла идея написать статьи про основы компьютерных сетей, разобрать работу самых важных протоколов и как строятся сети простым языком. Заинтересовавшихся приглашаю под кат.
Немного оффтопа: Приблизительно месяц назад сдал экзамен CCNA (на 980/1000 баллов) и осталось много материала за год моей подготовки и обучения. Учился я сначала в академии Cisco около 7 месяцев, а оставшееся время вел конспекты по всем темам, которые были мною изучены. Также консультировал многих ребят в области сетевых технологий и заметил, что многие наступают на одни и те же грабли, в виде пробелов по каким-то ключевым темам. На днях пару ребят попросили меня объяснить, что такое сети и как с ними работать. В связи с этим решил максимально подробно и простым языком описать самые ключевые и важные вещи. Статьи будут полезны новичкам, которые только встали на путь изучения. Но, возможно, и бывалые сисадмины подчеркнут из этого что-то полезное. Так как я буду идти по программе CCNA, это будет очень полезно тем людям, которые готовятся к сдаче. Можете держать статьи в виде шпаргалок и периодически их просматривать. Я во время обучения делал конспекты по книгам и периодически читал их, чтобы освежать знания.
Вообще хочу дать всем начинающим совет. Моей первой серьезной книгой, была книга Олиферов «Компьютерные сети». И мне было очень тяжело читать ее. Не скажу, что все было тяжело. Но моменты, где детально разбиралось, как работает MPLS или Ethernet операторского класса, вводило в ступор. Я читал одну главу по несколько часов и все равно многое оставалось загадкой. Если вы понимаете, что какие то термины никак не хотят лезть в голову, пропустите их и читайте дальше, но ни в коем случае не отбрасывайте книгу полностью. Это не роман или эпос, где важно читать по главам, чтобы понять сюжет. Пройдет время и то, что раньше было непонятным, в итоге станет ясно. Здесь прокачивается «книжный скилл». Каждая следующая книга, читается легче предыдущей книги. К примеру, после прочтения Олиферов «Компьютерные сети», читать Таненбаума «Компьютерные сети» легче в несколько раз и наоборот. Потому что новых понятий встречается меньше. Поэтому мой совет: не бойтесь читать книги. Ваши усилия в будущем принесут плоды. Заканчиваю разглагольствование и приступаю к написанию статьи.
P.S. Возможно, со временем список дополнится.
Итак, начнем с основных сетевых терминов.
Что такое сеть? Это совокупность устройств и систем, которые подключены друг к другу (логически или физически) и общающихся между собой. Сюда можно отнести сервера, компьютеры, телефоны, маршрутизаторы и так далее. Размер этой сети может достигать размера Интернета, а может состоять всего из двух устройств, соединенных между собой кабелем. Чтобы не было каши, разделим компоненты сети на группы:
1) Оконечные узлы: Устройства, которые передают и/или принимают какие-либо данные. Это могут быть компьютеры, телефоны, сервера, какие-то терминалы или тонкие клиенты, телевизоры.
2) Промежуточные устройства: Это устройства, которые соединяют оконечные узлы между собой. Сюда можно отнести коммутаторы, концентраторы, модемы, маршрутизаторы, точки доступа Wi-Fi.
3) Сетевые среды: Это те среды, в которых происходит непосредственная передача данных. Сюда относятся кабели, сетевые карточки, различного рода коннекторы, воздушная среда передачи. Если это медный кабель, то передача данных осуществляется при помощи электрических сигналов. У оптоволоконных кабелей, при помощи световых импульсов. Ну и у беспроводных устройств, при помощи радиоволн.
Посмотрим все это на картинке:
На данный момент надо просто понимать отличие. Детальные отличия будут разобраны позже.
Теперь, на мой взгляд, главный вопрос: Для чего мы используем сети? Ответов на этот вопрос много, но я освещу самые популярные, которые используются в повседневной жизни:
1) Приложения: При помощи приложений отправляем разные данные между устройствами, открываем доступ к общим ресурсам. Это могут быть как консольные приложения, так и приложения с графическим интерфейсом.
2) Сетевые ресурсы: Это сетевые принтеры, которыми, к примеру, пользуются в офисе или сетевые камеры, которые просматривает охрана, находясь в удаленной местности.
3) Хранилище: Используя сервер или рабочую станцию, подключенную к сети, создается хранилище доступное для других. Многие люди выкладывают туда свои файлы, видео, картинки и открывают общий доступ к ним для других пользователей. Пример, который на ходу приходит в голову, — это google диск, яндекс диск и тому подобные сервисы.
4) Резервное копирование: Часто, в крупных компаниях, используют центральный сервер, куда все компьютеры копируют важные файлы для резервной копии. Это нужно для последующего восстановления данных, если оригинал удалился или повредился. Методов копирования огромное количество: с предварительным сжатием, кодированием и так далее.
5) VoIP: Телефония, работающая по протоколу IP. Применяется она сейчас повсеместно, так как проще, дешевле традиционной телефонии и с каждым годом вытесняет ее.
Из всего списка, чаще всего многие работали именно с приложениями. Поэтому разберем их более подробно. Я старательно буду выбирать только те приложения, которые как-то связаны с сетью. Поэтому приложения типа калькулятора или блокнота, во внимание не беру.
1) Загрузчики. Это файловые менеджеры, работающие по протоколу FTP, TFTP. Банальный пример — это скачивание фильма, музыки, картинок с файлообменников или иных источников. К этой категории еще можно отнести резервное копирование, которое автоматически делает сервер каждую ночь. То есть это встроенные или сторонние программы и утилиты, которые выполняют копирование и скачивание. Данный вид приложений не требует прямого человеческого вмешательства. Достаточно указать место, куда сохранить и скачивание само начнется и закончится.
Скорость скачивания зависит от пропускной способности. Для данного типа приложений это не совсем критично. Если, например, файл будет скачиваться не минуту, а 10, то тут только вопрос времени, и на целостности файла это никак не скажется. Сложности могут возникнуть только когда нам надо за пару часов сделать резервную копию системы, а из-за плохого канала и, соответственно, низкой пропускной способности, это занимает несколько дней. Ниже приведены описания самых популярных протоколов данной группы:
FTP- это стандартный протокол передачи данных с установлением соединения. Работает по протоколу TCP (этот протокол в дальнейшем будет подробно рассмотрен). Стандартный номер порта 21. Чаще всего используется для загрузки сайта на веб-хостинг и выгрузки его. Самым популярным приложением, работающим по этому протоколу — это Filezilla. Вот так выглядит само приложение:
TFTP- это упрощенная версия протокола FTP, которая работает без установления соединения, по протоколу UDP. Применяется для загрузки образа бездисковыми рабочими станциями. Особенно широко используется устройствами Cisco для той же загрузки образа и резервных копий.
Интерактивные приложения. Приложения, позволяющие осуществить интерактивный обмен. Например, модель «человек-человек». Когда два человека, при помощи интерактивных приложений, общаются между собой или ведут общую работу. Сюда относится: ICQ, электронная почта, форум, на котором несколько экспертов помогают людям в решении вопросов. Или модель «человек-машина». Когда человек общается непосредственно с компьютером. Это может быть удаленная настройка базы, конфигурация сетевого устройства. Здесь, в отличие от загрузчиков, важно постоянное вмешательство человека. То есть, как минимум, один человек выступает инициатором. Пропускная способность уже более чувствительна к задержкам, чем приложения-загрузчики. Например, при удаленной конфигурации сетевого устройства, будет тяжело его настраивать, если отклик от команды будет в 30 секунд.
Приложения в реальном времени. Приложения, позволяющие передавать информацию в реальном времени. Как раз к этой группе относится IP-телефония, системы потокового вещания, видеоконференции. Самые чувствительные к задержкам и пропускной способности приложения. Представьте, что вы разговариваете по телефону и то, что вы говорите, собеседник услышит через 2 секунды и наоборот, вы от собеседника с таким же интервалом. Такое общение еще и приведет к тому, что голоса будут пропадать и разговор будет трудноразличимым, а в видеоконференция превратится в кашу. В среднем, задержка не должна превышать 300 мс. К данной категории можно отнести Skype, Lync, Viber (когда совершаем звонок).
Теперь поговорим о такой важной вещи, как топология. Она делится на 2 большие категории: физическая и логическая. Очень важно понимать их разницу. Итак, физическая топология — это как наша сеть выглядит. Где находятся узлы, какие сетевые промежуточные устройства используются и где они стоят, какие сетевые кабели используются, как они протянуты и в какой порт воткнуты. Логическая топология — это каким путем будут идти пакеты в нашей физической топологии. То есть физическая — это как мы расположили устройства, а логическая — это через какие устройства будут проходить пакеты.
Теперь посмотрим и разберем виды топологии:
1) Топология с общей шиной (англ. Bus Topology)
Одна из первых физических топологий. Суть состояла в том, что к одному длинному кабелю подсоединяли все устройства и организовывали локальную сеть. На концах кабеля требовались терминаторы. Как правило — это было сопротивление на 50 Ом, которое использовалось для того, чтобы сигнал не отражался в кабеле. Преимущество ее было только в простоте установки. С точки зрения работоспособности была крайне не устойчивой. Если где-то в кабеле происходил разрыв, то вся сеть оставалась парализованной, до замены кабеля.
2) Кольцевая топология (англ. Ring Topology)
В данной топологии каждое устройство подключается к 2-ум соседним. Создавая, таким образом, кольцо. Здесь логика такова, что с одного конца компьютер только принимает, а с другого только отправляет. То есть, получается передача по кольцу и следующий компьютер играет роль ретранслятора сигнала. За счет этого нужда в терминаторах отпала. Соответственно, если где-то кабель повреждался, кольцо размыкалось и сеть становилась не работоспособной. Для повышения отказоустойчивости, применяют двойное кольцо, то есть в каждое устройство приходит два кабеля, а не один. Соответственно, при отказе одного кабеля, остается работать резервный.
3) Топология звезда (англ. Star Topology)
Все устройства подключаются к центральному узлу, который уже является ретранслятором. В наше время данная модель используется в локальных сетях, когда к одному коммутатору подключаются несколько устройств, и он является посредником в передаче. Здесь отказоустойчивость значительно выше, чем в предыдущих двух. При обрыве, какого либо кабеля, выпадает из сети только одно устройство. Все остальные продолжают спокойно работать. Однако если откажет центральное звено, сеть станет неработоспособной.
4)Полносвязная топология (англ. Full-Mesh Topology)
Все устройства связаны напрямую друг с другом. То есть с каждого на каждый. Данная модель является, пожалуй, самой отказоустойчивой, так как не зависит от других. Но строить сети на такой модели сложно и дорого. Так как в сети, в которой минимум 1000 компьютеров, придется подключать 1000 кабелей на каждый компьютер.
5)Неполносвязная топология (англ. Partial-Mesh Topology)
Как правило, вариантов ее несколько. Она похожа по строению на полносвязную топологию. Однако соединение построено не с каждого на каждый, а через дополнительные узлы. То есть узел A, связан напрямую только с узлом B, а узел B связан и с узлом A, и с узлом C. Так вот, чтобы узлу A отправить сообщение узлу C, ему надо отправить сначала узлу B, а узел B в свою очередь отправит это сообщение узлу C. В принципе по этой топологии работают маршрутизаторы. Приведу пример из домашней сети. Когда вы из дома выходите в Интернет, у вас нет прямого кабеля до всех узлов, и вы отправляете данные своему провайдеру, а он уже знает куда эти данные нужно отправить.
6) Смешанная топология (англ. Hybrid Topology)
Самая популярная топология, которая объединила все топологии выше в себя. Представляет собой древовидную структуру, которая объединяет все топологии. Одна из самых отказоустойчивых топологий, так как если у двух площадок произойдет обрыв, то парализована будет связь только между ними, а все остальные объединенные площадки будут работать безотказно. На сегодняшний день, данная топология используется во всех средних и крупных компаниях.
И последнее, что осталось разобрать — это сетевые модели. На этапе зарождения компьютеров, у сетей не было единых стандартов. Каждый вендор использовал свои проприетарные решения, которые не работали с технологиями других вендоров. Конечно, оставлять так было нельзя и нужно было придумывать общее решение. Эту задачу взвалила на себя международная организация по стандартизации (ISO — International Organization for Standartization). Они изучали многие, применяемые на то время, модели и в результате придумали модель OSI, релиз которой состоялся в 1984 году. Проблема ее была только в том, что ее разрабатывали около 7 лет. Пока специалисты спорили, как ее лучше сделать, другие модели модернизировались и набирали обороты. В настоящее время модель OSI не используют. Она применяется только в качестве обучения сетям. Мое личное мнение, что модель OSI должен знать каждый уважающий себя админ как таблицу умножения. Хоть ее и не применяют в том виде, в каком она есть, принципы работы у всех моделей схожи с ней.
Состоит она из 7 уровней и каждый уровень выполняет определенную ему роль и задачи. Разберем, что делает каждый уровень снизу вверх:
1) Физический уровень (Physical Layer): определяет метод передачи данных, какая среда используется (передача электрических сигналов, световых импульсов или радиоэфир), уровень напряжения, метод кодирования двоичных сигналов.
2) Канальный уровень (Data Link Layer): он берет на себя задачу адресации в пределах локальной сети, обнаруживает ошибки, проверяет целостность данных. Если слышали про MAC-адреса и протокол «Ethernet», то они располагаются на этом уровне.
3) Сетевой уровень (Network Layer): этот уровень берет на себя объединения участков сети и выбор оптимального пути (т.е. маршрутизация). Каждое сетевое устройство должно иметь уникальный сетевой адрес в сети. Думаю, многие слышали про протоколы IPv4 и IPv6. Эти протоколы работают на данном уровне.
4) Транспортный уровень (Transport Layer): Этот уровень берет на себя функцию транспорта. К примеру, когда вы скачиваете файл с Интернета, файл в виде сегментов отправляется на Ваш компьютер. Также здесь вводятся понятия портов, которые нужны для указания назначения к конкретной службе. На этом уровне работают протоколы TCP (с установлением соединения) и UDP (без установления соединения).
5) Сеансовый уровень (Session Layer): Роль этого уровня в установлении, управлении и разрыве соединения между двумя хостами. К примеру, когда открываете страницу на веб-сервере, то Вы не единственный посетитель на нем. И вот для того, чтобы поддерживать сеансы со всеми пользователями, нужен сеансовый уровень.
6) Уровень представления (Presentation Layer): Он структурирует информацию в читабельный вид для прикладного уровня. Например, многие компьютеры используют таблицу кодировки ASCII для вывода текстовой информации или формат jpeg для вывода графического изображения.
7) Прикладной уровень (Application Layer): Наверное, это самый понятный для всех уровень. Как раз на этом уроне работают привычные для нас приложения — e-mail, браузеры по протоколу HTTP, FTP и остальное.
Самое главное помнить, что нельзя перескакивать с уровня на уровень (Например, с прикладного на канальный, или с физического на транспортный). Весь путь должен проходить строго с верхнего на нижний и с нижнего на верхний. Такие процессы получили название инкапсуляция (с верхнего на нижний) и деинкапсуляция (с нижнего на верхний). Также стоит упомянуть, что на каждом уровне передаваемая информация называется по-разному.
На прикладном, представления и сеансовым уровнях, передаваемая информация обозначается как PDU (Protocol Data Units). На русском еще называют блоки данных, хотя в моем круге их называют просто данные).
Информацию транспортного уровня называют сегментами. Хотя понятие сегменты, применимо только для протокола TCP. Для протокола UDP используется понятие — датаграмма. Но, как правило, на это различие закрывают глаза.
На сетевом уровне называют IP пакеты или просто пакеты.
И на канальном уровне — кадры. С одной стороны это все терминология и она не играет важной роли в том, как вы будете называть передаваемые данные, но для экзамена эти понятия лучше знать. Итак, приведу свой любимый пример, который помог мне, в мое время, разобраться с процессом инкапсуляции и деинкапусуляции:
1) Представим ситуацию, что вы сидите у себя дома за компьютером, а в соседней комнате у вас свой локальный веб-сервер. И вот вам понадобилось скачать файл с него. Вы набираете адрес страницы вашего сайта. Сейчас вы используете протокол HTTP, которые работает на прикладном уровне. Данные упаковываются и спускаются на уровень ниже.
2) Полученные данные прибегают на уровень представления. Здесь эти данные структурируются и приводятся в формат, который сможет быть прочитан на сервере. Запаковывается и спускается ниже.
3) На этом уровне создается сессия между компьютером и сервером.
4) Так как это веб сервер и требуется надежное установление соединения и контроль за принятыми данными, используется протокол TCP. Здесь мы указываем порт, на который будем стучаться и порт источника, чтобы сервер знал, куда отправлять ответ. Это нужно для того, чтобы сервер понял, что мы хотим попасть на веб-сервер (стандартно — это 80 порт), а не на почтовый сервер. Упаковываем и спускаем дальше.
5) Здесь мы должны указать, на какой адрес отправлять пакет. Соответственно, указываем адрес назначения (пусть адрес сервера будет 192.168.1.2) и адрес источника (адрес компьютера 192.168.1.1). Заворачиваем и спускаем дальше.
6) IP пакет спускается вниз и тут вступает в работу канальный уровень. Он добавляет физические адреса источника и назначения, о которых подробно будет расписано в последующей статье. Так как у нас компьютер и сервер в локальной среде, то адресом источника будет являться MAC-адрес компьютера, а адресом назначения MAC-адрес сервера (если бы компьютер и сервер находились в разных сетях, то адресация работала по-другому). Если на верхних уровнях каждый раз добавлялся заголовок, то здесь еще добавляется концевик, который указывает на конец кадра и готовность всех собранных данных к отправке.
7) И уже физический уровень конвертирует полученное в биты и при помощи электрических сигналов (если это витая пара), отправляет на сервер.
Процесс деинкапсуляции аналогичен, но с обратной последовательностью:
1) На физическом уровне принимаются электрические сигналы и конвертируются в понятную битовую последовательность для канального уровня.
2) На канальном уровне проверяется MAC-адрес назначения (ему ли это адресовано). Если да, то проверяется кадр на целостность и отсутствие ошибок, если все прекрасно и данные целы, он передает их вышестоящему уровню.
3) На сетевом уровне проверяется IP адрес назначения. И если он верен, данные поднимаются выше. Не стоит сейчас вдаваться в подробности, почему у нас адресация на канальном и сетевом уровне. Это тема требует особого внимания, и я подробно объясню их различие позже. Главное сейчас понять, как данные упаковываются и распаковываются.
4) На транспортном уровне проверяется порт назначения (не адрес). И по номеру порта, выясняется какому приложению или сервису адресованы данные. У нас это веб-сервер и номер порта — 80.
5) На этом уровне происходит установление сеанса между компьютером и сервером.
6) Уровень представления видит, как все должно быть структурировано и приводит информацию в читабельный вид.
7) И на этом уровне приложения или сервисы понимают, что надо выполнить.
Много было написано про модель OSI. Хотя я постарался быть максимально краток и осветить самое важное. На самом деле про эту модель в Интернете и в книгах написано очень много и подробно, но для новичков и готовящихся к CCNA, этого достаточно. Из вопросов на экзамене по данной модели может быть 2 вопроса. Это правильно расположить уровни и на каком уровне работает определенный протокол.
Как было написано выше, модель OSI в наше время не используется. Пока разрабатывалась эта модель, все большую популярность получал стек протоколов TCP/IP. Он был значительно проще и завоевал быструю популярность.
Вот так этот стек выглядит:
Как видно, он отличается от OSI и даже сменил название некоторых уровней. По сути, принцип у него тот же, что и у OSI. Но только три верхних уровня OSI: прикладной, представления и сеансовый объединены у TCP/IP в один, под названием прикладной. Сетевой уровень сменил название и называется — Интернет. Транспортный остался таким же и с тем же названием. А два нижних уровня OSI: канальный и физический объединены у TCP/IP в один с названием — уровень сетевого доступа. Стек TCP/IP в некоторых источниках обозначают еще как модель DoD (Department of Defence). Как говорит википедия, была разработана Министерством обороны США. Этот вопрос встретился мне на экзамене и до этого я про нее ничего не слышал. Соответственно вопрос: «Как называется сетевой уровень в модели DoD?», ввел меня в ступор. Поэтому знать это полезно.
Было еще несколько сетевых моделей, которые, какое то время держались. Это был стек протоколов IPX/SPX. Использовался с середины 80-х годов и продержался до конца 90-х, где его вытеснила TCP/IP. Был реализован компанией Novell и являлся модернизированной версией стека протоколов Xerox Network Services компании Xerox. Использовался в локальных сетях долгое время. Впервые IPX/SPX я увидел в игре «Казаки». При выборе сетевой игры, там предлагалось несколько стеков на выбор. И хоть выпуск этой игры был, где то в 2001 году, это говорило о том, что IPX/SPX еще встречался в локальных сетях.
Еще один стек, который стоит упомянуть — это AppleTalk. Как ясно из названия, был придуман компанией Apple. Создан был в том же году, в котором состоялся релиз модели OSI, то есть в 1984 году. Продержался он совсем недолго и Apple решила использовать вместо него TCP/IP.
Также хочу подчеркнуть одну важную вещь. Token Ring и FDDI — не сетевые модели! Token Ring — это протокол канального уровня, а FDDI это стандарт передачи данных, который как раз основывается на протоколе Token Ring. Это не самая важная информация, так как эти понятия сейчас не встретишь. Но главное помнить о том, что это не сетевые модели.
Вот и подошла к концу статья по первой теме. Хоть и поверхностно, но было рассмотрено много понятий. Самые ключевые будут разобраны подробнее в следующих статьях. Надеюсь теперь сети перестанут казаться чем то невозможным и страшным, а читать умные книги будет легче). Если я что-то забыл упомянуть, возникли дополнительные вопросы или у кого есть, что дополнить к этой статье, оставляйте комментарии, либо спрашивайте лично. Спасибо за прочтение. Буду готовить следующую тему.
- Что такое ориентация листа
- Что такое блокировка баскетбол