Что такое сглаживание smaa
Какое сглаживание лучше SMAA или FXAA.
Что такое сглаживание? Наиболее простой ответ дает Википедия.
Сглаживание (anti-aliasing, AA, антиалязинг, антиалайзинг и тд) — технология, используемая для устранения эффекта «зубчатости», возникающего на краях одновременно выводимого на экран множества отдельных друг от друга плоских, или объёмных изображений. Сглаживание было придумано в 1972 в Массачусетском технологическом институте в Architecture Machine Group.
Что бы вам не пришлось много читать, сразу приведу основные варианты сглаживаний. Точно так же они обычно обозначаются и в играх.
SSAA, MSAA, CSAA, NFAA, FXAA, DLAA, MLAA, SMAA, TXAA.
Начну с самого крутого, правильного качественного и самого «жрущего» сглаживания – SSAA или по-другому — Super-Sampling. Простой пример потребляемых ресурсов этим методом сглаживания: для разрешения 1280×1024 с SSAA 4x необходим экранный буфер такого же размера, как при разрешении 2560×2048 без SSAA. Размытие картинки – НЕТ. Еще этот метод сглаживания называют FSAA. Рекомендую применять владельцам только самых топовых ПК (видеокарт).
MSAA – улучшенный вариант суперсемплинга (SSAA). Практически такой же по качеству, но требующий меньшее количество ресурсов видеокарты, по сравнению с SSAA. Размытие картинки – очень незначительное, практически не уловимое. И хотя этот метод сглаживания требует меньше ресурсов, чем его первый собрат, этот вариант АА так же рекомендуется владельцам топовых видеокарт.
CSAA – разработка NVIDIA. Усовершенствованный (немного) MSAA. Качество картинки примерно на уровне MSAA 8x, но по ресурсам ест как MSAA 4x. Размытие картинки – незначительное, практически не уловимое. Из последних игр, в которых его использовал – Star Wars Battlefront (DICE).
FXAA – известен своим низким требованиям к видеосистеме. Сглаживает вполне прилично, я бы сказал хорошо. Но есть один недостаток, который заметен, скажем, при сравнении с MSAA – «замыливание» картинки. Оно больше, чем среднее. Подойдет для тех, кто не терпит лесенки, но не может себе позволить предыдущие алгоритмы сглаживания.
MLAA – малоизвестный алгоритм сглаживания. Единственный алгоритм, который работает за счет процессора, а не видеокарты. Он не зависит от сложности сцены, так что можно гарантировать отсутствие «подтормаживаний» в любой момент. Intel позиционирует MLAA как конкурента MSAA. Если судить объективно, MSAA работает немного медленней, но и качественней. По сравнению MLAA с FXAA первый будет медленнее, но при этом качество картинки – без заметного «замыливания».
SMAA – смесь FXAA и MLAA. По скорости находится между FXAA и MSAA. По качеству – картинку практически не блюрит.
TXAA – новый алгоритм сглаживания. Сочетает преимущества MSAA и FXAA. Разработка NVIDIA. Сглаживает ОЧЕНЬ качественно. TXAA 4x = MSAA 8x. Хотя порой первый даже лучше. НО. TXAA «мылит» картинку. «Блюрит» ее. И если сравнивать с MSAA – последний выглядит лучше.
Итог: чОткий, но самый древний алгоритм сглаживания – SSAA. MSAA – очень хороший по качеству, но ест заметно много ресурсов. CSAA – практически такой же по качеству, но ресурсов ест меньше. FXAA – если видеокарта не позволяет, но «сглаживать» хочется, то этот вариант для вас. MLAA – на него можете забить. SMAA – нормальный вариант, можете его опробовать. TXAA – сглаживает очень хорошо. Очень. Но блюр очень раздражает. Поэтому могу рекомендовать этот алгоритм, если вам плевать на «замыливание».
Кстати. В разрешении 4k сглаживание порой вовсе не требуется. Либо можно применить самое простое CSAA или MSAA 2x. Не более. Интересно, как сложится картина лет через 5-7, когда 4k разрешение приобретет массовость. Я специально не стал приводить примеры комбинирования разных методов сглаживания, что бы не вызвать у вас путаницы.
Да кто такой этот ваш MSAA и SSAA?!
Вы часто видели эти MSAA и SSAA в настройках — и выбирали опцию наугад. Знали примерно, что эти загадочные буквы связаны со сглаживанием картинки, и этого вам всегда хватало. Но червячок сомнений всё-таки точил ваш разум. Иначе бы вы, как и мы сейчас, не задались вопросом: «Кто же такие эти самые MSAA и SSAA на самом деле?». Ну что ж, давайте разберёмся со всем этим по порядку и без заумных словечек.
Что такое сглаживание?
Минутка очевидных вещей. Изображение на вашем мониторе состоит из пикселей — очень маленьких квадратиков. По законам геометрии, из них получаются отличные вертикальные и горизонтальные линии и идеальные прямоугольники. А вот если нарисовать в Paint наклонную линию или круг, то тут же на белый свет явятся пиксельные «лесенки».
Далеко не каждую 2D фигуру можно создать только при помощи квадратов и линий под прямым углом, а о трёхмерных объектах нечего и говорить. Так что проблема сглаживания существует в играх как сейчас, так и тридцать лет назад — вам не хуже меня видно, где стоило бы сгладить Лару Крофт.
Вот эти вот неровности ещё называют «алиасингом». На скриншоте это выглядит более-менее терпимо, но в игре, помимо эстетических неудобств, они создают ещё и лишнее мельтешение на экране — ломаные линии будут всё время перестраиваться и отвлекать, а задний план и вовсе превратится в разноцветную мешанину пикселей. Решить проблему «лесенок» можно двумя способами.
Первый — это увеличить разрешение. Тогда на один экранный дюйм будет приходиться больше пикселей, и вероятность увидеть резкие переходы снизится: не зря сейчас индустрия потихоньку переходит на 4к. За ним последует 8к, потом 16к, и в конце концов вы скорее разглядите пиксели на оконном стекле, чем на экране. К сожалению, подобная роскошь кусается как в плане цены, так и в плане производства, а сорок лет назад не было даже возможности создать экран с таким разрешением. Поэтому пришлось придумать второй способ.
И это — сглаживание, которое не позволяет рваным линиям и неровностям портить вам всю малину. Технологию создали в 1972 году в Массачусетском технологическом институте, а затем эту идею подхватили и переработали все кому не лень, так что теперь мы имеем кучу разных видов смягчения границ предметов. Однако, суть у всех общая: линию на изображении сглаживают с помощью градиента на крайних пикселях.
Для сглаживания изображения к контурам предмета добавляются оттенки соседнего цвета — ближайшие к фону пиксели принимают среднее цветовое значение между моделькой и окружением, размывая границу и создавая градиент. В результате картинка выходит более плавной и приятной для глаз, хоть и становится немного мыльной.
Для некоторых графических элементов используются специальные алгоритмы сглаживания. Так, для смягчения контуров букв придумали ClearType, а для самых простых линий — Алгоритм Ву. Некоторые алгоритмы работают только с уже существующим изображением, а другие применяются прямо во время построения сцены. Одни из них жрут мощности вашей видеокарты, а другие сосредоточенно жуют ваш процессор и не влияют на FPS.
В общем, способы и принципы работы у всех разные, а значит, и фичи с багами тоже у них свои. Так что давайте разберём несколько самых популярных видов сглаживания подробнее.
Какое сглаживание в играх лучше: DLSS, MSAA, TAA, FXAA или DMAA
В любой современной игре в настройках графики легко найти пункт «Сглаживание». Как работает эта функция, насколько она полезна и какой вариант сглаживания выбрать, если доступно несколько — разберём подробнее.
Содержание
Что такое сглаживание и для чего нужно
Для начала стоит немного рассказать о том, что такое алиасинг, чтобы понять, для чего нужно сглаживание. Дело в том, что графика дискретна — очевидно, пиксель либо закрашен полностью, либо нет. При построении сцены цвет каждого пикселя определяется тем, лежит ли в его центре часть какого-нибудь объекта или нет. Именно поэтому некоторые детали могут не отрисовываться, если они покрывают лишь четверть пикселя. А другие примитивы, наоборот, имеют слишком резкие переходы между парой пикселей, даже если сам предмет должен обладать плавными формами.
Иначе говоря, алиасинг — резкий переход между двумя или несколькими пикселями. Самые очевидные примеры алиасинга в играх — мерцание тонких объектов или текстур с мелкими деталями в движении и эффект ступенчатости на краях объектов.
Так вот, сглаживание, или же AA (Anti-Aliasing) — это способ устранения артефактов алиасинга, в том числе и тех самых «лесенок» на изображении. Оно позволяет сделать сцену в игре более реалистичной и приятной глазу, как в реальной жизни. Добиваются плавности как раз «смягчением» переходов между пикселями, заполняя соседние пиксели корректными оттенками.
Какие виды сглаживания в играх бывают
Количество методов сглаживания не так мало, как кажется на первый взгляд. Так как их очень много, обо всех рассказать сложно, поэтому я затрону наиболее распространённые и интересные из них.
Сами методы можно разделить на 2 категории: те, которые применяются во время рендеринга и те, которые применяются к уже построенному изображению (постпроцессинговые).
SSAA (Super Sampling Anti-Aliasing)
Также его называют методом избыточной выборки. Основан на принципах получения образцов цвета (сэмплов) сразу в 4 участках пикселя с последующим усреднением. Важное уточнение: для этого вместо одного пикселя рендерятся четыре, и уже после расчётов цвета они сжимаются обратно до одного. Кстати, необязательно должно использоваться именно четырёхкратное увеличение, это лишь один из самых распространённых типов алгоритма. Существует множество вариаций паттернов выборки: среди них ordered grid, rotated grid, jitter. Все они отличаются только расположением точек получения сэмплов и точностью результата. Иногда в настройках игры можно увидеть несколько видов SSAA, которые как раз будут отличаться паттернами. Самый простой — ordered grid (OGSSAA), остальные методы, как правило, эффективнее.
Существенным недостатком SSAA является его высокое требование к ресурсам — неудивительно, ведь по сути это рендеринг всей сцены в разрешении, превышающем нативное в несколько раз. Зато этот метод сглаживания один из самых эффективных и точных, правда, в современных AAA-проектах встречается не так часто.
DSR (Dynamic Super Resolution)
Владельцы видеокарт NVIDIA имеют возможность включить в «Панели управления NVIDIA» функцию под названием DSR. С этой технологией изображение в игре рендерится в большем разрешении, а затем масштабируется до нативного разрешения монитора. Результат оказывается близок к SSAA, за исключением того, что в DSR ещё накладывается фильтр размытия.
Как и метод избыточной выборки, DSR потребляет много ресурсов. Главный плюс использования этой функции — она поддерживается в большем количестве игр (хотя в некоторых могут возникать проблемы) и не требует внедрения разработчиком.
MSAA (MultiSample Anti-Aliasing)
Как и SSAA, MSAA делает выборку нескольких участков пикселя и усредняет цвет, но только на крайних пикселях объектов, а не на всей сцене, а значит, и ресурсов потребляет значительно меньше. Весьма распространён и даёт хороший результат. Из-за такой выборки проявляются и недочёты технологии — на стыках между двумя объектами изображение по-прежнему «острое», то же самое видно и на высокодетализированных, а также прозрачных текстурах. Ну и хоть оно менее ресурсозатратное, нежели SSAA, это всё ещё «тяжёлый» метод, сильно нагружающий видеокарту.
MSAA в играх встречается в нескольких типах: 2x, 4x, 8x, 16x. Число отражает количество выборок на пиксель. Чем оно выше, тем лучше результат, но сильнее нагрузка.
CSAA (Coverage Sampling Anti-Aliasing)
CSAA — это доработанный MSAA от компании NVIDIA. Он выдаёт результат, близкий к MSAA 8x или 16x, потребляя ресурсы на уровне MSAA 4x. Не углубляясь в детали, улучшение сглаживания достигается за счёт использования информации ещё и о соседних пикселях. Похожая технология от AMD называется EQAA (Enhanced Quality Anti-Aliasing). Обе технологии почти не встречаются в современных играх из-за того, что сейчас разработчики предпочитают использовать универсальные методы.
TAA (Temporal Anti-Aliasing)
TAA — популярный метод сглаживания, который часто используется во многих современных играх. Он берёт информацию о пикселях не только с текущего кадра, но и с предыдущего. За счёт этого TAA позволяет избавиться от эффекта мерцания, например, на тонких объектах. В целом, это довольно качественный метод, не уступающий MSAA, при этом потребляющий в разы меньше ресурсов. Недостатки тоже есть: изображение может быть слишком мыльным — разработчики пытаются исправлять это повышением резкости, но не всегда помогает. Кроме того, из-за того, что информация берётся с предыдущего кадра, возникает эффект гостинга (остаточного изображения) — вокруг движущихся объектов возникают «шлейфы».
FXAA (Fast approXimate Anti-Aliasing)
FXAA относится к постпроцессинговому типу сглаживания. Весьма дешёвый способ убрать алиасинг с небольшими потерями производительности. FXAA смешивает соседние пиксели на готовом изображении, заранее определяя контрастные переходы. Недостатком можно назвать излишнее сглаживание, из-за чего некоторые текстуры и далёкие предметы будут мыльными, но FXAA станет отличным выбором на слабых компьютерах, так как оказывает очень маленькое влияние на FPS.
MLAA (MorphoLogical Anti-Aliasing)
Постпроцессинговый метод, работает не на видеокарте, а на процессоре, в отличие от всех остальных методов. MLAA ищет резкие отличия в цветах, затем идентифицирует L-, Z- и U-образные паттерны в построенном изображении, после чего смешивает цвета пикселей в таких фигурах.
На движущихся объектах могут возникать артефакты, связанные с появлением и исчезновением отдельных пикселей. Это характерно почти для всех типов геометрического сглаживания, в том числе и для MLAA. На тонких объектах данный артефакт проявляется в виде мерцания.
MLAA даёт более точный результат, чем у FXAA, но и сам процесс более требователен к ресурсам. Впрочем, если имеется мощный процессор, то влияние на FPS в играх будет минимальное.
SMAA (Subpixel Morphological Anti-Aliasing)
SMAA — это смесь FXAA и MLAA, работающая на видеокарте. В отличие от MLAA, ищёт различия не в цветах, а в яркости пикселей. Кроме того, использует не только L-, Z- и U-образные паттерны, но ещё и диагональные.
Существуют разные типы SMAA:
Самый эффективный, как можно понять из описания, SMAA T4x, он же и самый прожорливый из этих вариантов. На скриншотах из Shadow of Tomb Raider заметно, как сильно меняется изображение при включении SMAA 1x, а вот разница между SMAA T2x и T4x есть, но она не такая существенная.
CMAA (Conservative Morphological Anti-Aliasing)
Как и предыдущие три, CMAA — это постпроцессинговый метод. Нагружает систему чуть больше, чем FXAA, но меньше, чем SMAA. В теории, CMAA обеспечивает куда более лучшую по качеству картинку, нежели примитивный FXAA, но это зависит от реализации: на примерах из DiRT Rally 2.0 отлично видно, что алгоритм не очень сильно влияет на сцену.
На двух изображениях выше сложно увидеть разницу, но она есть: отдалённые предметы более чёткие и с меньшим количеством лесенок. Особенно видно это на мелкой траве вдалеке, а также на дальних конусах.
CMAA исследует изображение на разрывы цветов, уточняет края фигур в конкретных участках, затем обрабатывает простые фигуры, причём только симметричные. Метод имеет повышенную временную стабильность в сравнении с SMAA и MLAA — за счёт этого в сцене меньше мерцаний.
DLSS (Deep Learning Super Sampling)
Сравнительно новая технология, на данный момент доступная только на видеокартах NVIDIA RTX. Очень эффективный метод, который при небольших требованиях к ресурсам выдаёт качественную картинку. Конечно, если речь идёт о DLSS 2.0 и 2.1 — первая итерация технологии была очень сырой и сильно «мылила» картинку.
Используя тензорные ядра, DLSS апскейлит отрендеренное в низком разрешении изображение за счёт использования глубокого машинного обучения. Такой подход позволяет добиться качества, сравнимого с рендером сцены в полноценном разрешении.
Конечно, технология всё ещё сыровата даже во второй версии, и иногда встречаются небольшие артефакты, но даже сейчас результат получается лучше, чем при использовании TAA. На картинке выше сравнивается DLSS и TAA. Издалека разницы нет, но при детальном рассмотрении видно, что с DLSS дальние объекты чётче, а рюкзак выглядит чуть мыльнее, но на нём нет лесенок.
Итог: какое сглаживание лучше выбрать
Технологий сглаживания действительно много, но каждая из них имеет право на существование. Какая же из них самая лучшая?
SMAA: улучшенное субпиксельное морфологическое сглаживание
Данная статья основана на журнале Хорхе Хименеса, Хосе Эчеварриа, Тиаго Соуса и Диего Гутьерреса.
Старые способы сглаживания (антиалиасинга)
Современные способы сглаживания
Существует множество современных основанных на фильтрации методов, которые хорошо справляются со своей работой, несмотря на то, что уступают двум перечисленным выше. FXAA, DEAA, GPAA, GBAA, CSAA, EQAA, DLAA… В этой статье мы поговорим о SMAA, и о его предшественнике — MLAA. Эти современные основанные на фильтрации методы имеют собственные проблемы:
Морфологическое сглаживание (Morphological Antialiasing, MLAA)
MLAA пытается оценить покрытие исходной геометрии. Для точной растеризации сглаженного треугольника необходимо вычислить площадь покрытия каждого пикселя внутри треугольника, чтобы правильным образом смешать его с фоном. MLAA начинает с изображения без сглаживания, а затем обращает процесс вспять, векторизируя силуэты, чтобы вычислить покрываемые ими площади. Поскольку фон после растеризации узнать нельзя, MLAA затем смешивает его с соседом, предполагая, что его значение близко к значению исходного фона. Другими словами, алгоритм распознаёт границы (с помощью информации о цвете или глубине), а затем обнаруживает в них конкретные паттерны. Сглаживание обеспечивается интеллектуальным смешиванием пикселей в границах. MLAA имеет реализации на DirectX 10 и Mono Game (XNA). Он честно реализован в таких играх, как Fable II. Создатели MLAA позже создали SMAA, или Enhanced Subpixel Morphological Antialiasing (усовершенствованное субпиксельное морфологическое сглаживание), которое является основной темой данной статьи.
Enhanced Subpixel Morphological Antialiasing (SMAA)
Сравнение SMAA и других методов в Crysis 2
SMAA обеспечивает надёжное распознавание краёв, а также простой и эффективный способ обработки острых геометрических элементов и диагональных линий. Кроме того, SMAA не изменяет форму геометрии, как это делают многие другие методы.
Вверху — AA нет; в середине — MLAA; внизу — SMAA
SMAA построен на конвейере MLAA, и улучшает или переосмысливает каждый его этап. В частности, распознавание краёв улучшено благодаря использованию информации о цвете вместе с адаптацией локального контраста для создания более чётких краёв. Метод расширяет количество паттернов, используемых для сохранения резких геометрических элементов и диагоналей. Наконец, он показывает, как морфологическое сглаживание можно точно скомбинировать с мультисемплингом или суперсемплингом и временной репроекцией.
Распознавание краёв
Распознавание краёв — важнейший этап, потому что нераспознанные края остаются искажёнными. С другой стороны, слишком большое количество краёв с фильтрацией снижает качество сглаженного изображения. Для распознавания края может использоваться различная информация: цветность, яркость, глубина, нормаль поверхности и их сочетание. SMAA по четырём причинам использует яркость (luma):
Слева и в центре: другие методы распознавания краёв, приводящие к появлению красных пересечений и артефактов; справа: совершенно чёткие края SMAA
Запомните это изображение. Вот как работает распознавание краёв: окончательное вычисленное значение — это булево значение, называемое граница левого края. Аналогичным образом вычисляются булевы значения для верхнего края. Формула:
0.5.c_
Все значения c называются дельтами контраста.
Обработка паттернов
Распознавание паттернов SMAA позволяет сохранять резкие геометрические элементы, например, углы, обрабатывает диагонали и обеспечивает точный поиск расстояний.
Острые геометрические элементы: ревекторизация силуэтов в MLAA склонна к скруглению углов. Чтобы избежать этого, SMAA использует наблюдение о том, что пересечение краёв в линиях контуров имеет максимальный размер один пиксель, а для острых углов эта длина скорее всего будет больше. Поэтому SMAA берёт пересекающиеся края длиной в два пикселя, что позволяет выполнять менее агрессивную обработку углов.
Диагональные паттерны: мы добавили совершенно новый способ распознавания диагональных паттернов. Он состоит из двух следующих этапов:
Точный поиск расстояний: ключом к распознаванию и классификации паттернов является получение точного расстояния края (длины до обоих концов линии). Для ускорения этого процесса MLAA активно применяет аппаратную интерполяцию. Аппаратную билинейную фильтрацию можно использовать для получения и кодирования до четырёх различных значений за одну операцию доступа к памяти. Эта линейная интерполяция двух двоичных значений (то есть билинейная), создающая одно значение с плавающей запятой, описываемое следующей формулой:
Где и
— это два двоичных значения (0 или 1), а
— значение интерполяции.
Результаты
MLAA работает с одним сэмплом на пиксель. Что приводится к субсемплированию, из-за которого реальные субпиксельные элементы воссоздать невозможно.
Сравнение MLAA с SMAA и отсутствием AA
Однако SMAA работает на субпиксельном уровне. Это приводит к следующему: