Что такое синтезатор частоты в приемнике
Синтезаторы частоты
К гетеродинам современных радиоприемных устройств в настоящее время предъявляются требования обеспечивать стабильность частоты такую как могут обеспечить только кварцевые генераторы. При этом они должны обеспечивать перестройку с одной частоты на другую. Эти требования могут быть совмещены только в особых устройствах — синтезаторах частот.
Синтезаторы частот, применяемые в качестве гетеродинов радиоприемников, в настоящее время в основном реализуются при помощи схемы фазовой автоматической подстройки частоты (ФАПЧ). Это связано с тем обстоятельством, что диапазон перестройки гетеродинов в приемниках мобильной связи УКВ диапазона достаточно мал.
Рассмотрим основные блоки, входящие в структурную схему фазовой автоматической подстройки частоты (ФАПЧ). Структурная схема ФАПЧ приведена на рисунке 1
Рисунок 1. Структурная схема цепи фазовой автоподстройки частоты (синтезатора частот)
В состав этой структурной схемы входит фазовый детектор (ФД), формирующий сигнал ошибки формируемого колебания. Выходное колебание вырабатывается генератором, управляемым напряжением (ГУН). Образцовое колебание в этой схеме формирует опорный генератор (ОГ). Еще одним неотъемлемым звеном цепи фазовой автоподстройки частоты является фильтр нижних частот (ФНЧ), позволяющий избежать самовозбуждения всей схемы в целом.
В зависимости от элементов, использованных в схеме фазовой автоподстройки частоты, она может быть аналоговой (при использовании аналоговых схем фазового детектора), цифровой (при использовании в качестве фазового детектора логических цепей) и полностью цифровой (при реализации фильтра низкой частоты в цифровом виде).
В результате работы схемы, приведенной на рисунке 1, мы в идеальном случае можем получить точно такое же колебание, что и колебание опорного генератора. Но тогда зачем нужна вся схема? Ведь можно было бы просто взять сигнал с выхода опорного генератора.
Первая задача, которую можно решить при использовании схемы фазовой автоматической подстройки частоты — это реализация детектирования частотно-модулированного сигнала. Если снимать напряжение с выхода ФНЧ, входящего в состав схемы фазовой автоподстройки частоты, то его уровень будет пропорционален отклонению частоты опорного генератора от номинального значения.
Однако мы собирались использовать схему ФАПЧ для генерации заданного набора частот. То есть нам требуется научиться изменять частоту генератора управляемого напряжением. Для этого включим в цепь обратной связи делитель частоты, как это показано на рисунке 2. Частота сигнала на выходе этого делителя уменьшится по сравнению с входным значением в коэффициент деления раз. Но ведь на входе фазового детектора частоты должны быть равными друг другу. Для этого мы увеличим частоту ГУН в коэффициент деления раз. При попытке частоты ГУН измениться относительно этого значения, цепь фазовой автоподстройки будет возвращать ее к номинальному значению.
Рисунок 2. Структурная схема цифрового синтезатора частот
В структурной схеме, приведенной на рисунке 2, использован делитель с переменным коэффициентом деления (ДПКД). Изменяя коэффициент деления N делителя ДПКД, можно перестраивать выходную частоту генератора. В этой схеме в качестве фазового детектора может быть применен как цифровой фазовый детектор, так и фазовый компаратор. Применение фазового компаратора позволяет расширить частотный диапазон захвата петли фазовой автоматической подстройки частоты синтезатора частот.
Как мы уже знаем из курса цифровой схемотехники, коэффициент деления цифрового делителя частоты может достигать несколько тысяч. Выбрав достаточно низкую опорную частоту fоп можно получить шаг перестройки синтезатора, удовлетворяющий требованиям к перестраиваемому генератору частот. Шаг перестройки синтезатора в схеме ФАПЧ получается равным частоте опорного генератора.
Обычно в радиотехнических схемах требуется малый шаг перестройки генератора. Величина этого шага составляет сотни герц или, в крайнем случае, единицы килогерц. В системах мобильной радиосвязи шаг перестройки синтезатора частот должен быть равен ширине канала связи. В результате возникает новая проблема. Мы не можем использовать для формирования такой частоты кварцевый генератор, ведь приемлемые по габаритам и стоимости кварцевые резонаторы могут работать только в диапазоне частот от 1 до 30 МГц.
Тем не менее, для получения низкой частоты сравнения на входах фазового детектора, на выходе опорного генератора можно поставить еще один цифровой делитель частоты с постоянным коэффициентом деления, как это выполнено в схеме, приведенной на рисунке 3. В этой схеме мы можем выбирать значения частот сравнения fср, опорной частоты fоп и выходного колебания f в достаточно широком диапазоне.
Рисунок 3. Структурная схема цифрового синтезатора частот с малым шагом перестройки частоты
В качестве примера давайте определим требования к блокам, входящим в структурную схему синтезатора, вырабатывающего частоты в диапазоне от 146 до 174 МГц. Пусть в схеме будет использован генератор опорной частоты 6,4 МГц. Такие высокостабильные генераторы предлагаются многими фирмами в качестве готовых модулей, например модуль 6.4 MHz CFPT-9006-FC-1B фирмы C-MAC.
Шаг перестройки по частоте в заданном диапазоне частот определяется разносом радиоканалов по частоте (шириной канала). В настоящее время в этом диапазоне частот МККР рекомендует строить аппаратуру с шириной полосы радиоканала 12,5 кГц. Пусть наш синтезатор частот будет обладать именно таким шагом настройки частоты. Тогда частота сравнения на входе фазового детектора тоже должна соответствовать этому значению. Отсюда можно определить коэффициент деления постоянного делителя ПД:
Теперь определим максимальное и минимальное значение коэффициентов деления ДПКД:
Все полученные коэффициенты деления легко реализуются одной из схем делителей частоты (цифровых счетчиков), рассмотренных нами в предыдущих главах. Теперь можно приступать к разработке принципиальной схемы синтезатора. Единственным блоком, не рассмотренным в предыдущих главах, остался блок определения ошибки по частоте. Остановимся на этом блоке подробнее.
Понравился материал? Поделись с друзьями!
Общие принципы построения синтезаторов частот
Цифровой синтезатор частоты – это схема комбинационного синтеза выходной частоты на основе набора высокостабильных опорных частот внутренних гетеродинов. Синтезатор частот позволяет точно установить частоту настройки приемника без участия сигнала принимаемой станции, т.е. независимо от его уровня и колебаний по амплитуде и фазе. поскольку частота современных радиовещательных передатчиков поддерживается постоянной с высокой точностью, настройка приемника при помощи синтезатора частот оказывается стабильной.
Из стабильной опорной частоты кварцевого генератора путем деления частоты образуются стробирующие импульсы, открывающие на строго определенное время счетчик импульсов. Число импульсов, поступающих на счетчик, определяется частотой местного гетеродина. Образовавшийся сигнал поступает в виде двоичного кола на цифровой компаратор и сравнивается с сигналами от регистров установки частоты. При совпадении кодов регистра и счетчика на выходе отсутствует сигнал ошибки. В противном случае сигнал ошибки подается на ЦАП, формирующий управляющее напряжение, используемое для подстройки гетеродина.
Рисунок.8. Структурная схема цифровые синтезаторы частот с частотной автоподстройкой (ЧАП).
Цифровые синтезаторы частот
Синтезатор частот — устройство для генерации электрических гармонических колебаний с помощью линейных повторений (умножением, суммированием, разностью) на основе одного или нескольких опорных генераторов. Синтезаторы частот служат источниками стабильных (по частоте) колебаний в радиоприёмниках, радиопередатчиках, частотомерах, испытательных генераторах сигналов и других устройствах, в которых требуется настройка на разные частоты в широком диапазоне и высокая стабильность выбранной частоты. Стабильность обычно достигается применением фазовой автоподстройки частоты или прямого цифрового синтеза (DDS) с использованием опорного генератора с кварцевой стабилизацией. Синтез частот обеспечивает намного более высокую точность и стабильность, чем традиционные электронные генераторы с перестройкой изменением индуктивности или ёмкости, очень широкий диапазон перестройки без каких-либо коммутаций и практически мгновенное переключение на любую заданную частоту.
Структурная схема цифрового синтезатора частот
В отличие от традиционных (аналоговых) решений, цифровые синтезаторы используют цифровую обработку для получения требуемой формы выходного сигнала из базового (тактового) сигнала. Сначала с помощью фазового аккумулятора создаётся цифровое представление сигнала, а затем генерируется и сам выходной сигнал (синусоидальной или любой другой желаемой формы) посредством цифро-аналогового преобразователя (ЦАП).Скорость генерации цифрового сигнала ограничена цифровым интерфейсом, но весьма высока и сопоставима с аналоговыми схемами. Цифровые синтезаторы также обеспечивают довольно малый уровень фазовых шумов. Однако основным достоинством цифрового синтезатора является исключительно высокое разрешение по частоте (ниже 1 Гц), определяемое длиной фазового аккумулятора. Главные недостатки – ограниченный частотный диапазон и большие искажения сигнала. В то время как нижняя граница рабочего диапазона частот цифрового синтезатора находится близко к нулю герц, его верхняя граница, в соответствии с теоремой Котельникова, не может превышать половины тактовой частоты..
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).
Синтезатор частот
СОДЕРЖАНИЕ
Типы [ править ]
Синтезатор Digiphase [ править ]
История [ править ]
Резонаторы на кварцевом кристалле на много порядков более стабильны, чем LC-схемы, и при использовании для управления частотой гетеродина обеспечивают достаточную стабильность для поддержания настройки приемника. Однако резонансная частота кристалла определяется его размерами и не может быть изменена для настройки приемника на разные частоты. Одним из решений является использование множества кристаллов, по одному для каждой желаемой частоты, и включение правильного из них в схему. Этот метод «грубой силы» практичен, когда требуется лишь несколько частот, но быстро становится дорогостоящим и непрактичным во многих приложениях. Например, диапазон FM-радио во многих странах поддерживает 100 отдельных частот каналов из примерно 88МГц до 108 МГц; для возможности настройки на каждый канал потребуется 100 кристаллов. Кабельное телевидение может поддерживать еще больше частот или каналов в гораздо более широком диапазоне. Большое количество кристаллов увеличивает стоимость и требует большего пространства.
Решение этой проблемы была разработка схем, которые могли бы генерировать несколько частот из опорной частоты «» производства кварцевого генератора. Это называется синтезатором частоты. Новые «синтезированные» частоты будут иметь стабильность частоты задающего кварцевого генератора, поскольку они были получены из него.
Системный анализ и проектирование [ править ]
Продуманная процедура проектирования считается первым значительным шагом на пути к успешному проекту синтезатора. [5] При проектировании системы синтезатора частоты, утверждает Манассевич, существует столько «лучших» процедур проектирования, сколько опытных разработчиков синтезаторов. [5] Системный анализ синтезатора частот включает диапазон выходной частоты (или полосу частот, или диапазон настройки), приращения частоты (или разрешение или настройку частоты), стабильность частоты (или стабильность фазы, сравните паразитные выходные сигналы), характеристики фазового шума (например, спектральная чистота), время переключения (сравните время установления и время нарастания), а также размер, энергопотребление и стоимость. [6] [7] Джеймс А. Кроуфорд говорит, что эти требования противоречат друг другу. [7]
Влиятельные ранние книги по методам частотного синтеза включают книги Флойда М. Гарднера (его методы фазовой синхронизации 1966 г. ) [8] и Венцеслава Ф. Кроупа (его « Синтез частот 1973 г.» ). [9]
Математические методы, аналогичные механическим отношениям передаточного числа, могут использоваться в синтезе частоты, когда коэффициент синтеза частоты является отношением целых чисел. [9] Этот метод позволяет эффективно планировать распределение и подавление спектральных выбросов.
Принцип синтезаторов с ФАПЧ [ править ]
Пример [ править ]
Практические соображения [ править ]
Дополнительные практические аспекты касаются количества времени, в течение которого система может переключаться с канала на канал, времени блокировки при первом включении и количества шума на выходе. Все это является функцией контурного фильтра системы, который представляет собой фильтр нижних частот, расположенный между выходом компаратора частоты и входом ГУН. Обычно выходной сигнал компаратора частоты имеет форму коротких импульсов ошибки, но на входе ГУН должно подаваться плавное, бесшумное напряжение постоянного тока. (Любой шум в этом сигнале, естественно, вызывает частотную модуляцию ГУН.) Сильная фильтрация заставит ГУН медленно реагировать на изменения, вызывая дрейф и медленное время отклика, но легкая фильтрация вызовет шум и другие проблемы с гармониками.. Таким образом, конструкция фильтра имеет решающее значение для производительности системы и фактически является основной областью, на которой разработчик сконцентрируется при создании системы синтезатора. [11]
Использовать как частотный модулятор [ править ]
Многие синтезаторы частоты с ФАПЧ также могут генерировать частотную модуляцию (ЧМ). Модулирующий сигнал добавляется к выходу контурного фильтра, напрямую изменяя частоту ГУН и выход синтезатора. Модуляция также появится на выходе фазового компаратора, амплитуда будет уменьшена любым делением частоты. Любые спектральные компоненты в модулирующем сигнале, слишком слабые для блокировки контурным фильтром, попадают обратно на вход VCO с полярностью, противоположной модулирующему сигналу, тем самым подавляя их. (Контур эффективно рассматривает эти компоненты как шум ГУН, который необходимо отслеживать.) Компоненты модуляции выше частоты среза петлевого фильтра не могут вернуться на вход ГУН, поэтому они остаются на выходе ГУН. [12] Таким образом, эта простая схема не может напрямую обрабатывать низкочастотные (или постоянные) модулирующие сигналы, но это не проблема для многих FM-передатчиков видео и аудио со связью по переменному току, которые используют этот метод. Такие сигналы также могут быть размещены на поднесущей выше частоты среза петлевого фильтра ФАПЧ.
Синтезаторы частоты с ФАПЧ также можно модулировать на низкой частоте и вплоть до постоянного тока с помощью двухточечной модуляции, чтобы преодолеть указанное выше ограничение. [13] Модуляция применяется к ГУН, как и раньше, но теперь также применяется в цифровом виде к синтезатору в соответствии с аналоговым ЧМ-сигналом с использованием быстрого дельта-сигма АЦП.
УКВ ЧМ радиоприемник с синтезатором частоты
Использование в предлагаемом супергетеродинном УКВ ЧМ приемнике синтезатора частоты в качестве гетеродина позволяет обеспечить существенно большую точность и стабильность частоты настройки в отличие от настройки переменным конденсатором.
Предлагаемый приемник обеспечивает прием сигналов УКВ ЧМ радиостанций стереофонического вещания по системе с пилот-тоном в диапазоне 88. 108 МГц. Шаг перестройки составляет 0.05 МГц. напряжение питания — 9 В. потребляемый ток — 90 мА, реальная чувствительность — около 3 мкВ Приемник имеет линейный выход который подключают ко входу стереофонического УЗЧ.
Управлять приемником можно с помощью восьми кнопок, шесть из которых предназначены для выбора заранее настроенного канала приема (радиостанции), а две — для настройки «вверх» и «вниз» по частоте Для тех, кто предпочитает покрутить ручку настройки, имеется валкодер (энкодер). Индикация частоты осуществляется четырехразрядным семиэлементным светодиодным индикатором При кажущейся сложности этот приемник прост в сборке и настройке. Он состоит из двух узлов — тюнера и блока управления, каждый из которых собран на отдельной печатной плате.
Рис.1 Схема тюнера
Схема тюнера показана на рис. 1. Он собран на микросхеме однокристального супергетеродинного стереофонического УКВ приемника ТЕА5711 и синтезаторе частоты LM7001J Сигнал гетеродина приемника ТЕА5711 с вывода 23 через разделительный конденсатор С13 поступает на вход фазового детектора синтезатора частоты LM7001J (вывод 11) Принцип работы этого синтезатора подробно описан в [1]. На выходе фазового детектора (вывод 14) формируется сигнал управления, он поступает на активный инвертирующий ФНЧ, собранный на транзисторах VT1 и VT2, с выхода которого через резисторы R3 и R4 он попадает на варикапы VD1 и VD2. С их помощью осуществляется перестройка контура усилителя ВЧ L2C7VD1 и контура гетеродина L3C9VD2 Входной контур L1СЗ широкополосный и поэтому неперестраиваемый. Прием осуществляется на антенну — отрезок провода длиной около 40 см
Рис.2 Основа блока управления — микроконтроллер PIC16F628A
Рис.5 Внешний вид тюнера
Т. НОСОВ, г. Саратов
Радио, №06, 2010г
ЛИТЕРАТУРА
1 Темерев А. Микросхемы серии LM7001 для синтезатора частот (Справочный листок) — Радио, 2003, № 4, с. 49, 50.
2. Шмарин И. Изготовление печатной платы с помощью пленочного фоторезиста — Радио, 2009, № 5, с 28
Основы электроакустики
Нестабильность частоты гетеродина — одна из главных проблем, которую приходится решать при разработке высококачественного радиоприемного устройства. В приемниках, предназначенных для работы на одной или нескольких фиксированных частотах, нужной стабильности частоты добиваются применением кварцевых резонаторов. Значительно сложнее обстоит дело, если приемник должен плавно перекрывать диапазон частот. В этом случае чаще всего используют автоматическую подстройку частоты. Однако автоподстройке свойственен недостаток, заключающийся в том, что она работает только при наличии сигнала, причем эффективность ее работы зависит от амплитуды сигнала.
Есть и еще один путь: использовать в качестве гетеродина синтезатор частоты на основе кварцевого генератора. Однако здесь возникают свои трудности. Одна из них в том, что синтезатор не может генерировать колебания любой частоты: он вырабатывает сигналы дискретного ряда частот. Выход может быть только один: сужение интервалов между соседними частотами до приемлемого значения. Вторая трудность — известная сложность синтезаторов частоты Увеличение потребительских качеств приемников было достигнуто применением еще одного профессионального средства — цифрового синтезатора частот с кварцевой стабилизацией в качестве первого (а нередко и второго) гетеродина. В основе синтезатора лежит кварцевый генератор — схема генератора, частота которого задастся частотой колебаний кварцевой пластины. Она очень стабильна — например, на частоте 1 МГц можно добиться ухода частоты на 0,1—10 Гц. С помощью специальных схем (умножителей и делителей частоты, выделения нужных гармоник) можно заставить синтезатор выдавать любые дискретные частоты. Последнее время синтезаторы делают с цифровым управлением.
Цифровые синтезаторы не только резко повысили стабильность настройки приемников, но и позволили осуществить цифровое управление частотой настройки. Достаточно установить частоту станции, и она будет приниматься! Более того, появилась возможность хранить значения частот принимаемых станций в специальном запоминающем устройстве приемника и использовать простой (например, клавишный) переключатель для мгновенного выбора нужной станции.
В настоящее время синтезатор частоты может реализоваться на одной специализированной большой интегральной схеме (БИС) или на нескольких микросхемах умеренной степени интеграции. Это позволяет использовать синтезатор частоты в качестве гетеродина супергетеродинных приемников не только профессионального, но и бытового применения — от высококачественных тюнеров до сверхминиатюрных дорожных и карманных всеволновых радиоприемников.
Для управления приемником с синтезатором часто используется микрокомпьютер. При этом легко реализуется пошаговая настройка на станции. При приеме станций с AM шаг настройки выбирают равным 9 кГц на ДВ и 10 кГц на СВ и KB — с таким шагом идут частоты станций. Однако иногда шаг настройки уменьшают до 1 или даже 0,1 кГц для обеспечения приема специальных радиостанций. В УКВ-диапазоне шаг настройки обычно составляет 50 кГц. Нередко используются системы поиска работающих радиостанций с их захватом в случае обнаружения. Столь же просто (при наличии индикатора) осуществляется установка частоты приема в цифровой форме и переключение фиксированных настроек приемника, что полезно при применении приемников в системах профессиональной связи.
• Алгоритм работы синтезатора частоты задается системой управления. Если в приемнике используется два или более преобразования частоты, то на разных выходах синтезатора частоты необходимо одновременно иметь соответствующее число гетеродинных частотных «подставок».
Работа синтезатора частоты характеризуется следующими параметрами:
Синтезаторы частоты содержат:
Синтезаторы частоты подразделяются по принципу построения на устройства
Пассивные синтезаторы частоты Пассивные ЦСЧ не имеют в своем составе устройств с обратной связью и теоретически обладают более высоким быстродействием при перестройке синтезатора с одной частоты на другую. Пассивные ЦСЧ строятся на основе набора кварцевых резонаторов (метод некогерентного синтеза) или с применением одного источника опорных колебаний с кварцевой стабилизацией частоты, на основе которого формируется вся сетка частот (метод когерентного синтеза частот).
Активные синтезаторы частоты Если для получения сетки частот из одного эталонного колебания используются схемы фазовой автоподстройки частоты (ФАПЧ), то говорят об активном или косвенном синтезе. Схема автоподстройки является схемой с обратной связью. Она требует большего времени для перестройки частоты.
Синтез когерентных колебаний Два гармонических колебания считаются когерентными, если отношение приращений их полных фаз во времени равно постоянному числу.
Сравнение методов построения синтезаторов частоты приводит к выводу, что если главным показателем является быстродействие, то преимущество следует отдать системам пассивного синтеза, позволяющим получить время перестройки частоты порядка единиц или даже долей микросекунды.
Использование методов активного синтеза при достаточно густой сетке частот не позволяет получить время перестройки меньше десятков или даже сотен миллисекунд. Если доминирующим по значимости является спектральная характеристика синтезатора частоты, то предпочтительнее применять активную фильтрацию с помощью системы автоподстройки. Отношение полезного сигнала синтезатора к уровню детерминированных помех при активном синтезе достигает 80 … 100 дБ, в то время как при пассивном синтезе оно составляет только 60 … 80 дБ. По отношению к шумовым помехам оба метода синтеза примерно равноценны. В пассивных синтезаторах определяющую роль играют шумы умножителей частоты, а в активных – шумы гетеродина (автономного автогенератора).
Элементная база cинтезаторов Синтезаторы частоты того или другого типа могут быть выполнены на основе различной элементной базы:
В первом случае синтезатор частоты называется аналоговым, • во втором и третьем – цифровым. В настоящее время в основном применяются цифровые синтезаторы частоты.