Что такое система tn в электроустановках напряжением до 1000в
Системы заземления TN-C-S, TN-C, TN-C, TT, IT
Всем известны системы энергоснабжения с напряжением до 1000 вольт, на уровне конечного потребителя. Они бывают всего двух видов:
А вот с системами безопасности, ситуация гораздо сложнее. Для организации искусственного заземления, ГОСТ предусматривает 5 систем: TN-C, TN-S, TN-C-S, TT, IT.
Правила устройства электроустановок (ПУЭ) определяют условия, на основании которых проектировщики выбирают систему заземления объекта. Она отражается в проектной документации, и не может быть изменена после сдачи объекта в эксплуатацию.
В большинстве случаев, применяется система заземления TN, которая предусматривает обязательное заземление нейтрали источника питания. При этом открытые токоведущие части конечных электроустановок, могут быть соединены с нейтралью источника питания различными способами.
Каждая из предложенных систем искусственного заземления имеет свои преимущества и недостатки. При этом, любая из них направлена на решение вопросов безопасной эксплуатации электроустановок, и нахождения людей на объекте.
Условные обозначения
Для лучшего понимания материала, разберем принятые условные обозначения:
Самая безопасная система, это TN-S.
Силовой кабель для соединения потребителя электроэнергии с источником питания, выполнен по пятижильной схеме: три фазы (L1, L2, L3), рабочий нуль (N) и рабочее заземление (PE). Объединение нуля и «земли» происходит на ближайшей подстанции. При аварийной ситуации, если рабочий нуль отгорит, корпуса электроустановок все равно остаются присоединенными к заземлению. Защита от поражения электротоком обеспечивается независимо от состояния нулевого провода. Соответственно, внутренняя разводка к потребителям выполняется трехжильным проводом (для однофазного подключения), либо тем же пятижильным (при наличии трехфазных электроустановок: например, электропечей или отопительных систем).
На вводных щитках в каждом помещении, монтируются по две раздельные клеммные колодки: рабочий нуль и защитная земля.
Причем после «земляной» колодки нельзя устанавливать коммутационные устройства: выключатели, защитные автоматы. По всей длине, заземляющий проводник от заземлителя до электроустановки, не должен иметь размыкающих устройств.
Вы спросите: «а как же розетка?» При извлечении из нее вилки, линия заземления действительно размыкается. Но при этом электроустановка полностью обесточивается, и перестает быть опасной.
Системой заземления TN-S сегодня оборудуются все современные жилые и нежилые объекты. К сожалению, такая схема применяется только на объектах, введенных в строй не раньше, чем 15–20 лет назад. Подавляющее большинство жилого фонда, построенного во времена СССР, оборудованы системой TN-C. Это не значит, что все эти объекты построены с нарушениями СНиП. Просто в те времена, стандарты (включая ПУЭ) были иными.
В идеале, необходимо переоснастить все существующие сети до стандарта TN-S. Но это потребует огромных капиталовложений. К тому-же, прокладка дополнительных линий «земли» от питающих подстанций не всегда возможна технически. А значит, в некоторых местах придется менять всю сеть силовых кабелей.
Заземление TN-C не обеспечивает полной безопасности по следующей причине:
«Земля» и рабочий нуль представляют собой одну линию, которая расположена в силовом кабеле от источника питания, до потребителя. Заземлитель (контур заземления, физически соединенный с грунтом), расположен в непосредственной близости от питающей подстанции. Такой способ организации заземления называется глухозаземленной нейтралью. Силовой кабель состоит из четырех жил: три фазы (L1, L2, L3), и рабочий нуль, совмещенный с рабочим заземлением (PEN).
Поскольку рабочий нуль находится под нагрузкой (через него протекает активный электрический ток), он находится в так называемой зоне риска. Нередки случаи, когда от перегрева этот проводник просто отгорал. Что происходит при этом с конечными потребителями, оставим за скобками — напряжение может скакнуть до 600 вольт. Главная опасность в том, что все электроустановки в этом случае теряют защитное заземление. Прикоснувшись к корпусу, на котором может оказаться потенциал фазы, человек гарантированно будет поражен электротоком. Особую опасность при такой аварии, представляет одновременное прикосновение к электроустановке, находящейся под напряжением, и металлическим конструкциям, имеющим физический контакт с грунтом: системы отопления, водопровода, арматура в стенах. Даже влажный цементный пол, соединенный с арматурой в стяжке, может стать причиной трагедии.
В многоквартирных домах, и других объектах, оборудованных системой TN-C, вообще отсутствует защитное заземление в привычном понимании. Все знают, как выглядят розетки советского образца: в них нет контактов заземления. Даже если владельцы производят замену на трех контактные современные розетки, клемма защитного заземления остается невостребованной: ее просто не к чему подключить.
По этой причине, на объектах, оснащенных заземлением TN-C, в помещениях с повышенной влажностью (санузлы, бани, прачечные), запрещено использовать незаземленные электроприборы. Если вы устанавливаете бойлер, или стиральную машину — подводить к ней заземление (или организовывать систему дополнительного уравнивания потенциалов) на основе рабочей нейтрали, запрещено!
Необходимо организовать заземлитель (полноценный контур, имеющий физический контакт с грунтом). Причем параметры такого заземлителя должны соответствовать требованиям Правил устройства электроустановок.
Металлический уголок длиной 50 см, забитый в палисадник у подъезда, заземлителем не является!
Затем в квартиру заводится заземляющий проводник (сечением не менее 2.5 мм², и не имеющий разъединителей на всей протяженности), который соединяется непосредственно с электроустановкой. Разумеется, необходимо установить щиток или клеммную колодку заземления, завести на нее розетки и корпуса опасных электроприборов.
Для минимизации проблем со схемой TN-C, введена система заземления TN C S. Это некий компромисс, переходный вариант от старой C к современной S.
Как она устроена, и в чем отличие от TN-S?
В произвольном месте, глухозаземленная нейтраль объединяется с защитным заземлением. Точнее, от рабочего нуля выполняется ответвление. Как правило, такая точка организуется на входе силового кабеля в объект.
На вводном щитке потребителя (обычно, это общий ввод на объекте: многоквартирный дом, офисное здание и прочее) имеются уже две шины: рабочий нуль, и защитное заземление. Далее к потребителям идут привычные и безопасные силовые кабели: трехжильный к однофазным электроустановкам, и пятижильный к трехфазным.
В каждый вводной щиток квартиры, или обособленного помещения внутри объекта, линии защитного заземления и нуля заходят уже в разделенном виде. Для конечного потребителя, система заземления по схеме TN-C-S выглядит, как обычная и безопасная TN-S. На самом деле, уровень безопасности далеко не 100%.
Почему система TN-C-S не обеспечивает полную защиту от поражения электротоком? Слабое место находится на участке от питающей подстанции до точки объединения нуля и защитного заземления. Если на пути от подстанции, где глухозаземленная нейтраль соединена с заземлителем, до вводного распределительного устройства на объекте, произойдет разрыв линии PEN, все потребители останутся без контура заземления.
При проведении капитального ремонта на объектах жилого фонда советской постройки, обязательно организуется система заземления. Для экономии средств, выполняется она по схеме TN-C-S. В лучшем случае, при объединении линии PEN с вновь проложенной шиной защитного заземления, производится электрическое подключение к реальному контуру заземления. В большинстве домов присутствует основная система уравнивания потенциалов, имеющая надежный контакт с грунтом. Но зачастую, чтобы упростить себе задачу, бригады ремонтников просто устанавливают перемычку между новой шиной заземления и рабочей нейтралью, внутри вводного распределительного устройства.
Совет. При заключении договора с исполнителем работ по капитальному ремонту, необходимо заранее оговаривать вопрос заземления.
Как быть, если ваш дом подключен по системе TN-C, а до ближайшего капремонта еще много лет? Организовывать индивидуальное заземление в квартире, или объединяться хотя бы с соседями по подъезду. Иначе использование современных электроприборов (бойлеры, электрические духовки, стиральные машинки и пр.) станет источником повышенной опасности.
Есть горе мастера, немного разбирающиеся в электротехнике, но не понимающие ответственности за нарушение ПУЭ. Зачастую, вместо организации контура заземления по ГОСТу, шина защитного заземления соединяется с металлическими элементами инфраструктуры. В лучшем случае, со стояками холодной или горячей воды, в худшем — с системой отопления.
Действительно, при строительстве дома, эти трубы соединялись с контуром основной системы уравнивания потенциалов. Изначально был организован физический контакт с «землей». Но в процессе эксплуатации (особенно если вашему дому несколько десятков лет), целые участки трубопроводов заменены на полипропилен. Разумеется, ни о каком заземлении в этом случае не может быть и речи.
Организовав такое подключение, владелец квартиры пребывает в ложной уверенности, что у него с безопасностью полный порядок. Мало того, при появлении на корпусе электроустановки опасного потенциала (достаточно напряжения более 42 вольт), опасности подвергаются все соседи.
Вывод
Единственный безопасный способ — установить недалеко от подъезда контур заземления (согласно ПУЭ), и завести на объект надежный проводник.
После чего, можно развести полноценное заземление по квартирам. Разумеется, лучше поручить эту работу квалифицированным специалистам.
Видео по теме
Системы заземления: TN-S, TN-C, TNC-S, TT, IT. Обзор.
Заземление является одним из основных факторов обеспечивающих защиту от поражения электрическим током. В соответствии с главой 1.7 ПУЭ все системы заземления электроустановок можно разделить на две группы :
— системы с глухозаземленной нейтралью, к ним относятся система заземления TN (N-C, TN-C-S, TN-S) и система заземления TT;
— системы с изолированной нейтралью к ним относится система заземления IT;
Первая буква аббревиатуры указывает на характер заземления источника питания, а вторая — на характер заземления открытых проводящих частей электроприемника:
Так же в статье встречаются следующие аббревиатуры:
Теперь подробно разберем перечисленные типы систем заземления.
Система заземления TN
Система TN — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника питания посредством нулевых защитных проводников (п.1.7.3. ПУЭ).
Как уже было написано выше система TN подразделяется на следующие системы (подсистемы): TN-C, TN-C-S, TN-S.
Система заземления TN-C
Система TN-C — это система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении. То есть при данной системе применяется общий PEN-проводник который используется как для подключения электроприемников так и для зануления их открытых проводящих частей (корпусов).
Система заземления TN-C схема:
Как видно на схеме при данной системе выполняется зануление токопроводящих корпусов электрооборудования, это необходимо для того, что бы при замыкании фазного провода на корпус электроприемника, вследствие его обрыва или повреждения изоляции, произошло короткое замыкание которое, в свою очередь, привело бы к срабатыванию защитной аппаратуры (автоматического выключателя) и отключению напряжения.
Главным недостатком системы TN-C является утеря ее защитных функций в случае отгорания (обрыва) PEN-проводника, при этом на зануленном корпусе электрооборудования может возникнуть опасный для жизни электрический потенциал.
Из-за недостаточной степени защиты в настоящее время данная система не применяется, однако она все еще встречается в зданиях старой постройки. При реконструкции старых зданий система заземления TN-C заменяется на систему TN-C-S или TN-S.
Система заземления TN-C-S
Система TN-C-S — это система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания. Другими словами при данной системе имеется PEN-проводник который, в определенной части этой системы, разделяется на нулевой рабочий (N-проводник) и нулевой защитный (PE-проводник).
Согласно пункту 1.7.135 ПУЭ В месте разделения PEN-проводника на нулевой защитный (PE) и нулевой рабочий (N) проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного РЕ-проводника.
Таким образом схема системы заземления TN-C-S будет иметь следующий вид:
Примечание: перемычка между шинами должна иметь сечение не менее сечения PEN-проводника.
Данная система более надежна и обеспечивает более высоки уровень электробезопасности чем система TN-C, кроме того система TN-C-S обеспечивает защиту от обрыва нуля, а ее устройство обходится немногим дороже системы системы TN-C.
Однако эта система так же имеет существенный недостаток — при повреждении PEN проводника на участке сети между источником питания и зданием на всех корпусах электрооборудования соединенных с PE проводником появится опасный для жизни электрический потенциал.
Для предотвращения такого развития событий при системе TN-C-S выполняется повторное заземление PEN проводника, как показано на схеме.
Благодаря невысокой стоимости устройства системы TN-C-S и ее хорошими защитными характеристиками в настоящее время эта система получила наиболее широкое применение.
Система заземления TN-S
Система TN-S — это система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении.
Система заземления TN-S схема:
Данная система обеспечивает высокий уровень безопасности, т.к. при ней исключена возможность возникновения опасного электрического потенциала на корпусах электрооборудования при повреждении питающей линии.
Однако система TN-S не получила широкого распространения ввиду своего главного недостатка — высокой стоимости, которая обусловлена необходимостью выполнения подключения электроустановок потребителей к источнику питания пятью проводами при трехфазном подключении либо тремя проводами при однофазном подключении, при этом отечественная энергетика ориентирована на четырехпроводные схемы трехфазного электроснабжения, это значит, что при решении выполнить подключение по системе TN-S присоединение к существующим сетям электроснабжения будет невозможно, для такого подключения необходимо будет вести отдельную пятипроводную линию от источника питания (трансформаторной подстанции).
Система заземления TT
Система ТТ — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.
Система заземления TT схема:
В соответствии с пунктом 1.7.59. ПУЭ питание электроустановок по системе ТТ, допускается только в тех случаях, когда условия электробезопасности в системе TN не могут быть обеспечены. Кроме того в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:
где Iа — ток срабатывания защитного устройства; Ra — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удаленного электроприемника.
Система заземления IT
Система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены.
Система заземления IT схема:
Система IT применяется, как правило, в электроустановках специального назначения, к которым предъявляются повышенные требования безопасности, например лаборатории, угольные шахты, также может применяться в больницах для аварийного электроснабжения и освещения и т.п
Система TN-C-S: что это такое, особенности, как её выполнять
Система TN-C-S — это система распределения электроэнергии, в которой заземлена одна из частей источника питания, находящихся под напряжением. Открытые проводящие части электроустановки здания присоединены к заземленной части источника питания, находящейся под напряжением, в головной части электроустановки здания (от источника питания) посредством PEN-проводников, PEM-проводников или PEL-проводников, а в остальной части электроустановки здания — с помощью защитных проводников (PE) (определение согласно СП 437.1325800.2018).
Вся информация, которую вы прочитаете ниже практически полностью основана на статьях Ю.В. Харечко с его книги [1], а также нормативной документации [2] и [3].
Особенности
При типе заземления системы TN-C-S (рис. 1 и 2) заземлена одна из частей источника питания, находящихся под напряжением, обычно – нейтраль трансформатора. Открытые проводящие части электроустановки здания имеют электрическое соединение с заземлённой частью источника питания, находящейся под напряжением. Для обеспечения этого соединения в низковольтной распределительной электрической сети обычно применяют PEN-проводники, а в электроустановке здания используют защитные проводники PE. В системе TN-C-S возможно также применение PEN-проводников в головной (по току электроэнергии) части электроустановки здания. При этом в электрических цепях остальной части электроустановки здания используют защитные проводники.
В системе TN-C-S также, как в системе TN-C в распределительной электрической сети применяют PEN-проводники, а в электроустановке здания так же, как в системе TN-S используют защитные проводники.
При типе заземления системы TN-C-S PEN-проводник всегда разделяют на защитный и нейтральный проводники в какой-то точке электроустановки здания. Это разделение может быть произведено на вводе в электроустановку здания – на вводном зажиме или на защитной шине вводно-распределительного устройства (рис. 1). Так следует делать в электроустановках жилых и общественных зданий, торговых предприятий, медицинских учреждений.
Рис. 1. Система TN-C-S трехфазная четырехпроводная. PEN-проводник разделен на вводе электроустановки здания (на основе рисунка 2.13 из книги [1] автора Харечко Ю.В.)
PEN-проводник может быть разделён также на вводном зажиме или на защитной шине другого распределительного устройства, которое соединено с ВРУ посредством распределительной электрической цепи, имеющей PEN-проводник в составе своих проводников (рис. 2).
На рисунках 1 и 2 обозначено:
В первом случае (см. рисунок 1) во всей электроустановке здания применяются два проводника — защитный и нейтральный. Во втором случае (см. рисунок 2) в головной (по току электроэнергии) части электроустановки здания используют PEN-проводник, а после точки его разделения применяют защитный и нейтральный проводники. Открытые проводящие части электрооборудования класса I присоединяют соответственно к защитным проводникам во всей электроустановке здания (см. рисунок 1) или в головной части электроустановки здания их присоединяют к PEN-проводникам, а в остальной её части — к защитным проводникам (см. рисунок 2).
При типе заземления системы TN-C-S теоретически возможно разделение PEN-проводника на защитный и нейтральный проводники в любой точке распределительной электрической сети. Однако более надёжно производить разделение PEN-проводника в электроустановке здания, например, на вводных зажимах ВРУ (ВУ) или на его защитной шине.
Если трансформаторная подстанция встроена в здание, то электроустановку здания целесообразно выполнить с типом заземления системы TN-S, поскольку система распределения электроэнергии не будет иметь линии электропередачи.
Причины широкого распространения типа заземления системы TN-C-S в электроустановках жилых зданий.
Тип заземления системы TN-C-S получил широкое распространение в электроустановках жилых зданий, что обусловлено рядом причин:
При применении типа заземления системы TN-C-S в электроустановках зданий можно обеспечить более высокий уровень электрической безопасности, чем при использовании типа заземления системы TN-C. Больший уровень электробезопасности, прежде всего, достигается вследствие использования в электроустановках зданий отдельных защитных проводников, по которым в нормальных условиях протекают токи утечки. Их значения существенно меньшие значений токов нагрузки, которые обычно протекают по PEN-проводникам. Незначительные электрические токи оказывают меньшее негативное воздействие на электрические контакты в цепях защитных проводников. Поэтому вероятность потери непрерывности электрической цепи у защитного проводника существенно меньше, чем у PEN-проводника.
При необходимости повысить уровень электробезопасности электроустановку здания следует выполнить с типом заземления системы TN-S. Это потребует строительства новой или реконструкции существующей низковольтной линии электропередачи.
В настоящее время систему TN-C-S повсеместно применяют на территории нашей страны. Для реализации системы TN-C-S используют существующие и новые низковольтные распределительные электрические сети, воздушные и кабельные линии электропередачи которых имеют три фазных проводника и PEN-проводник. На основе этих сетей можно также реализовать системы TN-C и TT.
Как выполнить тип заземления системы TN-C-S?
Для электроустановки индивидуального жилого дома.
Выполнить тип заземления системы TN-C-S для электроустановки индивидуального жилого дома достаточно просто. Разделение PEN-проводника следует произвести на вводных зажимах ВРУ (см. рисунок 1 статьи). Далее во всей электроустановке здания следует применять два проводника: защитный и нейтральный, которые не должны иметь ни преднамеренного, ни случайного электрического соединения между собой за точкой разделения PEN-проводника.
Электроустановку индивидуального жилого дома обычно подключают к низковольтной распределительной электрической сети. PEN-проводник линии электропередачи следует разделять на вводе в электроустановку индивидуального жилого дома (рис. 1). Подробнее о ВРУ см. статью «Как собрать трехфазное ВРУ для частного дома?«.
Для электроустановки вновь сооружаемых многоквартирных жилых зданий.
В электроустановках вновь сооружаемых многоквартирных жилых зданий тип заземления системы TN-C-S может быть реализован только одним способом, предусматривающим разделение PEN-проводника линии электропередачи на вводе в электроустановку здания, а именно на вводных зажимах ВРУ (см. рисунок 3).
Для существующих электроустановок многоквартирных жилых зданий.
В существующих электроустановках многоквартирных жилых зданий тип заземления системы TN-C-S мог быть выполнен иначе. Например, PEN-проводники электрических стояков могли быть разделены на защитные и нейтральные проводники в этажных распределительных щитках (ЭРЩ), которые установлены на этажах жилого здания и подключены к электрическим стоякам (см. рисунок 4).
На рисунках 3 и 4 обозначено:
Примечание из книги [1] автора Харечко Ю.В. — на рисунках 3 и 4 электроустановки квартир условно представлены в виде однофазных электроприёмников класса I.
В первом варианте электрический стояк (см. рисунок 3), входящий в состав распределительной электрической цепи и предназначенный для передачи электроэнергии от ВРУ до этажных распределительных щитков, должен иметь 5 проводников — 3 фазных проводника, нейтральный проводник и защитный проводник. Во втором варианте (см. рисунок 4) электрический стояк выполнен из 3 фазных проводников и PEN-проводника.
Первый вариант построения электрических цепей защитных проводников в электроустановках жилых зданий, соответствующих типу заземления системы TN-C-S, который предписан требованиями ГОСТ 30331.1-2013, является более предпочтительным с точки зрения обеспечения защиты от поражения электрическим током, чем второй вариант. Первым вариантом реализации типа заземления системы TN-C-S следует руководствоваться при реконструкции существующих электроустановок жилых зданий.
Другие примеры выполнения системы TN-C-S.
Рис. 5. Система TN-C-S однофазная двухпроводная, в которой PEL-проводник разделён на защитный проводник PE и заземлённый линейный проводник LE на вводе электроустановки
Рис. 6. Система TN-C-S однофазная двухпроводная с разделением PEL-проводника
Рис. 7. Система TN-C-S однофазная двухпроводная, в которой PEN-проводник разделен на защитный проводник PE и нейтральный проводник N на вводе электроустановки
Рис. 8. Система TN-C-S трехфазная трехпроводная, в которой PEL-проводник разделён на защитный проводник PE и заземленный линейный проводник LE на вводе электроустановки
Рис. 9. Система TN-C-S трехфазная трехпроводная, в которой PEL-проводник разделен на защитный проводник PE и заземленный линейный проводник LE где-то в электроустановке
Об обслуживании электроустановок жилых зданий
Однако в настоящее время система обслуживания электроустановок жилых зданий далека от совершенства. Она не создает непреодолимых препятствий свободному доступу жильцов к электрическим стоякам и ЭРЩ. Это обстоятельство может быть причиной осуществления некоторых негативных воздействий на электроустановку жилого здания, которые снижают уровень защиты от поражения электрическим током и, следовательно, уменьшают преимущества от применения первого варианта по сравнению со вторым вариантом.
При выполнении электромонтажных работ жильцами, которые являются обычными лицами, резко возрастает вероятность ошибочного подключения зажимов какого-либо электрооборудования, предназначенных для подключения нейтральных проводников, к защитному проводнику электрического стояка, а открытых проводящих частей электроприёмников класса I — к его нейтральному проводнику. Подобные ошибки также могут появиться и при замене существующих электропроводок в квартирах и их неправильном подключении к электрическим стоякам, когда защитные проводники электропроводок ошибочно присоединяют к нейтральным проводникам электрических стояков, а нейтральные проводники электропроводок — к их защитных проводникам.
Такие ошибки более вероятны в электроустановках жилых зданий, электрические стояки которых выполнены проводниками, не имеющими цветовой и буквенно-цифровой идентификации, соответствующей требованиям ГОСТ 33542-2015. Вероятность совершения ошибок ещё более увеличивается в тех случаях, когда при подключении к электрическим стоякам какого-либо электрооборудования или электрических цепей используют проводники, не имеющие надлежащей цветовой идентификации.
Существующее положении усугубляет низкая квалификация персонала, эксплуатирующего электроустановки жилых зданий. При проведении ими ремонтных и эксплуатационных работ в электроустановке жилого здания возможно ошибочное подключение защитных зажимов электрооборудования класса I и даже ЭРЩ к нейтральному проводнику электрического стояка, а их нейтральных зажимов — к защитному проводнику электрического стояка. То есть и неконтролируемая работа жильцов, и действия эксплуатационного персонала низкой квалификации могут привести к снижению уровня электрической безопасности.