Что такое скрещивающиеся ребра пирамиды
Теорема о трех перпендикулярах

Как ее использовать в задачах
Как оформлять на ЕГЭ
Начнем с парочки вводных понятий, ты же хочешь жить по понятиям?
Если в плоскости альфа провести прямую KL через точку В так, что KL ⊥ BC, тогда по теореме о трех перпендикулярах (т.т.п.) KL ⊥ BA.
Словами можно сказать так: прямая, лежащая в плоскости, перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции этой наклонной на данную плоскость (верно и наоборот).
Перейдем к самому распространенному примеру:
1) Докажите, что в тетраэдре скрещивающиеся ребра перпендикулярны.
У тетраэдра есть три пары скрещивающихся ребер. Докажем перпендикулярность одной пары, другие вы сделаете по аналогии, например, AD ⊥ BC.
Сейчас есть только наклонная AD и плоскость (ABC), значит, нам не хватает проекции наклонной и перпендикуляра, тогда проведем их:
Тогда, чтобы доказать, что AD ⊥ BC:
1) AH ⊥ BC (если продлить АН до пересечения с BC), т.к. AH является выстой в правильном треугольнике.
2) DH ⊥ (ABC) (по построению, а, значит, перпендикулярно любой прямой, находящейся в этой плоскости) => DH ⊥ BC.
После того, как мы это доказали, можем смело сказать, что AD ⊥ BC (всегда дожно быть доказательство двух пунктов, и только тогда вывод).
2) Докажите, что в прямом параллепипеде ребра B₁C и CD перпендикулярны.
Возьмем B₁C как наклонную к плоскости (ABCD), тогда перпендикуляром будет BB₁, а проекцией наклонной на эту плоскость — BC.
1) BB₁ ⊥ (ABCD) т.к. параллепипед прямой (боковые ребра перпендикулярны плоскости основания) => BB₁ ⊥ CD (если прямая перпендикулярна плоскости, то и перпендикулярна всем прямым, лежащим в этой плоскости).
2) BC ⊥ CD т.к. ABCD — прямоугольник.
3) По т.т.п.: B₁C ⊥ CD.
Два пункта доказательства, третий пункт вывод.
3) Дана пирамида SABC с высотой AS, в основании которой лежит прямоугольный треугольник с прямым углом A. Докажите, что SB⊥ AC.
Скажем, что BC — наклонная к плоскости (ABC):
1) SA ⊥ (ABC) => SA ⊥ AC
2) AB ⊥ AC ( ABC — прямоугольный треугольник по условию).

Два пункта доказательство и вывод!
1) Перпендикуляр будет опускаться на плоскость под 90 °.
2) Проекция наклонной на плоскость перпендикулярна прямой.
3) По т.т.п. наклонная перпендикулярна прямой.
Что такое пирамида: определение, элементы, виды, варианты сечения
В данной публикации мы рассмотрим определение, основные элементы, виды и возможные варианты сечения пирамиды. Представленная информация сопровождается наглядными рисунками для лучшего восприятия.
Определение пирамиды
Пирамида – это геометрическая фигура в пространстве; многогранник, который состоит из основания и боковых граней (с общей вершиной), количество которых зависит от количества углов основания.
Примечание: пирамида – это частный случай конуса.
Элементы пирамиды
Развёртка пирамиды – фигура, полученная при “разрезе” пирамиды, т.е. при совмещении всех ее граней в плоскости одной из них. Для правильной четырехугольной пирамиды развертка в плоскости основания выглядит следующим образом.
Примечание: свойства пирамиды представлены в отдельной публикации.
Виды сечения пирамиды
1. Диагональное сечение – секущая плоскость проходит через вершину фигуры и диагональ основания. У четырехугольной пирамиды таких сечения два (по одному на каждую диагональ):
2. Если секущая плоскость параллельна основанию пирамиды, она делит ее на две фигуры: подобную пирамиду (считая от вершины) и усеченную пирамиду (считая от основания). Сечением является подобный основанию многоугольник.
Примечание: Существуют и другие виды сечения, но они не так распространены.
Пирамида и скрещивающиеся прямые
РОССИЙСКАЯ НАУЧНО-СОЦИАЛЬНАЯ ПРОГРАММА
ДЛЯ МОЛОДЕЖИ И ШКОЛЬНИКОВ «ШАГ В БУДУЩЕЕ»
ЧЕЛЯБИНСКИЙ ГОЛОВНОЙ КООРДИНАЦИОННЫЙ ЦЕНТР
«ИНТЕЛЛЕКТУАЛЫ ХХI ВЕКА»
ПИРАМИДА И СКРЕЩИВАЮЩИЕСЯ ПРЯМЫЕ
Творческая работа на Х VII Челябинскую
городскую научно-практическую конференцию молодых
исследователей и интеллектуалов «Шаг в будущее»
г. Челябинск, лицей № 000, класс 10.
Введение
Оказалось, что энергия формы пирамиды «умеет делать» очень многое: растворимый кофе, постояв над пирамидой, приобретает вкус натурального; дешевые вина значительно улучшают свои вкусовые качества; вода приобретает свойства способствовать заживлению, тонизирует организм, уменьшает воспалительную реакцию после укусов, ожогов и действует, как естественное вспомогательное средство для улучшения пищеварения; мясо, рыба, яйца, овощи, фрукты мумифицируются, но не портятся; молоко долго не киснет; сыр не плесневеет…[6]
Так ли универсальна пирамида? Попытаемся применить эту замечательную фигуру для решения школьных задач.
Мы поставили задачу найти условия, при которых легко можно определить расстояние между скрещивающими прямыми.
Цель работы – найти метод, с помощью которого можно измерять расстояние между скрещивающими прямыми и проверить этот метод для решения практических задач.
Объектом исследования в данной работе являются скрещивающиеся прямые.
Метод исследования – конструирование модели, помогающей определить расположение скрещивающихся прямых в пространстве.
Метод определяет предмет исследования: связь между стереометрическими объектами.
В ходе исследования были найдены условия, при которых поставленная задача решается рациональным способом, а также сформулирован алгоритм применения метода пирамид для решения конкретных задач. В процессе работы изучены существующие методы по данной теме, а также сконструирован удобный и рациональный способ решения данной задачи. Основные понятия
1.1 Скрещивающиеся прямые
На уроках стереометрии в десятом классе мы познакомились со скрещивающимися прямыми.


1.2 Методы определения расстояний между скрещивающимися прямыми
Журнал «Математика для школьников» в этом году (№1, 2008г.) опубликовал статью «О расстоянии вообще и расстоянии между скрещивающимися прямыми в частности», где подробно описывает все известные способы построения общего перпендикуляра двух скрещивающихся прямых. Рассматриваются конкретные задачи. В научно-теоретическом и методическом «Математика в школе» (№1,2008г) опубликована статья и «О некоторых способах вычисления расстояния между скрещивающимися прямыми».
Стоит заметить, что задача на построение общего перпендикуляра к двум скрещивающимся прямым требует весьма кропотливой работы. В то же время при нахождении расстояния между скрещивающимися прямыми нет необходимости строить их общий перпендикуляр! Часто бывает достаточно лишь увидеть (провести) более подходящий отрезок, длина которого и будет искомым расстоянием. При этом целесообразно опираться на одно из следующих утверждений.
1. Расстояние между скрещивающимися прмыми равно расстоянию между параллельными плоскостями, проходящими через эти прямые.
2. Расстояние между скрещивающимися прямыми равно расстоянию от одной из них до параллельной ей плоскости, проходящей через вторую прямую.
3. Расстояние 1 между скрещивающимися прямыми, содержащими отрезки АВ и СВ соответственно, можно вычислять по формуле
где 

Подходы, основанные на применении первых двух утверждений, будучи чисто геометрическими, требуют от решающего хорошего пространственного воображения. Однако второй подход иногда выгоднее реализовывать в координатно-векторной форме. В справочной литературе встречается общее уравнение плоскости — 



После изученного материала, я приступил к конструированию изучаемого объекта, с помощью стереометрических моделей, имеющегося в кабинете математики.
В результате я нашел рациональный способ решения поставленной задачи.
Разработанный мною способ нахождения расстояния и угла между скрещивающимися прямыми, который условно назван «Метод пирамиды», дает возможность решить задачу быстро и рационально.
Почему «метод пирамиды»? Дело в том, что при решении задач этим способом строится пирамида РАВСD, а смыслом такого построения является утверждение: «Расстояние между скрещивающимися прямыми равно расстоянию от точки, которая является проекцией одной из двух данных скрещивающихся прямых на перпендикулярную к ней плоскость, к ортогональной проекции другой прямой на эту же плоскость».
в журнале «Математика в школе» (№ 6, 1986 год) использовал приведенное утверждение, привел примеры решения задач, но способ построения отличается от «метода пирамиды». Вся последовательность построения состоит из пяти шагов:
1. Пусть прямая 


2. Проведем перпендикуляр РА к прямой 


3. Проведем из точки М, которая принадлежит прямой 






4. Задача свелась к нахождению расстояния от прямой 




5. Проведя КL 









1. Практическая часть. Построение пирамиды. Вычисление расстояния между скрещивающимися прямыми
3.1 Задача 1. Каждое ребро правильной треугольной призмы равно а. Определите расстояние между стороною основания и скрещивающейся с нею диагональю боковой грани.

РВSP


а) РА 
б) АD 

в) АК 


АК= АР *AD:РD = а 
3.2.Задача 2. Ребро правильного тетраэдра равно а. Найдите расстояние между двумя ребрами тетраэдра, которые являются скрещивающимися.
СРQR — правильный тетраэдр. СО — высота тетраэдра. Будем искать расстояние между РС и RQ.
АК= 

3.3. Задача З. Ребро куба равно а. Найдите кратчайшее расстояние между диагональю куба и диагональю основания куба, которая с нею скрещивается.


3.4. Задача 4. Найти расстояние между скрещивающимися диагоналями смежных граней куба.

РВQSGCRH — куб. Найдем расстояние между ВS и РС. По ранее доказанному АК является искомым расстоянием:
3.5. Задача 5. Ребро правильной четырехугольной пирамиды равно а. Найти расстояние между диагональю основания и скрещивающейся с нею: а) апофемою; б) высотою боковой грани проведенной из вершины основания.
а) СLQRF — правильная четырехугольной пирамида. Найдем расстояние между QF и CP.


б) SPQRF — правильная четырехугольная пирамида. Найдем расстояние между QF и РС. Как и в предыдущих задачах, все построения выполнены. Остается опустить перпендикуляр СВ на плоскость основания, провести АD=ВС и так, чтобы АD




3.6. Задача 6. Ребро правильного тетраэдра равно а. Найдите расстояние между ребром тетраэдра и скрещивающейся с ним апофемой.

CPQR— правильный тетраэдр, СВ — его высота. Найдем расстояние между высотой основания RA и боковым ребром СР. АК — расстояние между скрещивающимися СР и RA. Действительно, с помощью метода пирамиды почти все построения уже выполнены, остается построить AD 



Заключение
В результате проделанной работы я пришел к следующим выводам:
Ø Решая задачи по стереометрии целесообразно использовать дополнительные построения;
Ø При определении расстояния между скрещивающимися прямыми предлагаю использовать метод пирамиды.
Литература
2. Журнал «Математика для школьников» №1 2008 год
3. Журнал «Математика в школе» (№ 6, 1986 год)
4. Журнал «Математика в школе,№1,2008год























