Что такое следствие в алгебре
Что такое следствие в алгебре
Пусть даны два уравнения
Если каждый корень уравнения (1) является одновременно и корнем уравнения (2), то уравнение (2) называется следствием уравнения (1). Заметим, что равносильность уравнений означает, что каждое из уравнений является следствием другого.
В процессе решения уравнения часто приходится применять такие преобразования, которые приводят к уравнению, являющемуся следствием исходного. Уравнению-следствию удовлетворяют все корни исходного уравнения, но, кроме них, уравнение-следствие может иметь и такие решения, которые не являются корнями исходного уравнения, это так называемые посторонние корни. Чтобы выявить и отсеять посторонние корни, обычно поступают так: все найденные корни уравнения-следствия проверяют подстановкой в исходное уравнение.
Если при решении уравнения мы заменили его уравнением-следствием, то указанная выше проверка является неотъемлемой частью решения уравнения. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в следствие.
и умножим обе его части на одно и то же выражение имеющее смысл при всех значениях х. Получим уравнение
корнями которого служат как корни уравнения (3), так и корни уравнения . Значит, уравнение (4) есть следствие уравнения (3). Ясно, что уравнения (3) и (4) равносильны, если «постороннее» уравнение
не имеет корней.
Итак, если обе части уравнения умножить на выражение имеющее смысл при любых значениях х, то получится уравнение, являющееся следствием исходного. Полученное уравнение будет равносильно исходному, если уравнение
не имеет корней. Заметим, что обратное преобразование, т. е. переход от уравнения (4) к уравнению (3) путем деления обеих частей уравнения (4) на выражение
как правило, недопустимо, поскольку может привести к потере решений (в этом случае могут «потеряться» корни уравнения
Например, уравнение
имеет два корня: 3 и 4. Деление же обеих частей уравнения на
приводит к уравнению —
имеющему только один корень 4, т. е. произошла потеря корня.
Снова возьмем уравнение (3) и возведем обе его части в квадрат. Получим уравнение
корнями которого служат как корни уравнения (3), так и корни «постороннего» уравнения , т. е. уравнение
— следствие уравнения (3).
Например, уравнение — имеет корень 4. Если обе части уравнения
возвести в квадрат, то получится уравнение
имеющее два корня:
. Значит, уравнение
— следствие уравнения —
При переходе от уравнения —
к уравнению
появился посторонний корень
Итак, при возведении обеих частей уравнения в квадрат (и вообще в любую четную степень) получается уравнение, являющееся следствием исходного. Значит, при указанном преобразовании возможно появление посторонних корней. Заметим, что возведение обеих частей уравнения в одну и ту же нечетную степень приводит к уравнению, равносильному данному.
1. Понятие уравнения и его корней
Равенство с переменной называется уравнением. В общем виде уравнение с одной переменной x записывают так: f (я) = g (я).
Под этой краткой записью понимают математическую запись задачи о нахождении значений аргумента, при которых значения двух данных функций равны.
2х = —1 — линейное уравнение; х 2 — 3х + 2 = 0 — квадратное уравнение; чJx + 2 = x — иррациональное уравнение (содержит переменную под знаком корня).
Корнем (или решением) уравнения с одной переменной называется значение переменной, при подстановке которого в уравнение получается верное равенство.
Решить уравнение — значит найти все его корни (и обосновать, что других корней нет) или доказать, что корней нет.
2. Область допустимых значений (ОДЗ)
Областью допустимых значений (или областью определения) уравнения называется общая область определения для функций f (x) и g (x), стоящих в левой и правой частях уравнения.
Для уравнения л/x + 2 = x ОДЗ: x + 2 1 0, то есть x 1 —2, так как область определения функции f (x) = yj x + 2 определяется условием: x + 2 1 0, а область определения функции g (x) = x — множество всех действительных чисел.
Если каждый корень первого уравнения является корнем второго, то второе уравнение называется следствием первого уравнения.
Если из правильности первого равенства следует правильность каждого последующего, то получаем уравнения-следствия.
При использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому при использовании уравнений-следствий проверка полученных корней подстановкой их в исходное уравнение является составной частью решения (см. пункт 5 этой таблицы).
► Возведем обе части уравнения в квадрат:
Понятно, что каждый корень данного уравнения принадлежит как области определения функции f (x), так и области определения функции g (x) (иначе мы не сможем получить верное числовое равенство). Поэтому каждый корень уравнения обязательно принадлежит ОДЗ этого уравнения. Это позволяет в некоторых случаях применить анализ ОДЗ уравнения при его решении.
Это происходит поэтому, что, используя уравнения-следствия, мы гарантируем только то, что корни заданного уравнения не теряются (каждый корень первого уравнения является корнем второго). Но второе уравнение, кроме корней первого уравнения, имеет еще и другой корень, который не является корнем первого уравнения. Для первого уравнения этот корень является посторонним, и, чтобы его отсеять, выполняется проверка подстановкой корней в исходное уравнение. (Более полно причины появления посторонних корней рассмотрены в таблице 7 на с. 54.) Таким образом, чтобы правильно применять уравнения-следствия для решения уравнений, необходимо помнить еще один о р и е н т и р: при использовании уравнений-следствий возможно появление посторонних корней, и поэтому проверка подстановкой корней в исходное уравнение является составной частью решения.
Схема применения этих ориентиров дана в таблице 6. В пункте 3 этой таблицы приведено решение уравнения
Замечание. Переход от данного уравнения к уравнению-следствию можно обозначить специальным значком ^, но его использование для записи решения не является обязательным. Вместе с тем, если этот значок записан, то это свидетельствует о том, что мы воспользовались уравнениями- следствиями, и поэтому обязательно в запись решения необходимо включить проверку полученных корней.
С понятием равносильности вы знакомы еще из курса алгебры 7 класса, где равносильными назывались те уравнения, которые имели одни и те же корни. Заметим, что равносильными считались и такие два уравнения, которые не имели корней. Формально будем считать, что и в этом случае уравнения имеют одни и те же корни, поскольку ответы к таким уравнениям одинаковы: «уравнения не имеют корней» (точнее: одинаковыми являются множества корней таких уравнений — они оба пустые, что обозначается символом 0).
В курсе алгебры и начал математического анализа мы будем рассматривать более общее понятие равносильности, а именно: равносильность на определенном множестве.
Два уравнения называются равносильными на некотором множе-
стве, если на этом множестве они имеют одни и те же корни, то
есть каждый корень первого уравнения является корнем второго
и, наоборот, каждый корень второго уравнения является корнем
первого.
Для уравнений, заданных на множестве всех действительных чисел (например, для линейных), мы можем однозначно дать ответ на вопрос: «Равносильны ли данные уравнения?» Например, уравнения х + 3 = 0 и 2х + 6 = 0 — равносильные, поскольку оба имеют одинаковый корень х = —3 и других корней не имеют, таким образом, каждое из них имеет те же решения, что и второе.
При рассмотрении равносильности уравнений на множестве, которое отличается от множества всех действительных чисел, ответ на вопрос «Равносильны ли данные уравнения?» может существенно зависеть от того, на каком множестве мы рассматриваем эти уравнения. Например, если рассмотреть уравнения:
то, как было показано выше, уравнение (3) имеет единственный корень х = 1, а уравнение (4) — два корня: х = 1 и х = —1. Таким образом, на множестве всех действительных чисел эти уравнения не являются равносильными, поскольку у уравнения (4) есть корень х = —1, которого нет у уравнения (3). Но на множестве положительных действительных чисел эти уравнения равно
сильны, поскольку на этом множестве уравнение (3) имеет единственный положительный корень х = 1 и уравнение (4) также имеет единственный положительный корень х = 1. Следовательно, на множестве положительных чисел каждое из этих уравнений имеет те же решения, что и второе.
Укажем, что множество, на котором рассматривается равносильность уравнений, как правило, не задается искусственно (как в последнем случае), а чаще всего таким множеством является ОДЗ исходного уравнения. Договоримся, что далее
все равносильные преобразования уравнений (а также неравенств и систем уравнений и неравенств) мы будем выполнять на ОДЗ исходного уравнения (неравенства или системы). Отметим, что в том случае, когда ОДЗ заданного уравнения является множество всех действительных чисел, мы не всегда будем ее записывать (как не записывали ОДЗ при решении линейных или квадратных уравнений). И в других случаях главное — не записать ОДЗ в решение уравнения, а реально учесть ее при выполнении равносильных преобразований данного уравнения.
Для выполнения равносильных преобразований попробуем выделить общие ориентиры, аналогичные соответствующим ориентирам получения уравнений-следствий.
По определению равносильности уравнений необходимо гарантировать, чтобы каждый корень первого уравнения был корнем второго и наоборот — каждый корень второго уравнения был корнем первого. Для первой части этого требования мы уже выделили общий ориентир: достаточно гарантировать сохранение правильности равенства при переходе от первого уравнения ко второму (с. 49).
Но тогда, чтобы выполнить вторую часть этого требования, достаточно второе уравнение рассмотреть как верное равенство (то есть взять такое значение переменной, которое является корнем второго уравнения) и гарантировать, что при переходе к первому верное равенство сохраняется (этот корень остается и корнем первого уравнения). Фактически из определения равносильности уравнений получаем, что каждое из равносильных уравнений является следствием другого уравнения). Таким образом, при
Например, чтобы решить с помощью равносильных преобразований урав-
——- = 0, достаточно учесть его ОДЗ: х + 1 Ф 0 и условие равенства
дроби нулю (дробь равна нулю тогда и только тогда, когда числитель дроби равен нулю, а знаменатель не равен нулю). Также следует обратить внимание на то, что на ОДЗ все необходимые преобразования можно выполнить как в прямом, так и в обратном направлениях с сохранением правильности равенства.
Запись решения в этом случае может быть такой:
= 0. ► ОДЗ: х + 1 Ф 0. Тогда х 2 —1 = 0. Отсюда х = 1 (удовлетворяет
Получим х 2 — 6х = 0, х1 = 0, х2 = 6
к уравнению, ОДЗ которого шире, чем ОДЗ заданного уравнения;
Приведение обеих частей уравнения к общему знаменателю (при сокращении знаменателя)
4 + 7 = 4 x + 2 x + 3 x 2 + 5x + 6 Умножим обе части уравнения на общий знаменатель всех дробей (х + 2)(х + 3).
Возведение обеих частей иррационального уравнения в квадрат
yj2x +1 =Vx. 2х + 1 = х,
б) выполнение преобразований, при которых происходит неявное умножение на нуль;
Умножение обеих частей уравнения на выражение с переменной
х 2 + х + 1 = 0. Умножим обе части уравнения на х —1.
(х — 1)(х 2 + х + 1) = 0. Получим х 3 — 1 = 0, х = 1
Как получить правильное (или полное) решение
Пример правильного (или полного) решения
при решении уравнения
х1 = 0 не является корнем заданного уравнения
Выполнить проверку подстановкой корней в заданное уравнение
► х 2 — 6х = 0, х1 = 0, х2 = 6. Проверка показывает, что х1 = 0 — посторонний корень, х2 = 6 — корень.
Ответ: 6. x + 2 x + 3 x 2 + 5x + 6
Явное или неявное сужение ОДЗ заданного уравнения, в частности выполнение преобразований, в ходе которых происходит неявное деление на нуль
1. Деление обеих частей уравнения на выражение с переменной
Поделив обе части уравнения на х, получим
2. Сложение, вычитание, умножение или деление обеих частей уравнения на выражение, ОДЗ которого уже, чем ОДЗ заданного уравнения
Если к обеим частям уравнения прибавить \[x, то получим уравнение
x 2 + yfx = 1 + yfx, у которого только один корень х = 1
Основная теорема алгебры и ее следствия
Основная теорема алгебры. Всякий многочлен, степень которого не меньше единицы, имеет хотя бы один корень, в общем случае комплексный.
Следствие 1. Любой многочлен степени 1″ png;base64,iVBORw0KGgoAAAANSUhEUgAAADEAAAAQBAMAAABNQoq8AAAAKlBMVEVHcEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHrpZrAAAADnRSTlMA/sAYMQXYQYWhYbFRcq20Ms4AAACTSURBVBjTY2AgETjgEGc+pIBDRm0iigzXYgSbEVXPsmZUGebdDpd0oFKTUWQ4nbILGg0gAocmI8uYMYkwHCyAihRNR5IxZ9zA0Ah3frUKkgscLzCkwa32RJZpdGCWgEkUbUd2tSIDr4g1VALFBQzSDEwJPVBXs0JlDEEyLFIMPJINqD5tFBQUB1JAvxiDQ6cZNfAAvaobxKduFrwAAAAASUVORK5CYII=» /> с комплексными коэффициентами можно представить в виде произведения линейных двучленов:
где — корни многочлена (могут быть комплексные).
Если комплексное число является корнем этого многочлена, то есть
Следствие 3. Если комплексное (но не действительное) число — корень многочлена с действительными коэффициентами, то сопряженное число является его корнем той же кратности.
Следствие 4. Всякий многочлен с действительными коэффициентами представляется в виде произведения линейных двучленов и квадратных трехчленов (с отрицательными дискриминантами):
Следствие 5. Многочлен нечетной степени с действительными коэффициентами всегда имеет хотя бы один действительный корень.
Многочлен четной степени с действительными коэффициентами может не иметь действительных корней (при этом в разложении (В. 14) отсутствуют линейные двучлены ).
Пример В.14. Многочлен
а) представить в виде (В.14);
б) представить в виде (В.13).
Решение. Данный многочлен имеет двойной корень и простой корень (см. пример В.13). Поэтому его можно представить в виде
Разделим многочлен на многочлен «уголком»:
б) разложим квадратный трехчлен на линейные множители, что возможно над полем комплексных чисел:
Тогда разложение (В. 13) для данного многочлена принимает вид
Равносильные уравнения, преобразование уравнений
Некоторые преобразования позволяют нам перейти от решаемого уравнения к равносильным, а также к уравнениям-следствиям, благодаря чему упрощается решение первоначального уравнения. В данном материале мы расскажем, что из себя представляют эти уравнения, сформулируем основные определения, проиллюстрируем их наглядными примерами и поясним, как именно осуществляется вычисление корней исходного уравнения по корням уравнения-следствия или равносильного уравнения.
Понятие равносильных уравнений
Равносильными называются такие уравнения, имеющие одни и те же корни, или же те, в которых корней нет.
Определения такого типа часто встречаются в различных учебниках. Приведем несколько примеров.
Уравнения с одинаковыми корнями считаются равносильными. Также ими считаются два уравнения, одинаково не имеющие корней.
Когда мы говорим о совпадающем множестве корней, то имеем в виду, что если определенное число будет корнем одного уравнения, то оно подойдет в качестве решения и другому уравнению. Ни одно из уравнений, являющихся равносильными, не может иметь такого корня, который не подходит для другого.
Приведем несколько примеров таких уравнений.
Для наглядности рассмотрим несколько примеров неравносильных уравнений.
Определения, данные выше, подойдут и для уравнений с несколькими переменными, однако в том случае, когда мы говорим о двух, трех и более корнях, более уместно выражение «решение уравнения». Таким образом, подытожим: равносильные уравнения – это те уравнения, у которых одни и те же решения или их совсем нет.
Понятие уравнений-следствий
Процитируем несколько примеров определений уравнений-следствий, взятых из учебных пособий.
Следствием уравнения f ( x ) = g ( x ) будет уравнение p ( x ) = h ( x ) при условии, что каждый корень первого уравнения будет в то же время корнем второго.
Что такое аксиома, теорема, следствие
В данной публикации мы рассмотрим, что из себя представляют аксиомы, теоремы и следствия. Определения сопровождаются соответствующими примерами для лучшего понимания.
Что такое аксиома
Для того, чтобы решить многие математические задачи, очень часто требуется выполнить определенные логические действия, благодаря которым удается получить то или иное решение/доказательство.
Но есть в математике такие утверждения, которые не требуют никаких доказательств.
Например:
Эти и другие подобные утверждения, не нуждающиеся в доказательстве и принимаемые в качестве исходных в какой-либо теории, называются аксиомами (от древнегреческого “axioma”, что означает “положение”, “утверждение”). Иногда их еще называются постулатами.
Аксиомы могут использоваться для решения конкретных задач или применяться для доказательства теорем.
Примечание: не допускается искажение формулировок аксиом и большинства теорем, т.е. их нужно учить наизусть.
Что такое теорема
В отличие от аксиомы, теорема – это суждение, которе требуется доказать. Т.е. в рассматриваемой теории для нее есть определенное доказательство.
Например:
Есть отдельный вид так называемых вспомогательных теорем, которые сами по себе не полезны и используются только для доказательства других теорем. Их называются леммами (от древнегреческого “lemma”, что означает “предположение”).
Например:
Если произведение нескольких сомножителей делится на простое число p, то по крайней мере один из сомножителей делится на p (лемма Евклида).
Что такое следствие
Следствие – это утверждение, которое было выведено из аксиомы или теоремы. И оно, также, требуется доказательства.
Например: