Что такое случается в математике
Когда математика становится слишком сложной
Математики давно пытаются привыкнуть к тому, что некоторые задачи в принципе невозможно решить
Мы любим повторять, что всё возможно. В книге Джастера Нортона «Мило и волшебная будка» король отказывается сообщить Мило, что его цель недостижима, поскольку «многое становится возможным, если не знаешь, что оно невозможно» [правда, это слова других персонажей книги / прим. перев.]. Но в реальном мире некоторые вещи и вправду невозможны, и мы можем доказать это при помощи математики.
Люди используют термин «невозможно» разными способами. Он может описывать просто маловероятные вещи – такие, как найти две одинаковых колоды перемешанных карт. Он может описывать задачи, практически невозможные по причине отсутствия времени, места или ресурсов – такие, как переписать всю Библиотеку Конгресса от руки. Устройства типа вечного двигателя невозможны физически, поскольку их существование противоречило бы нашему пониманию физики.
Математическая невозможность – это другое. Мы начинаем с недвусмысленных предположений, и, используя математические рассуждения и логику, заключаем, что некоторые исходы событий невозможны. Никакая удача, настойчивость, время или навыки не сделают задачу выполнимой. История математики полнится доказательствами невозможности. Многие из них считаются наиболее примечательными результатами математики. Но так было не всегда.
Кара за, возможно, самое первое доказательство невозможности, была строгой. Историки считают, что в пятом веке до н.э. Гиппас из Метапонта, последователь Пифагора, обнаружил, что невозможно найти отрезок, которым можно было бы измерить как длину стороны, так и длину диагонали правильного пятиугольника. Сегодня мы говорим, что длина диагонали правильного пятиугольника со стороной длины 1 – золотое сечение, ϕ = 1/2 (1 + √5) – является иррациональным числом. Открытие Гиппаса стало вызовом кредо Пифагора, «всё есть число», поэтому легенды говорят, что Гиппаса либо утопили в море, либо просто изгнали из рядов пифагорейцев.
Более века спустя Евклид возвысил прямую и круг, сочтя их фундаментальными кривыми геометрии. Впоследствии многие поколения геометров чертили всякое – делили углы, проводили перпендикуляры, и так далее – только при помощи циркуля и линейки. Однако определённые конструкции, казавшиеся простыми, поставили греческих геометров в тупик, приобрели в итоге мифический статус, и раздражали математиков более 2000 лет. Это задачи деления произвольного угла на три части, построение стороны куба, объём которого в два раза превышает объём заданного, построение всех правильных многоугольников, а также построение квадрата с площадью, равной площади заданного круга.
Хотя задачи эти по своей природе геометрические, доказательство невозможности их решения таковым не является. Чтобы продемонстрировать невозможность их решения, потребовалась новая математика.
В XVII века Рене Декарт сделал фундаментальное открытие: если мы ограничим себя только циркулем и линейкой, мы не сможем строить отрезки любой длины. Если мы начнём с отрезка длиной 1, мы сможем строить только такие отрезки, длину которых можно выразить при помощи целых чисел, сложения, вычитания, умножения, деления и извлечения квадратного корня (как золотое сечение).
Поэтому одной из стратегий поиска доказательства невозможности решения геометрической задачи – то есть, что некий объект нельзя построить – будет показать, что длину некоего отрезка итоговой фигуры нельзя выразить указанным способом. Но для того, чтобы это строго показать, потребовалась зарождавшаяся тогда алгебра.
Сходным образом он доказал, что невозможно использовать классические инструменты для трисекции любого угла или построения определённых правильных многоугольников – к примеру, семистороннего. Интересно, что все три доказательства невозможностей были размещены на одной странице. Как у Исаака Ньютона и Альберта Эйнштейна были свои annus mirabilis (годы чудес), так и эту ситуацию можно назвать pagina mirabilis – страницей чудес.
Доказательство невозможности оставшейся задачи, квадратуры круга, потребовала чего-то нового. В 1882 году Фердинанд фон Линдеман доказал ключевой момент – что число π нельзя построить – доказав его трансцендентность, то есть, что оно не является корнем никакого многочлена.
Этим классическим задачам можно приписать дурную репутацию и считать их сиренами, заманивавшими математиков, чтобы те разбивались об острые скалы невозможности. Но я считаю их музами, вдохновлявшими многие поколения творческих мыслителей.
То же касается и более новой невозможной задачи, возникающей из такого простого действия, как переход через мост. Представьте, что вы живёте в Питтсбурге, «городе мостов», как многие из моих учеников. Какой-нибудь велосипедист, любящий приключения, может задуматься – можно ли, начав поездку из дома, проехать ровно один раз по каждому из 22 мостов, пересекающих основные реки Питтсбурга, и вернуться домой.
В 1735 году прусский мэр поставил аналогичную задачу перед Леонардом Эйлером, только для Кёнигсберга (ныне Калининград). Семь мостов этого города объединяют три берега реки и остров. Сначала Эйлер отмёл эту задачу, как не математическую: «Решения такого рода мало связаны с математикой, и я не понимаю, почему вы ожидаете, что его выдаст вам математик, а не кто-либо ещё».
Однако вскоре Эйлер доказал невозможность решения этой задачи, и в процессе создал новую область математики, названную им геометрией расположений – то, что мы сегодня называем топологией. Он понял, что конкретные детали – точные расположения мостов, форма участков земли, и т.п. – были не важны. Важны были только их связи. Позднее математики уточнили формулировки Эйлера с использованием того, что мы сегодня называем графами. Идея связности лежит в основе изучения социальных сетей, интернета, эпидемиологии, лингвистики, планирования оптимальных маршрутов, и т.д.
Мосты Кёнигсберга: Леонард Эйлер доказал, что невозможно построить такой маршрут по Кёнигсбергу, который бы пересекал все мосты города только один раз. Он сделал это, избавившись от ненужных деталей, и сведя задачу к самым необходимым элементам, которые позднее стали обозначать при помощи более абстрактной структуры – графа.
Доказательство Эйлера было удивительно простым. Он рассудил, что каждый раз, когда мы приходим, а потом уходим с конкретного участка земли, мы должны исключить два моста. Поэтому на каждый участок земли должно вести чётное количество мостов. Но поскольку на каждый участок Кёнигсберга вело нечётное количество мостов, построить такой маршрут было невозможно. Сходным образом три моста, ведущие на остров Герз на реке Аллегейни в Питтсбурге, делают невозможным построение искомого велосипедного маршрута.
Как показывает эта задача, невозможности не ограничиваются абстрактной математикой. У них могут быть последствия и в реальном мире – иногда даже политические.
Недавно математики обратились к такому понятию, как джерримендеринг. В США после каждой переписи штаты должны переделывать избирательные округа. Но иногда правящая партия переписывает их границы смехотворным образом для максимизации своих политических сил.
Во многих штатах есть требование «компактности» округов, не имеющего строгого математического определения. В 1991 году Дэниел Полсби и Роберт Поппер предложили 4πA/P 2 в качестве способа измерения компактности округа площади A и периметра P. Эти значения варьируются от 1 для круглого округа до почти нуля у деформированных округов с длинным периметром.
Тем временем Николас Стефанопулос и Эрик Макги ввели в 2014 году понятие «разрыва эффективности» в качестве меры политической честности плана изменения округов. Две разных стратегии джерримендеринга заключаются либо в том, чтобы у оппозиции в округе оказалось менее 50% голосов, или около 100%. Каждая из этих тактик заставляет оппозицию терять голоса, теряя нужных кандидатов, или тратя голоса на тех, кому это не нужно. Разрыв эффективности описывает относительное количество утерянных голосов.
Обе эти меры полезны для распознавания джерримендеринга. Но в 2018 году Борис Алексеев и Дастин Миксон доказали, что «иногда небольшого разрыва эффективности можно достичь при помощи округов странной формы». То есть, математически невозможно всегда рисовать округа так, чтобы они удовлетворяли и требованиям Полсби-Поппера, и честности в плане разрыва эффективности.
Однако обнаружение и предотвращение тайных методов джерримендеринга – это активно развивающаяся область, привлекающая многих талантливых исследований. Как и с проблемами античности или с задачей о мостах Кёнигсберга, я уверен, проблема джерримендеринга вдохновит творческий подход и поспособствует развитию математики.
Зачем нужна математика
Интересные факты про математику
Математика — это не только арифметические задачки. Это особый язык, который учит думать и рассуждать.
Математику называют междисциплинарной наукой, потому что она тесно связана с физикой, географией, геологией, химией. Социология и экономика неотделимы от математики, поэтому многие выводы из гуманитарных исследований опираются на математические понятия и логические законы.
Мир изменился и стал более технологичным, поэтому для любителей математики открыто множество вариантов профессионального развития.
Если 15 лет назад перспективными были сферы маркетинга и юриспруденции, то сегодня лидирует IT.
Профессиональная востребованность = понимание технологий + способность к решению нестандартных задач. И ключ к успеху — знание математики.
Что отличает математику от других школьных предметов:
Математика развивает мышление
Зачем заниматься физкультурой? Ответ простой — для здоровья и красоты тела.
Зачем учить математику? Ответ на этот вопрос кажется менее очевидным.
Математика — это гимнастика для ума. Хочешь не хочешь, но в процессе изучения будут крепчать качества, которые влияют на способ мышления. Для этого не обязательно учиться в профильном классе и участвовать в олимпиадах — решение даже самых простых задачек на пропорции или с процентами дает значительный эффект.
Обобщение, сокращение, анализ, систематизация, выделение важного, поиск закономерностей, формулирование гипотез и доказательство теорий — все это помогает развить мышление, сделать его более гибким. Точно также, как физические упражнения делают наше тело подвижнее, дают заряд сил и тренируют выносливость, математика тренирует ум.
Математика развивает интеллект. Набор правил и функций, которые мы изучаем в школе, делают наше мышление последовательным и логичным. Это отражается на умении рассуждать, формулировать мысли и замечать взаимосвязи. И самое увлекательное, что эти знания можно (и нужно!) применять не только в школе, но и в нестандартных ситуациях: чтобы выбрать самую выгодную банковскую карту, просчитать литры краски для ремонта или создать карту сокровищ, чтобы не забыть где они спрятаны.
Математика — универсальный международный язык, которым владеют почти все люди на земле. Эти знания пригодятся в любой стране и могут стать предметом интересной беседы.
Что понять, зачем учить математику в школе, только представьте, как приятно, когда в голове нет «каши» и путаницы в рассуждениях. На этот счет еще в прошлом веке великий учёный Ломоносов сказал: «Математику только затем учить надо, что она ум в порядок приводит». Как тут можно спорить? 😇
Курсы обучения математике помогут подтянуть оценки, подготовиться к контрольным, ВПР и экзаменам.
Математика формирует характер
Чтобы правильно решать математические задачи, недостаточно одних лишь знаний. Нужны такие качества характера, как внимательность, настойчивость, последовательность, точность и аккуратность. Чем регулярнее мы практикуемся, тем сильнее укрепляются эти черты. И еще бонус: эти качества можно применять не только на уроках в школе, но и в других сферах жизни.
Чем сложнее математические задачи, тем больше усилий и навыков нужно приложить для их решения.
Благодаря математике можно избавиться от вредных привычек:
Домысливать и не уметь объяснять, почему думаешь именно так
Оперировать фактами и точными терминами и быть более убедительным
Запоминать информацию механически, «зазубривать»
Оценивать, анализировать, строить аналогии и подвергать критике
Математика тренирует память
Ученые из Стэнфордского университета в США изучили, как человек решает математические задачи и выяснили, что взрослые люди используют для этого навык «доставать» из памяти ответы на основе прошлого опыта.
Почему учителя настаивают на регулярном посещении уроков? Дело не в их вредности, а в том, что при решении математических задач, мы «достаем» из памяти ответы на основе прошлого опыта. А чтобы этот опыт закрепить, нужно повторять материал и тренироваться в решении примеров. Только так можно запомнить все правила и формулы. 🤓
В журнале Nature Neuroscience в 2014 году опубликовали исследование про роль определенных областей головного мозга в развитии познавательной активности детей. Оказалось, что на интерес к знаниям оказывает сильное влияние гиппокамп — часть мозга, которая отвечает за память.
Интересный факт! Определенные области головного мозга влияют на развитие познавательной активности детей. Например, на интерес к знаниям влияет часть мозга, которая отвечает за память — гиппокамп. Поэтому:
Математика — волшебница, не иначе! Систематизируем все волшебные свойства и повторим, какие навыки можно развить с помощью математики:
Теория вероятностей, формулы и примеры
Тема непростая, но если вы собираетесь поступать на факультет, где нужны базовые знания высшей математики, освоить материал — must have. Тем более, все формулы по теории вероятности пригодятся не только в универе, но и при решении 4 задания на ЕГЭ. Начнем!
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Основные понятия
Французские математики Блез Паскаль и Пьер Ферма анализировали азартные игры и исследовали прогнозы выигрыша. Тогда они заметили первые закономерности случайных событий на примере бросания костей и сформулировали теорию вероятностей.
Когда мы кидаем монетку, то не можем точно сказать, что выпадет: орел или решка.
Но если подкидывать монету много раз — окажется, что каждая сторона выпадает примерно равное количество раз. Из чего можно сформулировать вероятность: 50% на 50%, что выпадет «орел» или «решка».
Теория вероятностей — это раздел математики, который изучает закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.
Вероятность — это степень возможности, что какое-то событие произойдет. Если у нас больше оснований полагать, что что-то скорее произойдет, чем нет — такое событие называют вероятным.
Ну, скажем, смотрим на тучи и понимаем, что дождь — вполне себе вероятное событие. А если светит яркое солнце, то дождь — маловероятное или невероятное событие.
Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Случайные величины можно разделить на две категории:
Вероятностное пространство — это математическая модель случайного эксперимента (опыта). Вероятностное пространство содержит в себе всю информацию о свойствах случайного эксперимента, которая нужна, чтобы проанализировать его через теорию вероятностей.
Формулы по теории вероятности
Теория вероятности изучает события и их вероятности. Если событие сложное, то его можно разбить на простые составные части — так легче и быстрее найти их вероятности. Рассмотрим основные формулы теории вероятности.
Случайные события. Основные формулы комбинаторики
Классическое определение вероятности
Вероятностью события A в некотором испытании называют отношение:
P (A) = m/n, где n — общее число всех равновозможных, элементарных исходов этого испытания, а m — количество элементарных исходов, благоприятствующих событию A
Таким образом, вероятность любого события удовлетворяет двойному неравенству:
Пример 1. В пакете 15 конфет: 5 с молочным шоколадом и 10 — с горьким. Какова вероятность вынуть из пакета конфету с белым шоколадом?
Так как в пакете нет конфет с белым шоколадом, то m = 0, n = 15. Следовательно, искомая вероятность равна нулю:
Неприятная новость для любителей белого шоколада: в этом примере событие «вынуть конфету с белым шоколадом» — невозможное.
Пример 2. Из колоды в 36 карт вынули одну карту. Какова вероятность появления карты червовой масти?
Количество элементарных исходов, то есть количество карт равно 36 (n). Число случаев, благоприятствующих появлению карты червовой масти (А) равно 9 (m).
Геометрическое определение вероятности
Геометрическая вероятность события А определяется отношением:
P(A)= m(A)/m(G), где m(G) и m(A) — геометрические меры (длины, площади или объемы) всего пространства элементарных исходов G и события А соответственно
Чаще всего, в одномерном случае речь идет о длинах отрезков, в двумерном — о площадях фигур, а в трехмерном — об объемах тел.
Пример. Какова вероятность встречи с другом, если вы договорились встретиться в парке в промежутке с 12.00 до 13.00 и ждете друг друга 5 минут?
У нас есть отличные курсы по математике для учеников с 1 по 11 классы — приглашаем на вводный урок!
Сложение и умножение вероятностей
Теорема о сложении вероятностей звучит так: вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:
P(A + B) = P(A) + P(B)
Эта теорема справедлива для любого числа несовместных событий:
Если случайные события A1, A2. An образуют полную группу несовместных событий, то справедливо равенство:
Произведением событий А и В называется событие АВ, которое наступает тогда, когда наступают оба события: А и В одновременно. Случайные события А и B называются совместными, если при данном испытании могут произойти оба эти события.
Вторая теорема о сложении вероятностей: вероятность суммы совместных событий вычисляется по формуле:
P(A + B) = P(A) + P(B) − P(AB)
События событий А и В называются независимыми, если появление одного из них не меняет вероятности появления другого. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Теорема об умножении вероятностей: вероятность произведения независимых событий А и В вычисляется по формуле:
P(AB) = P(A) * P(B)
Пример. Студент разыскивает нужную ему формулу в трех справочниках. Вероятности того, что формула содержится в первом, втором и третьем справочниках равны 0,6; 0,7 и 0,8.
Найдем вероятности того, что формула содержится:
А — формула содержится в первом справочнике;
В — формула содержится во втором справочнике;
С — формула содержится в третьем справочнике.
Воспользуемся теоремами сложения и умножения вероятностей.
Ответ: 1 — 0,188; 2 — 0,452; 3 — 0,336.
Формула полной вероятности и формула Байеса
По теореме умножения вероятностей:
Аналогично, для остальных гипотез:
Эта формула называется формулой Байеса. Вероятности гипотез называются апостериорными вероятностями, тогда как — априорными вероятностями.
Пример. Одного из трех стрелков вызывают на линию огня, он производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5; для третьего — 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.
Формула Бернулли
При решении вероятностных задач часто бывает, что одно и тоже испытание повторяется многократно, и исход каждого испытания независит от исходов других. Такой эксперимент называют схемой повторных независимых испытаний или схемой Бернулли.
Примеры повторных испытаний:
Итак, пусть в результате испытания возможны два исхода: либо появится событие А, либо противоположное ему событие. Проведем n испытаний Бернулли. Это означает, что все n испытаний независимы. А вероятность появления события А в каждом случае постоянна и не изменяется от испытания к испытанию.
Биномиальное распределение — распределение числа успехов (появлений события).
Пример. Среди видео, которые снимает блогер, бывает в среднем 4% некачественных: то свет плохой, то звук пропал, то ракурс не самый удачный. Найдем вероятность того, что среди 30 видео два будут нестандартными.
Опыт заключается в проверке каждого из 30 видео на качество. Событие А — это какая-то неудача (свет, ракурс, звук), его вероятность p = 0,04, тогда q = 0,96. Отсюда по формуле Бернулли можно найти ответ:
Ответ: вероятность плохого видео приблизительно 0,202. Блогер молодец🙂
Наивероятнейшее число успехов
Биномиальное распределение ( по схеме Бернулли) помогает узнать, какое число появлений события А наиболее вероятно. Формула для наиболее вероятного числа успехов k (появлений события) выглядит так:
Пример. В очень большом секретном чатике сидит 730 человек. Вероятность того, что день рождения наугад взятого участника чата приходится на определенный день года — равна 1/365 для каждого из 365 дней. Найдем наиболее вероятное число счастливчиков, которые родились 1 января.
Формула Пуассона
При большом числе испытаний n и малой вероятности р формулой Бернулли пользоваться неудобно. Например, 0.97 999 вычислить весьма затруднительно.
В этом случае для вычисления вероятности того, что в n испытаниях событие произойдет k раз, используют формулу Пуассона:
Здесь λ = np обозначает среднее число появлений события в n испытаниях.
Эта формула дает удовлетворительное приближение для p ≤ 0,1 и np ≤10.
События, для которых применима формула Пуассона, называют редкими, так как вероятность, что они произойдут — очень мала (обычно порядка 0,001-0,0001).
При больших np рекомендуют применять формулы Лапласа, которую рассмотрим чуть позже.
Пример. В айфоне 1000 разных элементов, которые работают независимо друг от друга. Вероятность отказа любого элемента в течении времени Т равна 0,002. Найти вероятность того, что за время Т откажут ровно три элемента.
P1000(3) = λ 3 /3! * e −λ = 2 3 /3! * e −2 ≈ 0,18.
Ответ: ориентировочно 0,18.
Теоремы Муавра-Лапласа
Кроме того, пусть Pn(k1;k2) — вероятность того, что число появлений события А находится между k1 и k2.
Локальная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то
Интегральная теорема Лапласа звучит так: если n — велико, а р — отлично от 0 и 1, то
Функции Гаусса и Лапласа обладают свойствами, которые пригодятся, чтобы правильно пользоваться таблицей значений этих функций:
Теоремы Лапласа дают удовлетворительное приближение при npq ≥ 9. Причем чем ближе значения q, p к 0,5, тем точнее данные формулы. При маленьких или больших значениях вероятности (близких к 0 или 1) формула дает большую погрешность по сравнению с исходной формулой Бернулли.