Что такое смешанная система счисления
Каким мне представляется профильный курс информатики
Продолжение. См. № 4/2009
§4. Смешанные системы счисления
Способ записи чисел, при котором числа из позиционной системы счисления с основанием Q записываются с помощью цифр системы счисления с основанием P, называется смешанной P-Q-ичной системой.
Примером смешанной системы является двоично-десятичная система счисления. В ней десятичное число записывается путем замены каждой цифры на 4-разрядный двоичный код. Таблица соответствия для двоично-десятичной системы следующая:
В этой таблице каждой десятичной цифре поставлено в соответствие равное ей четырехзначное двоичное число (нули слева — незначащие). Например, десятичное число 58236,37 в двоично-десятичной форме запишется так:
101 10001 0010 0011 0101,0011 01112–10. Первый слева ноль у целого числа является незначащей цифрой, поэтому его можно не писать.
Для обратного преобразования из двоично-десятичной формы в десятичное число нужно разбить на четверки все знаки двоичного кода: от запятой влево — в целой части и вправо — в дробной части. Затем каждую четверку двоичных цифр заменить на соответствующую десятичную цифру. Например:
Отметим важное обстоятельство: между данными десятичным и двоично-десятичным числом нельзя поставить знак равенства. Двоично-десятичное представление — это всего лишь двоичный код для представления десятичного числа, но никак не равное ему значение в двоичной системе счисления. Выполнение арифметических вычислений над десятичными числами, представленными в двоично-десятичной форме, весьма затруднительно. Тем не менее в истории ЭВМ известны такие примеры. В первой ЭВМ под названием ENIAC использовалась двоично-десятичная система.
Современные компьютеры производят вычисления в двоичной системе счисления. Однако для представления компьютерной информации нередко используются двоично-восьмеричная и двоично-шестнадцатеричная системы.
Двоично-восьмеричная система. В следующей таблице представлено соответствие между восьмеричными цифрами и трехзначными двоичными числами (двоичными триадами), равными по значению этим цифрам.
Записать восьмеричное число в двоично-восьмеричном виде — это значит заменить каждую восьмеричную цифру на соответствующую двоичную триаду. Например:
3517,28 > 11 101 001 111,010 2–8.
А теперь переведем данное восьмеричное число в двоичную систему счисления. Для этого сначала переведем его в десятичную систему, а потом из десятичной в двоичную систему счисления. Вот что получается:
3517,2 8 = 1871,25 = 11101001111,012.
Но это тот же самый двоичный код, что записан выше в двоично-восьмеричной системе! Мы пришли к следующему результату: двоично-восьмеричное число равно значению данного восьмеричного числа в двоичной системе счисления.
Отсюда следует, что перевод чисел из восьмеричной системы счисления в двоичную производится перекодировкой по двоично-восьмеричной таблице путем замены каждой восьмеричной цифры на соответствующую двоичную триаду. А для перевода числа из двоичной системы в восьмеричную его цифры надо разбить на триады (начиная от запятой) и заменить каждую триаду на соответствующую восьмеричную цифру.
Двоично-шестнадцатеричная система счисления. В следующей таблице представлено соответствие между шестнадцатеричными цифрами и четырехзначными двоичными числами (двоичными тетрадами), равными по значению этим цифрам.
Записать шестнадцатеричное число в двоично-шестнадцатеричном виде — это значит заменить каждую шестнадцатеричную цифру на соответствующую двоичную тетраду. Например:
С81F,1D16 > 1100 1000 0001 1111,0001 11012–16
Переведем данное шестнадцатеричное число сначала в десятичную систему счисления, а затем в двоичную систему. Получим:
= 1100 1000 0001 1111,0001 11012
Получился тот же самый двоичный код, что записан выше в двоично-шестнадцатеричной системе! Рассмотренный пример привел к следующему результату: двоично-шестнадцатеричное число равно значению данного шестнадцатеричного числа в двоичной системе счисления.
Следовательно, для перевода числа из шестнадцатеричной системы счисления в двоичную достаточно выполнить перекодировку по двоично-шестнадцатеричной таблице путем замены каждой шестнадцатеричной цифры на соответствующую двоичную тетраду. А для перевода числа из двоичной системы в шестнадцатеричную его цифры надо разбить на тетрады (начиная от запятой) и заменить каждую тетраду на соответствующую шестнадцатеричную цифру.
Доказано, что для любого числа в системе счисления с основанием p = 2 n смешанный двоично-р-ичный код совпадает с представлением этого числа в двоичной системе счисления.
Любые данные в памяти компьютера хранятся в двоичном виде. Восьмеричную и шестнадцатеричную системы счисления используют для компактного представления содержимого памяти компьютера, а также ее адресации. Восьмеричное представление сжимает двоичный код в три раза, а шестнадцатеричное представление — в четыре раза.
Задача. Перевести число 1369,75 в двоичную, восьмеричную и шестнадцатеричную системы счисления.
Наиболее рациональный способ решения задачи следующий. Нужно перевести это число в одну из трех систем с основанием 2, 8 или 16, а затем, используя связь между ними через смешанное представление, выполнить перевод в две другие системы путем перекодировки по таблицам 2–8 и 2–16.
1) Переведем число в восьмеричную систему путем последовательного деления на 8 целой части и последовательного умножения на 8 дробной части числа. Получим:
2) Путем перекодировки по двоично-восьмеричной таблице переведем это число в двоичную систему счисления:
3) Разделив цифры двоичного числа на тетрады (влево и вправо от запятой), переведем двоичное число в шестнадцатеричную систему, используя двоично-шестнадцатеричную таблицу:
1. Дайте определение смешанной системе счисления.
2. Почему двоично-десятичный код не совпадает с двоичным числом, равным данному десятичному числу?
3. Для каких целей в компьютерных технологиях используются восьмеричная и шестнадцатеричная системы счисления?
4. Выполните наиболее рациональным способом следующие переводы чисел: 537,158->X2; 537,158->X16; 10111011010101,010112->X8->Y16.
5. Напишите двоично-четверичную таблицу перекодировки.
6*. Постройте электронную таблицу для перевода четверичных чисел в двоичную систему счисления.
7**. Постройте электронную таблицу для перевода восьмеричных чисел в двоичную систему счисления.
8**. Напишите программу на Паскале перевода целого двоичного числа в восьмеричную систему счисления.
§5. Арифметика в позиционных системах счисления
Во всех позиционных системах счисления выполнение арифметических операций подчиняется одним и тем же законам: коммутативному, ассоциативному, дистрибутивному. В основе арифметических вычислений лежат правила сложения (таблица сложения) и правила умножения (таблица умножения) однозначных чисел.
Сложение и вычитание многозначных чисел в р-ичной системе производится столбиком по тому же алгоритму, что и для десятичных чисел. Соответствующие разряды слагаемых записываются друг под другом. Сложение производится поразрядно, начиная с младшего разряда. Если при суммировании цифр одного разряда сумма оказывается больше р–1 (двузначное число), то в данном разряде результата записывается младшая цифра суммы, а старшая цифра прибавляется к следующему по старшинству разряду (ближайшему слева).
Вычитание — обратная к сложению операция. Если в очередном разряде уменьшаемого стоит цифра меньшая, чем у вычитаемого, то занимается единица у ближайшего слева ненулевого разряда. В результате к вычисляемому разряду уменьшаемого добавляется р. Если единица занималась не у соседнего слева разряда, то к промежуточным разрядам добавляется р–1.
Умножение сводится к многократному сложению со сдвигом разрядов, а деление — к многократному вычитанию.
Двоичная арифметика. Вот как выглядят таблицы сложения и умножения в двоичной системе счисления:
Рассмотрим примеры выполнения четырех арифметических операций с двоичными числами.
Замечание: далее нижний индекс для обозначения системы счисления будет опускаться.
Пример 1. Сложение двоичных чисел. Маленькими цифрами сверху обозначены значения, переносимые при сложении в соседний слева разряд.
Пример 2. Вычитание двоичных чисел. Маленькими цифрами сверху обозначены значения, добавляемые к разряду в процессе переноса единицы из ближайшего ненулевого разряда слева.
Правильность полученного результата можно проверить путем сложения разности с вычитаемым. В результате должно получиться уменьшаемое.
Пример 3. Умножение двоичных чисел.
Пример 4. Деление двоичных чисел. В следующем примере делимым числом является произведение из предыдущего примера, делителем — второй сомножитель. Частное получилось равным первому сомножителю.
Двоичная арифметика — наиболее простая. Эта простота стала одной из причин использования двоичной системы счисления в компьютерах.
Арифметика в других системах счисления. Приведем примеры вычислений в других системах счисления. Рассмотрим пятеричную систему.
Таблица сложения пятеричной системы
Пример сложения и вычитания
пятеричных чисел
Таблица умножения пятеричной системы
Вычисления в системах счисления с основанием
p = 2 n можно производить по такой же схеме, как это делалось выше: построить таблицы сложения и умножения и, заглядывая в эти таблицы, выполнять многозначные вычисления. Но можно пойти другим путем, используя связь таких систем с двоичной системой счисления. Алгоритм вычисления будет следующим:
1) перевести данные числа в двоичную систему счисления, используя таблицу двоичного представления цифр р-ичной системы;
2) выполнить вычисления с двоичными числами;
3) перевести полученное двоичное число в р-ю систему через ту же таблицу (п. 1).
Задача 1. Вычислить сумму двух шестнадцатеричных чисел: 3A8D,1F16 + 2C6,516.
Используем описанный выше алгоритм.
Задача 2. В среде электронной таблицы создать автоматически заполняемую таблицу умножения для восьмеричной системы счисления.
В режиме отображения значений электронная таблица будет иметь следующий вид:
Таблица создается в такой последовательности:
1. В ячейку D1 заносится число 8 — основание системы счисления. Поясняющий текст заносится в соседние ячейки первой строки.
2. В блок B3:H3 заносятся числа с 1 до 7.
3. В блок A4:А10 заносятся числа с 1 до 7.
4. В ячейку В4 заносится формула:
Здесь используются две стандартные функции электронных таблиц:
ЦЕЛОЕ (число) — выделение целой части числа, стоящего в аргументе;
ОСТАТ (число; делитель) — остаток целочисленного деления (аналог операции mod в Паскале).
Задача 3. Создать программу на Паскале, выводящую на экран таблицу умножения в системе счисления с основанием p (2 1 См.: Андреева Е.В., Босова Л.Л., Фалина И.Н. Математические основы информатики. М.: БИНОМ. Лаборатория знаний, 2007.
Смешанная система счисления
СОДЕРЖАНИЕ
Примеры [ править ]
Для смешанной системы счисления с основанием системы счисления часто полезно использовать сводную таблицу. Система описания 604800 секунд недели, начиная с полуночи воскресенья, работает следующим образом:
Radix | 7 | 24 | 60 | 60 |
---|---|---|---|---|
Номинал | день | час | минута | второй |
Значение места (секунды) | 86400 | 3600 | 60 | 1 |
день | 0 = воскресенье, 1 = понедельник, 2 = вторник, 3 = среда, 4 = четверг, 5 = пятница, 6 = суббота | ||||
---|---|---|---|---|---|
час | От 0 до 23 |
В этой системе счисления смешанное число с основанием 3 7 17 24 51 60 57 60 секунд будет интерпретироваться как 17:51:57 в среду, а 0 7 0 24 02 60 24 60 будет в 00:02:24 в воскресенье. Специальные обозначения для смешанных систем счисления счисления являются обычным явлением.
Манипуляции [ править ]
Числа со смешанным основанием с одной и той же базой можно обрабатывать, используя обобщение ручных арифметических алгоритмов. Преобразование значений из одной смешанной базы в другую легко выполнить, сначала преобразуя значения разряда одной системы в другую, а затем применяя цифры из одной системы к ним.
APL и J включают операторы для преобразования в системы со смешанным основанием и обратно.
Факториальная система счисления [ править ]
Radix | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 |
---|---|---|---|---|---|---|---|---|
Место значение | 7! | 6! | 5! | 4! | 3! | 2! | 1! | 0! |
Поместите значение в десятичную дробь | 5040 | 720 | 120 | 24 | 6 | 2 | 1 | 1 |
Наивысшая допустимая цифра | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Например, наибольшее число, которое может быть представлено шестью цифрами, будет 543210, что равно 719 в десятичной системе : 5 × 5! + 4 × 4! + 3 × 3! + 2 × 2! + 1 × 1! На первый взгляд это может быть неясно, но факториальная система нумерации однозначна и полна. Каждое число может быть представлено одним и только одним способом, потому что сумма соответствующих факториалов, умноженная на индекс, всегда равна следующему факториалу за вычетом единицы:
Вышеприведенное уравнение является частным случаем следующего общего правила для любого базового представления с основанием системы счисления (стандартного или смешанного), которое выражает тот факт, что любое базовое представление счисления (стандартное или смешанное) является однозначным и полным. Каждое число может быть представлено одним и только одним способом, потому что сумма соответствующих весов, умноженная на индекс, всегда равна следующему весу минус один:
Первоначальная система счисления [ править ]
Основы систем счисления
Изучая кодировки, я понял, что недостаточно хорошо понимаю системы счислений. Тем не менее, часто использовал 2-, 8-, 10-, 16-ю системы, переводил одну в другую, но делалось все на “автомате”. Прочитав множество публикаций, я был удивлен отсутствием единой, написанной простым языком, статьи по столь базовому материалу. Именно поэтому решил написать свою, в которой постарался доступно и по порядку изложить основы систем счисления.
Введение
Система счисления — это способ записи (представления) чисел.
Что под этим подразумевается? Например, вы видите перед собой несколько деревьев. Ваша задача — их посчитать. Для этого можно — загибать пальцы, делать зарубки на камне (одно дерево — один палец\зарубка) или сопоставить 10 деревьям какой-нибудь предмет, например, камень, а единичному экземпляру — палочку и выкладывать их на землю по мере подсчета. В первом случае число представляется, как строка из загнутых пальцев или зарубок, во втором — композиция камней и палочек, где слева — камни, а справа — палочки
Системы счисления подразделяются на позиционные и непозиционные, а позиционные, в свою очередь, — на однородные и смешанные.
Непозиционная — самая древняя, в ней каждая цифра числа имеет величину, не зависящую от её позиции (разряда). То есть, если у вас 5 черточек — то число тоже равно 5, поскольку каждой черточке, независимо от её места в строке, соответствует всего 1 один предмет.
Позиционная система — значение каждой цифры зависит от её позиции (разряда) в числе. Например, привычная для нас 10-я система счисления — позиционная. Рассмотрим число 453. Цифра 4 обозначает количество сотен и соответствует числу 400, 5 — кол-во десяток и аналогично значению 50, а 3 — единиц и значению 3. Как видим — чем больше разряд — тем значение выше. Итоговое число можно представить, как сумму 400+50+3=453.
Однородная система — для всех разрядов (позиций) числа набор допустимых символов (цифр) одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 (1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, поскольку символ F не входит в набор цифр от 0 до 9.
Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может отличаться от наборов других разрядов. Яркий пример — система измерения времени. В разряде секунд и минут возможно 60 различных символов (от «00» до «59»), в разряде часов – 24 разных символа (от «00» до «23»), в разряде суток – 365 и т. д.
Непозиционные системы
Как только люди научились считать — возникла потребность записи чисел. В начале все было просто — зарубка или черточка на какой-нибудь поверхности соответствовала одному предмету, например, одному фрукту. Так появилась первая система счисления — единичная.
Единичная система счисления
Число в этой системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.
Но эта система обладает явными неудобствами — чем больше число — тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав.
Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.
Древнеегипетская десятичная система
Почему она называется десятичной? Как писалось выше — люди стали группировать символы. В Египте — выбрали группировку по 10, оставив без изменений цифру “1”. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ — представление числа 10 в какой-то степени.
Числа в древнеегипетской системе счисления записывались, как комбинация этих
символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Примером может служить число 345:
Вавилонская шестидесятеричная система
В отличии от египетской, в вавилонской системе использовалось всего 2 символа: “прямой” клин — для обозначения единиц и “лежачий” — для десятков. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. В качестве примера возьмем число 32:
Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной.
Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения — в позиционной с основанием 60. Число 92:
Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Представление числа 92 могло обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:
Теперь число 3632 следует записывать, как:
Шестидесятеричная вавилонская система — первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени — час состоит из 60 минут, а минута из 60 секунд.
Римская система
Римская система не сильно отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления — это набор стоящих подряд цифр.
Позиционные системы счисления
Как упоминалось выше — первые предпосылки к появлению позиционной системы возникли в древнем Вавилоне. В Индии система приняла форму позиционной десятичной нумерации с применением нуля, а у индусов эту систему чисел заимствовали арабы, от которых её переняли европейцы. По каким-то причинам, в Европе за этой системой закрепилось название “арабская”.
Десятичная система счисления
Это одна из самых распространенных систем счисления. Именно её мы используем, когда называем цену товара и произносим номер автобуса. В каждом разряде (позиции) может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10.
Для примера возьмем число 503. Если бы это число было записано в непозиционной системе, то его значение равнялось 5+0+3 = 8. Но у нас — позиционная система и значит каждую цифру числа необходимо умножить на основание системы, в данном случае число “10”, возведенное в степень, равную номеру разряда. Получается, значение равно 5*10 2 + 0*10 1 + 3*10 0 = 500+0+3 = 503. Чтобы избежать путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса. Таким образом, 503 = 50310.
Помимо десятичной системы, отдельного внимания заслуживают 2-, 8-, 16-ая системы.
Двоичная система счисления
Эта система, в основном, используется в вычислительной технике. Почему не стали использовать привычную нам 10-ю? Первую вычислительную машину создал Блез Паскаль, использовавший в ней десятичную систему, которая оказалась неудобной в современных электронных машинах, поскольку требовалось производство устройств, способных работать в 10 состояниях, что увеличивало их цену и итоговые размеры машины. Этих недостатков лишены элементы, работающие в 2-ой системе. Тем не менее, рассматриваемая система была создана за долго до изобретения вычислительных машин и уходит “корнями” в цивилизацию Инков, где использовались кипу — сложные верёвочные сплетения и узелки.
Двоичная позиционная система счисления имеет основание 2 и использует для записи числа 2 символа (цифры): 0 и 1. В каждом разряде допустима только одна цифра — либо 0, либо 1.
Примером может служить число 101. Оно аналогично числу 5 в десятичной системе счисления. Для того, чтобы перевести из 2-й в 10-ю необходимо умножить каждую цифру двоичного числа на основание “2”, возведенное в степень, равную разряду. Таким образом, число 1012 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 510.
Хорошо, для машин 2-я система счисления удобнее, но мы ведь часто видим, используем на компьютере числа в 10-й системе. Как же тогда машина определяет какую цифру вводит пользователь? Как переводит число из одной системы в другую, ведь в её распоряжении всего 2 символа — 0 и 1?
Чтобы компьютер мог работать с двоичными числами (кодами), необходимо чтобы они где-то хранились. Для хранения каждой отдельной цифры применяется триггер, представляющий собой электронную схему. Он может находится в 2-х состояниях, одно из которых соответствует нулю, другое — единице. Для запоминания отдельного числа используется регистр — группа триггеров, число которых соответствует количеству разрядов в двоичном числе. А совокупность регистров — это оперативная память. Число, содержащееся в регистре — машинное слово. Арифметические и логические операции со словами осуществляет арифметико-логическое устройство (АЛУ). Для упрощения доступа к регистрам их нумеруют. Номер называется адресом регистра. Например, если необходимо сложить 2 числа — достаточно указать номера ячеек (регистров), в которых они находятся, а не сами числа. Адреса записываются в 8- и 16-ричной системах (о них будет рассказано ниже), поскольку переход от них к двоичной системе и обратно осуществляется достаточно просто. Для перевода из 2-й в 8-ю число необходимо разбить на группы по 3 разряда справа налево, а для перехода к 16-ой — по 4. Если в крайней левой группе цифр не достает разрядов, то они заполняются слева нулями, которые называются ведущими. В качестве примера возьмем число 1011002. В восьмеричной — это 101 100 = 548, а в шестнадцатеричной — 0010 1100 = 2С16. Отлично, но почему на экране мы видим десятичные числа и буквы? При нажатии на клавишу в компьютер передаётся определённая последовательность электрических импульсов, причём каждому символу соответствует своя последовательность электрических импульсов (нулей и единиц). Программа драйвер клавиатуры и экрана обращается к кодовой таблице символов (например, Unicode, позволяющая закодировать 65536 символов), определяет какому символу соответствует полученный код и отображает его на экране. Таким образом, тексты и числа хранятся в памяти компьютера в двоичном коде, а программным способом преобразуются в изображения на экране.
Восьмеричная система счисления
8-я система счисления, как и двоичная, часто применяется в цифровой технике. Имеет основание 8 и использует для записи числа цифры от 0 до 7.
Шестнадцатеричная система счисления
Шестнадцатеричная система широко используется в современных компьютерах, например при помощи неё указывается цвет: #FFFFFF — белый цвет. Рассматриваемая система имеет основание 16 и использует для записи числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. C, D, E, F, где буквы равны 10, 11, 12, 13, 14, 15 соответственно.
Помимо рассмотренных позиционных систем счисления, существуют и другие, например:
1) Троичная
2) Четверичная
3) Двенадцатеричная
Позиционные системы подразделяются на однородные и смешанные.
Однородные позиционные системы счисления
Определение, данное в начале статьи, достаточно полно описывает однородные системы, поэтому уточнение — излишне.
Смешанные системы счисления
К уже приведенному определению можно добавить теорему: “если P=Q n (P,Q,n – целые положительные числа, при этом P и Q — основания), то запись любого числа в смешанной (P-Q)-ой системе счисления тождественно совпадает с записью этого же числа в системе счисления с основанием Q.”
Смешанными системами счисления также являются, например:
1) Факториальная
2) Фибоначчиева
Перевод из одной системы счисления в другую
Иногда требуется преобразовать число из одной системы счисления в другую, поэтому рассмотрим способы перевода между различными системами.
Преобразование в десятичную систему счисления
Пример: 1012 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 510
Преобразование из десятичной системы счисления в другие
Записав все остатки снизу вверх, получаем итоговое число 17. Следовательно, 1510 = 178.
Преобразование из двоичной в восьмеричную и шестнадцатеричную системы
В качестве примера возьмем число 10012: 10012 = 001 001 = (0*2 2 + 0*2 1 + 1*2 0 ) (0*2 2 + 0*2 1 + 1*2 0 ) = (0+0+1) (0+0+1) = 118
Для перевода в шестнадцатеричную — разбиваем двоичное число на группы по 4 цифры справа налево, затем — аналогично преобразованию из 2-й в 8-ю.
Преобразование из восьмеричной и шестнадцатеричной систем в двоичную
Перевод из восьмеричной в двоичную — преобразуем каждый разряд восьмеричного числа в двоичное 3-х разрядное число делением на 2 (более подробно о делении см. выше пункт “Преобразование из десятичной системы счисления в другие”), недостающие крайние разряды заполним ведущими нулями.
Для примера рассмотрим число 458: 45 = (100) (101) = 1001012
Перевод из 16-ой в 2-ю — преобразуем каждый разряд шестнадцатеричного числа в двоичное 4-х разрядное число делением на 2, недостающие крайние разряды заполняем ведущими нулями.
Преобразование дробной части любой системы счисления в десятичную
Преобразование осуществляется также, как и для целых частей, за исключением того, что цифры числа умножаются на основание в степени “-n”, где n начинается от 1.
Преобразование дробной части двоичной системы в 8- и 16-ую
Перевод дробной части осуществляется также, как и для целых частей числа, за тем лишь исключением, что разбивка на группы по 3 и 4 цифры идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа.
Пример: 1001,012 = 001 001, 010 = (0*2 2 + 0*2 1 + 1*2 0 ) (0*2 2 + 0*2 1 + 1*2 0 ), (0*2 2 + 1*2 1 + 0*2 0 ) = (0+0+1) (0+0+1), (0+2+0) = 11,28
Преобразование дробной части десятичной системы в любую другую
Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в ноль и начать умножение получившегося числа на основание системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в ноль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль.
Для примера переведем 10,62510 в двоичную систему:
0,625*2 = 1,25
0,250*2 = 0,5
0,5*2 = 1,0
Записав все остатки сверху вниз, получаем 10,62510 = (1010), (101) = 1010,1012