Что такое собственные колебания системы

Собственные колебания

Смотреть что такое «Собственные колебания» в других словарях:

СОБСТВЕННЫЕ КОЛЕБАНИЯ — (свободные колебания), колебания, которые совершаются за счет энергии, сообщенной системе в начале колебательного движения (например, в механической системе через начальное смещение тела или придание ему начальной скорости, а в электрической… … Современная энциклопедия

Собственные колебания — (свободные колебания), колебания, которые совершаются за счет энергии, сообщенной системе в начале колебательного движения (например, в механической системе через начальное смещение тела или придание ему начальной скорости, а в электрической… … Иллюстрированный энциклопедический словарь

СОБСТВЕННЫЕ КОЛЕБАНИЯ — (свободные колебания) колебания, которые могут возбуждаться в колебательной системе под действием начального толчка. Форма и частота собственных колебаний определяются массой и упругостью для механических собственных колебаний и индуктивностью и… … Большой Энциклопедический словарь

СОБСТВЕННЫЕ КОЛЕБАНИЯ — (Oscillations) свободные колебания тела или колебательного контура по инерции, когда на них не действует периодическая внешняя сила. С. К. имеют вполне определенный период (собственный период); напр. колебания корабля после того, как его… … Морской словарь

собственные колебания — Свободные колебания по одной из собственных форм. [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики строительная механика, сопротивление материалов EN … Справочник технического переводчика

собственные колебания — (свободные колебания), колебания, которые могут возбуждаться в колебательной системе под действием начального толчка. Форма и частота механических собственных колебаний определяются массой и упругостью, а электромагнитных индуктивностью и… … Энциклопедический словарь

собственные колебания — savieji virpesiai statusas T sritis fizika atitikmenys: angl. eigen oscillations; natural oscillations; self oscillations vok. Eigenschwingungen, f rus. собственные колебания, n pranc. oscillations propres, f … Fizikos terminų žodynas

СОБСТВЕННЫЕ КОЛЕБАНИЯ — свободные колебания, колебания, совершающиеся в динамич. системе при отсутствии внешнего воздействия при сообщении ей в начальный момент внешнего возмущения, выводящего систему из состояния равновесия. Характер С. к. в основном определяется… … Математическая энциклопедия

собственные колебания — ▲ физические колебания ↑ независимый собственные [свободные] колебания возникают под действием начального толчка. автоколебания. самовозбуждение самопроизвольное возникновение колебаний в системе под влиянием внешних воздействий. спектр. триплет … Идеографический словарь русского языка

Источник

Как определить собственную частоту колебаний

Для лучшего понимания вопроса рассмотрим, что собой представляют собственные колебания и колебания в нелинейных системах.

Собственные колебания

Колебания очень схожи по природе с волнами, они подчиняются общим закономерностям, единственное их отличие в том, что в процессе распространения волн энергия не переходит из одной формы в другую, а всего лишь переносится. Исследованием закономерностей физической природы волн и колебаний занимается теория колебаний и волн. На практике в реальных условиях без воздействия внешних факторов любые колебания со временем затухают, это связано с потерей энергии.

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Колебания, по характеру взаимодействия с внешней средой, разделают на:

Рассмотрим подробнее собственные колебания.

Причиной возникновения таких колебаний является отклонение от равновесия одного или нескольких параметров системы. Такие колебания возникают под воздействием внутренних сил после выведения системы из равновесия.

Рассмотрим принцип суперпозиции, который гласит о том, что допустимое движение системы равно сумме ее произвольных движений. При незначительных отклонениях характеристик системы от положения равновесия, ее движение будет соответствовать принципу суперпозиции. Подобные движения описываются дифференциальными уравнениями линейного характера. Если рассмотреть консервативную систему, т.е. такую, в которой отсутствуют потери энергии и ее параметры постоянны во времени, то любое свободное колебание такой системы представляет собой сумму простых колебаний, меняющихся во времени с определенными частотами свободных колебаний по закону синуса.

Не нашли что искали?

Просто напиши и мы поможем

Системы бывают с одной или несколькими степенями свободы. Если состояние системы в любой конкретный момент времени описывается одним параметром, то такая система имеет одну степень свободы, если двумя – то две, тремя – три, и так далее. Как пример системы с одной степенью свободы, можно рассмотреть маятник, который совершает колебательные движения в плоскости. В этом случае любое конкретное его положение характеризуется углом его отклонения от оси вертикали. Для описания колебательной системы с двумя степенями свободы нужны два переменных параметра. Примером таких колебаний является маятник, колеблющийся в сфере. В этом случае переменными параметрами будут являться углы положения маятника относительно двух перпендикулярных плоскостей. Но зачастую движения системы с двумя степенями свободы имеют сложный негармоничный характер. Они описываются линейными уравнениями суперпозиций двух простых переменных параметров, которые происходят одновременно. Так вот, каждое из этих двух простых элементарных колебаний называют собственной или свободной, так называемой гармоникой.

Для колебательных систем, состоящих из определенного количества осцилляторов (к примеру вереница шариков, соединенных между собой маленькими пружинками), число гармоник будет равняться их числу. Для более сложных систем, таких как мембрана, например, гармоники будут различные по длине волн и их будет бесконечное множество. При заданной скорости распространения таких волн, спектр собственных частот определяется простой линейной формулой. При наличии волн с разной скоростью распространения такой линейный закон уже не действует, здесь в силу вступают различные дисперсионные уравнения.

Если рассмотреть реальные существующие системы, в которых собственные колебания затухают со временем, то их считают лишь относительно гармоничными в небольшом конкретном отрезке времени. Свободные колебания, затухающие во времени, могут состоять из нескольких гармоник в определенном диапазоне частот. В таком случае имеет место так называемая добротность, то есть расширение спектральной линии, которое равно отношению запасенной энергии к потерям системы. Соответственно, сгущение спектра за счет потерь влечет за собой трансформацию его дискретной формы в сплошную в том случае, если ширина линий приближается к ширине между ними.

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Колебания в нелинейных системах

Свободные или собственные колебания в нелинейных системах сложно поделить на какие-либо классы. В нелинейных системах спектр частоты свободных колебаний дискретен, что приводит к движению энергии по различным компонентам спектра. В таких колебательных системах наблюдается явление конкуренции гармоник, т.е. выживание одних за счет подавления других. Лишь дисперсия может уравновесить подобный процесс, приводя к образованию устойчивых в пространстве и времени форм колебаний.

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

В колебательных системах частым явлением, имеющим большое значение, является процесс резонанса. Его суть заключается в резком возрастании амплитуды колебаний. Это происходит из-за приближения частоты внешнего воздействия к частоте колебания внутреннего собственного параметра системы.

Если линейная система и ее параметры находятся вне времени, то частота резонанса совпадает с частотой ее собственных колебаний. Амплитуда колебаний системы будет усиливаться с ростом параметра ее добротности. В таком случае раскачка амплитуды будет происходить до того момента, пока поступающая энергия будет больше потерь при осцилляции.

Если говорить о линейных колебаниях, то поступающая внешняя энергия пропорциональна амплитуде, а потери пропорциональны амплитуде в квадрате. Таким образом можно сказать, что баланс энергии достигается во всех известных случаях.

Источник

СОБСТВЕННЫЕ КОЛЕБАНИЯ

Смотреть что такое «СОБСТВЕННЫЕ КОЛЕБАНИЯ» в других словарях:

Собственные колебания — (свободные колебания), колебания, которые совершаются за счет энергии, сообщенной системе в начале колебательного движения (например, в механической системе через начальное смещение тела или придание ему начальной скорости, а в электрической… … Иллюстрированный энциклопедический словарь

СОБСТВЕННЫЕ КОЛЕБАНИЯ — (свободные колебания) колебания, которые могут возбуждаться в колебательной системе под действием начального толчка. Форма и частота собственных колебаний определяются массой и упругостью для механических собственных колебаний и индуктивностью и… … Большой Энциклопедический словарь

СОБСТВЕННЫЕ КОЛЕБАНИЯ — (Oscillations) свободные колебания тела или колебательного контура по инерции, когда на них не действует периодическая внешняя сила. С. К. имеют вполне определенный период (собственный период); напр. колебания корабля после того, как его… … Морской словарь

собственные колебания — Свободные колебания по одной из собственных форм. [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно технической терминологии. 1970 г.] Тематики строительная механика, сопротивление материалов EN … Справочник технического переводчика

собственные колебания — (свободные колебания), колебания, которые могут возбуждаться в колебательной системе под действием начального толчка. Форма и частота механических собственных колебаний определяются массой и упругостью, а электромагнитных индуктивностью и… … Энциклопедический словарь

собственные колебания — savieji virpesiai statusas T sritis fizika atitikmenys: angl. eigen oscillations; natural oscillations; self oscillations vok. Eigenschwingungen, f rus. собственные колебания, n pranc. oscillations propres, f … Fizikos terminų žodynas

СОБСТВЕННЫЕ КОЛЕБАНИЯ — свободные колебания, колебания, совершающиеся в динамич. системе при отсутствии внешнего воздействия при сообщении ей в начальный момент внешнего возмущения, выводящего систему из состояния равновесия. Характер С. к. в основном определяется… … Математическая энциклопедия

собственные колебания — ▲ физические колебания ↑ независимый собственные [свободные] колебания возникают под действием начального толчка. автоколебания. самовозбуждение самопроизвольное возникновение колебаний в системе под влиянием внешних воздействий. спектр. триплет … Идеографический словарь русского языка

Собственные колебания — свободные колебания, колебания в механической, электрической или какой либо другой физической системе, совершающиеся при отсутствии внешнего воздействия за счёт первоначально накопленной энергии (вследствие наличия начального смещения или … Большая советская энциклопедия

Источник

Что такое собственные колебания системы

Возьмем простейшую систему, в которой возможны механические колебания. Пусть на пружине жесткости к подвешен груз массы т. Рассмотрим вертикальное движение груза, которое будет происходить под действием силы упругости пружины и силы тяжести, если вывести систему из состояния равновесия и предоставить самой себе.

Простейший осциллятор. Будем считать, что масса пружины настолько мала, что ее можно не учитывать при описании колебаний. Поместим начало отсчета на направленной вниз оси х в точку, соответствующую равновесному положению груза (рис. 158). В этом положении благодаря действию силы тяжести пружина уже растянута на некоторую величину Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыопределяемую соотношением

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

При смещении х груза из положения равновесия проекция действующей на тело со стороны пружины силы упругости равна

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыв соответствии с законом Гука. Обозначим проекцию ускорения груза а, равную второй производной смешения х по времени, через х. Тогда второй закон Ньютона для груза запишется в виде

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

С учетом (1) это уравнение переписывается следующим образом:

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Теперь уравнение движения (3) принимает окончательный вид:

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

К точно такому же уравнению мы придем, рассматривая малые колебания около положения равновесия самых разных физических систем: математического маятника — материальной точки, подвешенной на нерастяжимой невесомой нити (рис. 159а), физического маятника — любого твердого тела, которое может поворачиваться вокруг горизонтальной оси под действием силы тяжести (рис. 1596), крутильного маятника — диска или коромысла, подвешенного на упругой нити (рис. 159б), и т. д.

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Рис. 158. Положение равновесия и колебания груза на пружине

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Рис. 159. Разные типы осцилляторов: а — простой (математический) маятник; б — физический маятник; в — крутильный маятник (диск на упругой нити)

При этом под х в каждом случае следует понимать соответствующую величину, характеризующую отклонение от равновесия: угол Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыотклонения от вертикали математического или физического маятника, угол Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системызакручивания упругого подвеса крутильного маятника и т. д.

Гармонические колебания. Колебания в любой физической системе, описываемые уравнением (5), происходят по синусоидальному закону и называются гармоническими, а любая совершающая такие колебания физическая система — гармоническим осциллятором.

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Рис. 160. График гармонического колебания

Решение дифференциального уравнения (5) имеет вид (рис. 160)

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

где А и а — произвольные постоянные: при любых значениях А и а функция (6) удовлетворяет уравнению (5). Величина А характеризует максимальное отклонение системы от равновесия и называется амплитудой колебаний.

Частота и период. Поскольку косинус — периодическая функция, смещение я: принимает одинаковые значения через определенные одинаковые промежутки времени, называемые периодом колебаний Т. Наряду с периодом Т для характеристики колебаний используют также обратную величину Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыназываемую частотой. Частота измеряется в герцах. Герц (Гц) — частота колебания, период которого равен одной секунде. Величина Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыназывается циклической частотой колебаний. Она связана с периодом Т и частотой Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системысоотношением

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

так как период косинуса равен Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыЦиклическая частота Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыизмеряется в радианах в секунду Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Фаза колебаний. Весь аргумент косинуса в (6) называется фазой колебаний, а значение фазы при Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыт. е. постоянная а, — начальной фазой. Фаза измеряется в радианах (рад). Зная амплитуду и фазу колебаний, можно по выражению (6) определить механическое состояние системы.

Начальные условия. Значения амплитуды А и начальной фазы а определяются начальными условиями, т. е. способом возбуждения колебаний. Если, например, груз на пружине отклоняют из

положения равновесия на расстояние Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыи отпускают без толчка, то начальные условия имеют вид

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Подставляя эти начальные условия в левую часть (6) при Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыи в получаемое из (6) выражение для скорости Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

приходим к системе уравнений для определения А и а:

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Отсюда следует, что Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыт. е. колебания осциллятора при таком способе возбуждения описываются функцией

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Если колебания возбуждают толчком из положения равновесия, мгновенно сообщая грузу начальную скорость Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системычто соответствует начальным условиям Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыто для А и а можно получить значения Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыКолебания в этом случае описываются функцией

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Изохронность осциллятора. Частота Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системысобственных колебаний, в отличие от амплитуды и начальной фазы, не зависит от способа возбуждения, а определяется исключительно свойствами самой системы. В независимости периода колебаний от начальных условий заключается так называемое свойство изохронности гармонического осциллятора.

Убедиться в том, что функция (6) является решением уравнения гармонических колебаний (5), можно непосредственной подстановкой. Но можно это сделать и иначе, воспользовавшись удобным графическим методом изображения колебаний.

Векторные диаграммы. Рассмотрим равномерное движение точки по окружности радиуса А с угловой скоростью Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы(рис. 161а). Пусть в начальный момент радиус-вектор Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыэтой точки образует угол а с осью х. Спроецируем теперь на эту ось радиус-вектор движущейся точки Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыее скорость Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыи ускорение а. Учитывая, что при равномерном движении точки по окружности ее скорость направлена по касательной, а ускорение — к центру окружности (рис. 161б), получаем

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Мы воспользовались тем, что при движении по окружности модуль скорости Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системысвязан с радиусом окружности А и угловой скоростью Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системысоотношением Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыа модуль ускорения — соотношением Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Рис. 161. Связь гармонических колебаний с равномерным движением по окружности

Из формул (10) видно, что проекция ускорения Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыв любой момент времени пропорциональна смещению Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыточно так же как и в уравнении (3) (или Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Отсюда следует, что уравнение (5) описывает движение, происходящее по синусоидальному закону (10).

Подчеркнем еще раз, что при гармонических колебаниях любой физической природы, которые происходят по закону (10), частота Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыоказывается зависящей только от свойств системы, в которой происходят колебания, но не зависит от амплитуды колебаний. В одной и той же системе могут происходить колебания определенной частоты, которая, например, дается формулами (4), но разной амплитуды. Амплитуда колебаний А и начальная фаза а определяются не свойствами самой системы, а тем способом, каким в системе вызваны колебания. Колебания, происходящие в системе в результате вывода ее из состояния равновесия, после чего система предоставляется самой себе, будем называть собственными колебаниями. В отсутствие трения собственные колебания иногда называют свободными.

Энергетические превращения. Рассмотрим энергетические превращения, происходящие при свободных гармонических колебаниях.

При механических колебаниях груза на пружине происходит периодическое превращение кинетической энергии движущегося груза Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыи потенциальной энергии Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системысистемы, которая состоит из потенциальной энергии деформированной пружины и потенциальной энергии груза в поле тяжести. Потенциальная энергия деформированной пружины пропорциональна квадрату ее удлинения Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы(см. рис. 158) и, следовательно, равна Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыПотенциальная энергия груза в поле тяжести равна Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы.

Выберем для удобства произвольную постоянную С таким образом, чтобы полная потенциальная энергия системы была равна нулю в положении равновесия:

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Тогда Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыи потенциальная энергия системы Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыпроизвольной точке х выражается формулой

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Полная механическая энергия системы Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыпри колебаниях остается неизменной, так как система консервативна. В этом можно убедиться и непосредственно, подставляя смещение х и скорость и из (10) в выражение для энергии:

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Из этой формулы видно, что неизменная полная энергия системы Е совпадает с потенциальной энергией Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыв точках наибольшего отклонения от положения равновесия, т. е. при Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыи совпадает с кинетической энергией Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыпри прохождении груза через положение равновесия, где его скорость Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Рис. 162. Графики смещения, кинетической и потенциальной энергий при гармонических колебаниях

При взаимных превращениях потенциальная и кинетическая энергия совершают гармонические колебания с одинаковой

амплитудой Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыв противофазе друг с другом и с частотой Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыЧтобы убедиться в этом, преобразуем выражения для кинетической и потенциальной энергий с помощью формул для тригонометрических функций половинного аргумента:

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

На рис. 162 приведены графики зависимости от времени смещения груза Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыкинетической энергии Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыи потенциальной энергии Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыШтриховыми линиями на этих графиках показаны средние значения кинетической и потенциальной энергии. Эти средние значения равны друг другу и составляют половину полной энергии Е.

Фазовые траектории. Построим фазовые траектории для гармонического осциллятора. Уравнение фазовой траектории представляет собой уравнение закона сохранения энергии:

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Разделив обе части уравнения (15) на Е, приводим его к виду

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Это уравнение эллипса с полуосями Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы(рис. 163).

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Рис. 163. Фазовая траектория гармонического осциллятора

При колебаниях состояние осциллятора изменяется таким образом, что изображающая точка движется по эллипсу по часовой стрелке и совершает полный оборот за время, равное периоду колебаний Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы. В этом легко убедиться с помощью формул (10), дающих зависимость Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыот времени. Из этих формул, разумеется, можно получить и само уравнение фазовой траектории (16), если исключить из них время. Для этого нужно обе части первой из формул (10) разделить на А, второй — на Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системывозвести получившееся в квадрат и сложить, учитывая, что Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы. В результате получим

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

что совпадает с (16), ибо полную энергию осциллятора Е можно записать в одном из следующих видов:

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Сопоставим фазовую траекторию осциллятора с графиком потенциальной энергии (рис. 164). На верхней части рисунка изображена потенциальная энергия осциллятора и показаны два значения полной энергии системы Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыНа нижней части изображены две фазовые траектории осциллятора, соответствующие колебаниям с такими значениями энергии. Скорость обращается в нуль в тех точках, где потенциальная энергия становится равной полной энергии, т. е. в точках максимального смещения из положения равновесия.

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Рис. 164. Потенциальная энергия и фазовая энергия осциллятора

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Рис. 165. Связь фазовой траектории осциллятора с графиками смещения и скорости

Скорость максимальна при прохождении положения равновесия Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыгде потенциальная энергия обращается в нуль.

Масштаб графика фазовой траектории по оси Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыпроизволен и не связан с графиком потенциальной энергии. Удобно масштаб графика выбрать так, чтобы одинаковые отрезки соответствовали единице по оси Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыпо оси Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыТогда при любой амплитуде колебаний А полуоси эллипса на фазовой диаграмме А и Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыбудут одинаковы и эллипс превратится в окружность (рис. 165). Точка, изображающая состояние осциллятора, движется по этой окружности по часовой стрелке с постоянной скоростью. Из рис. 165 видна связь движения изображающей точки в фазовой плоскости с временной зависимостью координаты Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыи скорости Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыосциллятора. При построении фазовых диаграмм удобно выбирать масштаб по осям именно таким образом.

• Покажите, что период гармонических колебаний, описываемых формулой (6), связан с их циклической частотой Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системысоотношением (7).

• Какими физическими условиями определяются частота, амплитуда и начальная фаза собственных колебаний гармонического осциллятора?

• Определите значения амплитуды А и начальной фазы а при возбуждении колебаний осциллятора начальным толчком из положения равновесия.

• Докажите, что изображающая точка на фазовой плоскости для гармонического осциллятора описывает эллипс по часовой стрелке. С какой угловой скоростью поворачивается на фазовой плоскости радиус-вектор изображающей точки?

• Как нужно выбрать масштаб по оси ординат фазовой диаграммы, чтобы фазовая траектория гармонического осциллятора превратилась в окружность?

Линейные и нелинейные системы. Среди всех систем, в которых возможны колебания, гармонический осциллятор выделяется рядом замечательных особенностей. Прежде всего, как уже отмечалось, это изохронность колебаний, т. е. независимость их периода от амплитуды (или от полной энергии). Например, на рис. 164 изображающие точки обходят оба эллипса, соответствующие разным значениям энергии осциллятора, за одинаковое время.

Чтобы собственные колебания происходили по гармоническому закону, возвращающая сила должна быть пропорциональна смещению из положения равновесия, а потенциальная энергия — квадрату смещения: Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыТакие колебательные системы называются линейными, так как их поведение описывается линейным дифференциальным уравнением (5) — в уравнение искомая функция Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыи ее производная х входят в первой степени.

Реальные физические системы, как правило, такими свойствами не обладают. Например, при больших деформациях пружина уже не подчиняется закону Гука. Однако во всех системах устойчивому положению равновесия соответствует минимум потенциальной энергии. Поэтому поведение потенциальной энергии вблизи этого положения можно аппроксимировать квадратичной зависимостью от смещения. Это значит, что при малых колебаниях вблизи устойчивого равновесия любую систему приближенно можно считать гармоническим осциллятором.

Ранее при обсуждении фазовых диаграмм был рассмотрен маятник в виде материальной точки, подвешенной на легком стержне. Потенциальная энергия маятника при произвольных смещениях из положения равновесия выражалась формулой

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

или, что то же самое,

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

При малых значениях аргумента Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыкосинус можно приближенно представить в виде

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Поэтому при малых Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыформула (17) дает квадратичную зависимость потенциальной энергии от угла отклонения:

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Это же выражение немедленно следует из (17а) с учетом того, что при Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыможно положить Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыТакая аппроксимация потенциальной энергии по казана штриховой линией на рис. 166.

Учитывая, что скорость Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыматериальной точки на конце стержня может быть записана как Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыдля полной энергии при малых смещениях имеем

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Рис. 166. Потенциальная энергия математического маятника (сплошная линия) и гармонического осциллятора (штриховая линия)

Сравнивая эту формулу с (15), видим, что при малых отклонениях от вертикали математический маятник, т. е. подвешенный на легком стержне грузик, представляет собой гармонический осциллятор. Период его колебаний не зависит от амплитуды.

Легко написать формулу, выражающую частоту Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системымалых собственных колебаний маятника через его параметры. Квадрат частоты собственных колебаний осциллятора, определяемый формулой (4), равен отношению коэффициентов при квадратах смещения и скорости в выражении (15) для полной энергии осциллятора. Такое отношение для математического маятника в соответствии с (19) равно

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Для периода собственных колебаний Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыотсюда получаем

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Уравнение колебаний системы, энергия которой дается выражением (19), имеет вид (5), где под х следует понимать угол Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

отклонения от вертикали:

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Обратим внимание на то, что период колебаний математического маятника оказался не зависящим от его массы. Так получилось потому, что масса входит множителем в коэффициенты как при Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системытак и при Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыв выражении (19) для энергии маятника и сокращается при переходе к (20). Следует, однако, отдавать себе отчет в том, что фактически в выражение для потенциальной энергии входит тяжелая (гравитационная) масса Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыа в выражение для кинетической энергии — инертная масса Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыПоэтому сокращение масс при получении формулы (20) для частоты возможно только при условии их пропорциональности. Таким образом, независимость периода колебаний математического маятника от массы груза, которая с высокой точностью подтверждается на опыте, служит еще одним экспериментальным подтверждением эквивалентности инертной и гравитационной масс.

Ангармонический маятник. При больших амплитудах колебания маятника описываются нелинейным уравнением

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

Угол отклонения Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системывходит в него как аргумент функции синуса. Поскольку при малых углах Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системыто (23) в случае малых колебаний переходит в уравнение гармонического осциллятора (22). Описываемые уравнением (23) колебания являются ангармоническими: их период зависит от амплитуды (рт. Приближенная формула для периода ангармонических колебаний маятника имеет вид

Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системы

где Что такое собственные колебания системы. Смотреть фото Что такое собственные колебания системы. Смотреть картинку Что такое собственные колебания системы. Картинка про Что такое собственные колебания системы. Фото Что такое собственные колебания системысоответствует малым гармоническим колебаниям и дается формулой (21).

• Почему малые колебания вблизи положения устойчивого равновесия в любых системах можно приближенно считать гармоническими?

• Объясните, почему физическая система, выражение для энергии которой имеет вид (19) или (15), представляет собой гармонический осциллятор.

• Каким образом можно использовать маятник для экспериментальной проверки равенства инертной и гравитационной масс?

• Как получить дифференциальное уравнение (23), описывающее ангармонические колебания математического маятника?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *