Что такое сохраняемость изделия

Что такое сохраняемость изделия

НАДЕЖНОСТЬ В ТЕХНИКЕ

Термины и определения

Industrial product dependability. General concepts.
Terms and definitions

Дата введения 1990-07-01

1. РАЗРАБОТАН И ВНЕСЕН Институтом машиноведения АН СССР, Межотраслевым научно-техническим комплексом «Надежность машин» и Государственным Комитетом СССР по управлению качеством продукции и стандартам

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 15.11.89 N 3375

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который даны ссылки

Вводная часть, 5.1, 5.3

Настоящий стандарт устанавливает основные понятия, термины и определения понятий в области надежности.

Термины, устанавливаемые настоящим стандартом, обязательны для применения во всех видах документации и литературы, входящих в сферу действия стандартизации или использующих результаты этой деятельности.

Настоящий стандарт должен применяться совместно с ГОСТ 18322.

1. Стандартизованные термины с определениями приведены в табл.1.

2. Для каждого понятия установлен один стандартизованный термин.

Применение терминов-синонимов стандартизованного термина не допускается.

2.1. Для отдельных стандартизованных терминов в табл.1 приведены в качестве справочных краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования.

2.2. Приведенные определения можно при необходимости изменять, вводя в них производные признаки, раскрывая значение используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в данном стандарте.

2.3. В случаях, когда в термине содержатся все небходимые и достаточные признаки понятия, определение не приведено и в графе «Определение» поставлен прочерк.

2.4. В табл.1 в качестве справочных приведены эквиваленты стандартизованных терминов на английском языке.

3. Алфавитные указатели содержащихся в стандарте терминов на русском языке и их английских эквивалентов приведены в табл.2-3.

5. В приложении даны пояснения к терминам, приведенным в настоящем стандарте.

1.1. Надежность
Reliability, dependability

Свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.

Примечание. Надежность является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенные сочетания этих свойств

1.2. Безотказность
Reliability, failure-free operation

Свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.

1.3. Долговечность
Durability, longevity

Свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта

1.4. Ремонтопригодность Maintainability

Свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта

1.5. Сохраняемость
Storability

Свойство объекта сохранять в заданных пределах значения параметров, характеризующих способности объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования

2.1. Исправное состояние
Исправность
Good state

Состояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации

2.2. Неисправное состояние Неисправность
Fault, faulty state

Состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации

2.3. Работоспособное состояние Работоспособность
Up state

Состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации

2.4. Неработоспособное состояние
Неработоспособность
Down state

Состояние объекта, при котором значение хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации.

Примечание. Для сложных объектов возможно деление их неработоспособных состояний. При этом из множества неработоспособных состояний выделяют частично неработоспособные состояния, при которых объект способен частично выполнять требуемые функции

2.5. Предельное состояние Limiting state

Состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно

2.6. Критерий предельного состояния
Limiting state criterion

Признак или совокупность признаков предельного состояния объекта, установленные нормативно-технической и (или) конструкторской (проектной) документацией.

Примечание. В зависимости от условий эксплуатации для одного и того же объекта могут быть установлены два и более критериев предельного состояния

3. ДЕФЕКТЫ, ПОВРЕЖДЕНИЯ, ОТКАЗЫ

Событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния

Событие, заключающееся в нарушении работоспособного состояния объекта

3.4. Критерий отказа
Failure criterion

Признак или совокупность признаков нарушения работоспособного состояния объекта, установленные в нормативно-технической и (или) конструкторской (проектной) документации

3.5. Причина отказа
Failure cause

Явления, процессы, события и состояния, вызвавшие возникновение отказа объекта

3.6. Последствия отказа
Failure effect

Явления, процессы, события и состояния, обусловленные возникновением отказа объекта

3.7. Критичность отказа
Failure criticality

Совокупность признаков, характеризующих последствия отказа.

Примечание. Классификация отказов по критичности (например по уровню прямых и косвенных потерь, связанных с наступлением отказа, или по трудоемкости восстановления после отказа) устанавливается нормативно-технической и (или) конструкторской (проектной) документацией по согласованию с заказчиком на основании технико-экономических соображений и соображений безопасности

3.8. Ресурсный отказ
Marginal failure

Отказ, в результате которого объект достигает предельного состояния

3.9. Независимый отказ
Primary failure

Отказ, не обусловленный другими отказами

3.10. Зависимый отказ
Secondary failure

Отказ, обусловленный другими отказами

3.11. Внезапный отказ
Sudden failure

Отказ, характеризующийся скачкообразным изменением значений одного или нескольких параметров объекта

3.12. Постепенный отказ
Gradual failure

Отказ, возникающий в результате постепенного изменения значений одного или нескольких параметров объекта

3.13. Сбой
Interruption

Самоустраняющийся отказ или однократный отказ, устраняемый незначительным вмешательством оператора

3.14. Перемежающийся отказ
Intermittent failure

Многократно возникающий самоустраняющийся отказ одного и того же характера

3.15. Явный отказ
Explicit failure

Отказ, обнаруживаемый визуально или штатными методами и средствами контроля и диагностирования при подготовке объекта к применению или в процессе его применения по назначению

3.16. Скрытый отказ
Latent failure

Отказ, не обнаруживаемый визуально или штатными методами и средствами контроля и диагностирования, но выявляемый при проведении технического обслуживания или специальными методами диагностики

3.17. Конструктивный отказ
Design failure

Отказ, возникший по причине, связанной с несовершенством или нарушением установленных правил и (или) норм проектирования и конструирования

3.18. Производственный отказ
Manufacturing failure

Отказ, возникший по причине, связанной с несовершенством или нарушением установленного процесса изготовления или ремонта, выполняемого на ремонтном предприятии

3.19. Эксплуатационный отказ
Misuse failure, mishandling failure

Отказ, возникший по причине, связанной с нарушением установленных правил и (или) условий эксплуатации

3.20. Деградационный отказ
Wear-out failure, ageing failure

Отказ, обусловленный естественными процессами старения, изнашивания, коррозии и усталости при соблюдении всех установленных правил и (или) норм проектирования, изготовления в эксплуатации

4. ВРЕМЕННЫЕ ПОНЯТИЯ

4.1. Наработка
Operating time

Продолжительность или объем работы объекта.

Примечание. Наработка может быть как непрерывной величиной (продолжительность работы в часах, километраж пробега и т.п.), так и целочисленной величиной (число рабочих циклов, запусков и т.п.).

4.2. Наработка до отказа
Operating time to failure

Наработка объекта от начала эксплуатации до возникновения первого отказа

4.3. Наработка между отказами
Operating time between failures

Наработка объекта от окончания восстановления его работоспособного состояния после отказа до возникновения следующего отказа

4.4. Время восстановления
Restoration time

Продолжительность восстановления работоспособного состояния объекта

Источник

Сохраняемость

Связанные понятия

Упоминания в литературе

Связанные понятия (продолжение)

Для концентрирования или очистки разбавленных (водных) растворов широко используются мембранные процессы, осуществляемые под действием перепада давления, или баромембранные процессы Баромембранные методы водоподготовки. Размер частиц или молекулы, а также химические свойства растворенного вещества определяют структуру мембраны, то есть размер пор, их распределение по размеру, которые необходимы для разделения данной смеси. Различные мембранные процессы можно классифицировать по размерам разделяемых.

Промышленный дисплей — жидкокристаллическая панель с активной матрицей, которая отличается от бытовых панелей повышенным требованиям к качеству, большей технической надежностью (в том числе приспособленностью к длительной непрерывной эксплуатации), и специальными условиями поставок. Так же иногда употребляют выражение «промышленная ЖК-матрица». Если для управления пикселями дисплея или матрицы используются тонкоплёночные транзисторы, то используются выражения «промышленный TFT-дисплей» или «промышленная.

Согласно Директивам Комиссии Евросоюза по энергетике и транспорту ЕС (92/75/CEE, 94/2/CE, 95/12/CE, 96/89/CE, 2003/66/CE, и другим) у большинства бытовых товаров, от лампочки до автомобилей, должен быть указан класс энергоэффективности ЕС — DIRECTIVE 2009/125/EC, диаграмма ясно показывающая энергоэффективные свойства товара. Эффективность использования энергии обозначается классами — от A до G.

Источник

Что такое сохраняемость изделия

НАДЕЖНОСТЬ В ТЕХНИКЕ

Термины и определения

Dependability in technics. Terms and definitions

Дата введения 2017-03-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-2015 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-2015 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Институт надежности машин и технологий» (ООО «ИНМиТ»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 119 «Надежность в технике» и ФГУП «Всероссийский научно-исследовательский институт по стандартизации и сертификации в машиностроении» (ВНИИНМАШ)

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 28 декабря 2015 г. N 83-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Минэкономики Республики Армения

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 21 июня 2016 г. N 654-ст межгосударственный стандарт ГОСТ 27.002-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 марта 2017 г.

ВНЕСЕНА поправка, опубликованная в ИУС N 1, 2021 год

Поправка внесена изготовителем базы данных

Введение

Установленные в настоящем стандарте термины расположены в систематизированном порядке, отражающем систему понятий в области надежности.

Для каждого понятия установлен один стандартизованный термин.

Заключенная в круглые скобки часть термина может быть опущена при использовании термина в документах по стандартизации.

В алфавитном указателе данные термины приведены отдельно с указанием номера статьи.

Помета, указывающая на область применения многозначного термина, приведена в круглых скобках светлым шрифтом после термина. Помета не является частью термина.

Приведенные определения можно, при необходимости, изменять, вводя в них производные признаки, раскрывая значения используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в настоящем стандарте.

В случаях, когда в термине содержатся все необходимые и достаточные признаки понятия, определение не приводится и вместо него ставится прочерк.

В стандарте приведены иноязычные эквиваленты стандартизованных терминов на английском (en) языке.

1 Область применения

Настоящий стандарт устанавливает основные понятия, термины и определения понятий в области надежности.

Термины, устанавливаемые настоящим стандартом, рекомендованы для применения во всех видах документации и литературы, входящих в сферу действия стандартизации или использующих результаты этой деятельности.

Настоящий стандарт применяется совместно с ГОСТ 18322.

Стандартизованные термины с определениями приведены в разделе 3. В настоящем стандарте в качестве справочных данных приведены эквиваленты стандартизованных терминов на английском языке, часть из которых заимствована из международного стандарта [1].

Положения настоящего стандарта рекомендованы к применению организациями Российской Федерации, других министерств и ведомств и иными расположенными на территории Российской Федерации предприятиями и организациями независимо от форм собственности и подчиненности, имеющими отношение к разработке, производству, эксплуатации и ремонту технических изделий, а также организациями стран Евразийского экономического союза, участвующими в разработке, согласовании и применении настоящего стандарта в соответствии с действующим законодательством.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт:

ГОСТ 18322-78 Система технического обслуживания и ремонта техники. Термины и определения.

3 Термины и определения

3.1 Основные понятия

3.1.1 (технический) объект: Предмет рассмотрения, на который распространяется терминология по надежности в технике

1 Объектом может быть сборочная единица, деталь, компонент, элемент, устройство, функциональная единица, оборудование, изделие, система, сооружение.

2 Объект может включать в себя аппаратные средства, программное обеспечение, персонал или их комбинации.

3 Термин «объект» может относиться к конкретному объекту и к одному из представителей группы однотипных объектов, в частности, к выбранному случайным образом элементу выборки, партии, серии, генеральной совокупности.

3.1.2 элемент: Объект, для которого в рамках данного рассмотрения не выделяются составные части

3.1.3 система: Объект, представляющий собой множество взаимосвязанных элементов, рассматриваемых в определенном контексте как единое целое и отделенных от окружающей среды

1 Система обычно определяется с точки зрения достижения определенной цели, например, выполнения требуемых функций.

2 Для системы должна быть установлена граница, отделяющая ее от окружающей среды и других систем. Однако на работу системы может влиять окружающая среда и для работы системы могут требоваться внешние ресурсы (лежащие вне границ системы).

3.1.4 подсистема: Часть системы, которая представляет собой систему

3.1.5 надежность: Свойство объекта сохранять во времени способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования

1 Слова «во времени» означают естественный ход времени, в течение которого имеет место применение, техническое обслуживание, хранение и транспортирование объекта, а не какой-либо конкретный интервал времени.

2 Надежность является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать в себя безотказность, ремонтопригодность, восстанавливаемость, долговечность, сохраняемость, готовность или определенные сочетания этих свойств.

4 Критерии выполнения требуемых функций могут быть установлены, например, заданием для каждой функции набора параметров, характеризующих способность ее выполнения, и допустимых пределов изменения значений этих параметров. В этом случае надежность можно определить, как свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих его способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования. Аналогичным образом в этом случае могут быть определены и термины 3.1.6, 3.1.7, 3.1.9-3.1.11.

3.1.6 безотказность: Свойство объекта непрерывно сохранять способность выполнять требуемые функции в течение некоторого времени или наработки в заданных режимах и условиях применения

3.1.7 ремонтопригодность: Свойство объекта, заключающееся в его приспособленности к поддержанию и восстановлению состояния, в котором объект способен выполнять требуемые функции, путем технического обслуживания и ремонта

3.1.8 восстанавливаемость: Свойство объекта, заключающееся в его способности восстанавливаться после отказа без ремонта

3.1.9 долговечность: Свойство объекта, заключающееся в его способности выполнять требуемые функции в заданных режимах и условиях использования, технического обслуживания и ремонта до достижения предельного состояния

3.1.10 сохраняемость: Свойство объекта сохранять способность к выполнению требуемых функций после хранения и (или) транспортирования при заданных сроках и условиях хранения и (или) транспортирования

Источник

ГОСТ 27.002—89

ТочностьВыборочно проверено

Утратил силу в РФ от 01.01.2011, Восстановлен на территории РФ 01.12.2012

Группа Т00

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НАДЕЖНОСТЬ В ТЕХНИКЕГОСТ 27.002—89
Основные понятия.
Термины и определения
Industrial product dependability. General concepts
Terms and definitions
Источник: http://www.complexdoc.ru/text/ГОСТ%2027.002-89/ сверка по http://lib.ololo.cc/gost/catalog.cgi?i=11290&l=Дата введения 1990-07-01

Настоящий стандарт устанавливает основные понятия, термины и определения понятий в области надежности.

Настоящий стандарт распространяется на технические объекты (далее — объекты).

Термины, устанавливаемые настоящим стандартом, обязательны для применения во всех видах документации и литературы, входящих в сферу действия стандартизации или использующих результаты этой деятельности.

Настоящий стандарт должен применяться совместно с ГОСТ 18322.

1. Стандартизованные термины с определениями приведены в табл. 1.

2. Для каждого понятия установлен один стандартизованный термин. Применение терминов-синонимов стандартизованного термина не допускается.

2.1. Для отдельных стандартизованных терминов в табл. 1 приведены в качестве справочных краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования. 2.2. Приведенные определения можно при необходимости изменять, вводя в них производные признаки, раскрывая значение используемых в них терминов, указывая объекты, входящие в объем определяемого понятия. Изменения не должны нарушать объем и содержание понятий, определенных в данном стандарте. 2.3. В случаях, когда в термине содержатся все необходимые и достаточные признаки понятия, определение не приведено и в графе «Определение» поставлен прочерк. 2.4. В табл. 1 в качестве справочных приведены эквиваленты стандартизованных терминов на английском языке.

4. Стандартизованные термины набраны полужирным шрифтом, их краткая форма — светлым.

5. В приложении даны пояснения к терминам, приведенным в настоящем стандарте.

Содержание

1. ОБЩИЕ ПОНЯТИЯ [ править ]

1.1. Надежность
Reliability, dependabilityСвойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.
Примечание. Надежность является комплексным свойством, которое в зависимости от назначения объекта и условий его применения может включать безотказность, долговечность, ремонтопригодность и сохраняемость или определенные сочетания этих свойств1.2. Безотказность
Reliability, failure-free operationСвойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки1.3. Долговечность
Durability, longevityСвойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта1.4. Ремонтопригодность
MaintainabilityСвойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта1.5. Сохраняемость
StorabilityСвойство объекта сохранять в заданных пределах значения параметров, характеризующих способности объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования

2. СОСТОЯНИЕ [ править ]

2.1. Исправное состояние Исправность
Good stateСостояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации2.2. Неисправное состояние Неисправность
Fault, faulty stateСостояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации2.3. Работоспособное состояние Работоспособность
Up stateСостояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации2.4. Неработоспособное состояние Неработоспособность
Down stateСостояние объекта, при котором значение хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации.
Примечание. Для сложных объектов возможно деление их неработоспособных состояний. При этом из множества неработоспособных состояний выделяют частично неработоспособные состояния, при которых объект способен частично выполнять требуемые функции2.5. Предельное состояние
Limiting stateСостояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно2.6. Критерий предельного состояния
Limiting state criterionПризнак или совокупность признаков предельного состояния объекта, установленные нормативно-технической и (или) конструкторской (проектной) документацией.
Примечание. В зависимости от условий эксплуатации для одного и того же объекта могут быть установлены два и более критериев предельного состояния

3. ДЕФЕКТЫ, ПОВРЕЖДЕНИЯ, ОТКАЗЫ [ править ]

3.1. Дефект
DefectПо ГОСТ 15467:
«Каждое отдельное несоответствие продукции установленным требованиям»3.2. Повреждение
DamageСобытие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния3.3. Отказ
FailureСобытие, заключающееся в нарушении работоспособного состояния объекта3.4. Критерий отказа
Failure criterionПризнак или совокупность признаков нарушения работоспособного состояния объекта, установленные в нормативно-технической и (или) конструкторской (проектной) документации3.5. Причина отказа
Failure causeЯвления, процессы, события и состояния, вызвавшие возникновение отказа объекта3.6. Последствия отказа
Failure effectЯвления, процессы, события и состояния, обусловленные возникновением отказа объекта3.7. Критичность отказа
Failure criticalityСовокупность признаков, характеризующих последствия отказа.
‘Примечание. Классификация отказов по критичности (например по уровню прямых и косвенных потерь, связанных с наступлением отказа, или по трудоемкости восстановления после отказа) устанавливается нормативно-технической и (или) конструкторской (проектной) документацией по согласованию с заказчиком на основании технико-экономических соображений и соображений безопасности3.8. Ресурсный отказ
Marginal failureОтказ, в результате которого объект достигает предельного состояния3.9. Независимый отказ
Primary failureОтказ, не обусловленный другими отказами3.10. Зависимый отказ
Secondary failureОтказ, обусловленный другими отказами3.11. Внезапный отказ
Sudden failureОтказ, характеризующийся скачкообразным изменением значений одного или нескольких параметров объекта3.12. Постепенный отказ
Gradual failureОтказ, возникающий в результате постепенного изменения значений одного или нескольких параметров объекта3.13. Сбой
InterruptionСамоустраняющийся отказ или однократный отказ, устраняемый незначительным вмешательством оператора3.14. Перемежающийся отказ
Intermittent failureМногократно возникающий самоустраняющийся отказ одного и того же характера3.15. Явный отказ
Explicit failureОтказ, обнаруживаемый визуально ила штатными методами и средствами контроля и диагностирования при подготовке объекта к применению или в процессе его применения по назначению3.16. Скрытый отказ
Latent failureОтказ, не обнаруживаемый визуально или штатными методами и средствами контроля и диагностирования, но выявляемый при проведении технического обслуживания или специальными методами диагностики3.17. Конструктивный отказ
Design failureОтказ, возникший по причине, связанной с несовершенством или нарушением установленных правил и (или) норм проектирования и конструирования3.18. Производственный отказ
Manufacturing failureОтказ, возникший по причине, связанной с несовершенством или нарушением установленного процесса изготовления или ремонта, выполняемого на ремонтном предприятии3.19. Эксплуатационный отказ
Misuse failure, mishandling failureОтказ, возникший по причине, связанной с нарушением установленных правил и (или) условий эксплуатации3.20. Деградационный отказ
Wear-out failure, ageing failureОтказ, обусловленный естественными процессами старения, изнашивания, коррозии и усталости при соблюдении всех установленных правил и (или) норм проектирования, изготовления в эксплуатации

4. ВРЕМЕННЫЕ ПОНЯТИЯ [ править ]

4.1. Наработка
Operating timeПродолжительность или объем работы объекта.
Примечание. Наработка может быть как непрерывной величиной (продолжительность работы в часах, километраж пробега и т. п.), так и целочисленной величиной (число рабочих циклов, запусков и т. п.).4.2. Наработка до отказа
Operating time to failureНаработка объекта от начала эксплуатации до возникновения первого отказа4.3. Наработка между отказами
Operating time between failuresНаработка объекта от окончания восстановления его работоспособного состояния после отказа до возникновения следующего отказа4.4. Время восстановления
Restoration timeПродолжительность восстановления работоспособного состояния объекта4.5. Ресурс
Useful life, lifeСуммарная наработка объекта от начала его эксплуатации или ее возобновления после ремонта до перехода в предельное состояние4.6. Срок службы
Useful lifetime, lifetimeКалендарная продолжительность эксплуатации от начала эксплуатации объекта или ее возобновления после ремонта до перехода в предельное состояние4.7. Срок сохраняемости
Storability time, shelf lifeКалендарная продолжительность хранения и (или) транспортирования объекта, в течение которой сохраняются в заданных пределах значения параметров, характеризующих способность объекта выполнять заданные функции.
Примечание. По истечении срока сохраняемости объект должен соответствовать требованиям безотказности, долговечности и ремонтопригодности, установленным нормативно-технической документацией на объект4.8. Остаточный ресурс
Residual lifeСуммарная наработка объекта от момента контроля его технического состояния до перехода в предельное состояние.
Примечание. Аналогично вводятся понятия остаточной наработки до отказа, остаточного срока службы и остаточного срока хранения4.9. Назначенный ресурс
Assigned operating timeСуммарная наработка, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния4.10. Назначенный срок службы
Assigned lifetimeКалендарная продолжительность эксплуатации, при достижении которой эксплуатация объекта должна быть прекращена независимо от его технического состояния4.11. Назначенный срок хранения
Assigned storage timeКалендарная продолжительность хранения, при достижении которой хранение объекта должно быть прекращено независимо от его технического состояния.

Примечание к терминам 4.9.–4.11. По истечении назначенного ресурса (срока службы, срока хранения) объект должен быть изъят из эксплуатации и должно быть принято решение, предусмотренное соответствующей нормативно-технической документацией — направление в ремонт, списание, уничтожение, проверка и установление нового назначенного срока и т. д.

5. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ И РЕМОНТ [ править ]

«Комплекс операций или операция по поддержанию работоспособности или исправности изделия при использовании по назначению, ожидании, хранении и транспортировании»

5.2. Восстановление
Restoration, recoveryПроцесс перевода объекта в работоспособное состояние из неработоспособного состояния5.3. Ремонт
RepairПо ГОСТ 18322:
«Комплекс операций по восстановлению исправности или работоспособности изделий и восстановлению ресурсов изделий или их составных частей»5.4. Обслуживаемый объект
Maintainable itemОбъект, для которого проведение технического обслуживания предусмотрело нормативно-технической документацией и (или) конструкторской (проектной) документацией5.5 Необслуживаемый объект
Nonmaintainable itemОбъект, для которого проведение технического обслуживания не предусмотрено нормативно-технической и (или) конструкторской (проектной) документацией5.6. Восстанавливаемый объект
Restorable itemОбъект, для которого в рассматриваемой ситуации проведение восстановления работоспособного состояния предусмотрено в нормативно-технической и (или) конструкторской (проектной) документации5.7. Невосстанавливаемый объект
Nonrestorable itemОбъект, для которого в рассматриваемой ситуации проведение восстановления работоспособного состояния не предусмотрено в нормативно-технической и (или) конструкторской (проектной) документации5.8. Ремонтируемый объект
Repairable itemОбъект, ремонт которого возможен и предусмотрен нормативно-технической, ремонтной и (или) конструкторской (проектной) документацией5.9. Неремонтируемый объект
Nonrepairable itemОбъект, ремонт которого не возможен или не предусмотрен нормативно-технической, ремонтной и (или) конструкторской (проектной) документацией

6. ПОКАЗАТЕЛИ НАДЕЖНОСТИ [ править ]

6.1. Показатель надежности’
Reliability measureКоличественная характеристика одного или нескольких свойств, составляющих надежность объекта6.2. Единичный показатель надежности’
Simple reliability measureПоказатель надежности, характеризующий одно из свойств, составляющих надежность объекта6.3. Комплексный показатель надежности’
Integrated reliability measureПоказатель надежности, характеризующий несколько свойств, составляющих надежность объекта6.4. Расчетный показатель надежности’
Predicted reliability measureПоказатель надежности, значения которого определяются расчетным методом6.5. Экспериментальный показатель надежности’
Assessed reliability measureПоказатель надежности, точечная или интервальная оценка которого определяется по данным испытаний6.6. Эксплуатационный показатель надежности’
Observed reliability measureПоказатель надежности, точечная или интервальная оценка которого определяется по данным эксплуатации6.7. Экстраполированный показатель надежности’
Extrapolated reliability measureПоказатель надежности, точечная или интервальная оценка которого определяется на основании результатов расчетов, испытаний и (или) эксплуатационных данных путем экстраполирования на другую продолжительность эксплуатации и другие условия эксплуатации

ПОКАЗАТЕЛИ БЕЗОТКАЗНОСТИ [ править ]

ПОКАЗАТЕЛИ ДОЛГОВЕЧНОСТИ [ править ]

Примечание к терминам 6.15–6.18. При использовании показателей долговечности следует указывать начало отсчета и вид действий после наступления предельного состояния (например гамма-процентный ресурс от второго капитального ремонта до списания). Показатели долговечности, отсчитываемые от ввода объекта в эксплуатацию до окончательного снятия с эксплуатации, называются гамма-процентный полный ресурс (срок службы), средний полный ресурс (срок службы)

ПОКАЗАТЕЛИ РЕМОНТОПРИГОДНОСТИ [ править ]

ПОКАЗАТЕЛИ СОХРАНЯЕМОСТИ [ править ]

КОМПЛЕКСНЫЕ ПОКАЗАТЕЛИ НАДЕЖНОСТИ [ править ]

6.26. Коэффициент готовности
(Instantaneous) availability functionВероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается6.27. Коэффициент оперативной готовности
Operational availability functionВероятность того, что объект окажется в работоспособном состоянии в произвольный момент времени, кроме планируемых периодов, в течение которых применение объекта по назначению не предусматривается, и, начиная с этого момента, будет работать безотказно в течение заданного интервала времени6.28. Коэффициент технического использования
Steady state availability factorОтношение математического ожидания суммарного времени пребывания объекта в работоспособном состоянии за некоторый период эксплуатации к математическому ожиданию суммарного времени пребывания объекта в работоспособном состоянии и простоев, обусловленных техническим обслуживанием и ремонтом за тот же период6.29. Коэффициент сохранения эффективности
Efficiency ratioОтношение значения показателя эффективности использования объекта по назначению за определенную продолжительность эксплуатации к номинальному значению этого показателя, вычисленному при условии, что отказы объекта в течение того же периода не возникают

7. РЕЗЕРВИРОВАНИЕ [ править ]

7.1. Резервирование
RedundancyСпособ обеспечения надежности объекта за счет использования дополнительных средств и (или) возможностей, избыточных по отношению к минимально необходимым для выполнения требуемых функции7.2. Резерв
ReserveСовокупность дополнительных средств и (или) возможностей, используемых для резервирования7.3. Основной элемент
Major elementЭлемент объекта, необходимый для выполнения требуемых функций без использования резерва7.4. Резервируемый элемент
Element under redundancyОсновной элемент, на случай отказа которого в объекте предусмотрены одни или несколько резервных элементов7.5. Резервный элемент
Redundant elementЭлемент, предназначенный для выполнения функции основного элемента в случае отказа последнего7.6. Кратность резерва
Redundancy ratioОтношение числа резервных элементов к числу резервируемых ими элементов, выраженное несокращенной дробью7.7. Дублирование
DuplicationРезервирование с кратностью резерва один к одному7.8. Нагруженный резерв
Active reserve, loaded reserveРезерв, который содержит один или несколько резервных элементов, находящихся в режиме основного элемента7.9. Облегченный резерв
Reduced reserveРезерв, который содержит один пли несколько резервных элементов, находящихся в менее нагруженном режиме, чем основной элемент7.10. Ненагруженный резерв
Standby reserve, unloaded reserveРезерв, который содержит один или несколько резервных элементов, находящихся в ненагруженном режиме до начала выполнения ими функции основного элемента7.11. Общее резервирование
Whole system redundancyРезервирование, при котором резервируется объект в целом7.12. Раздельное резервирование
Segregated redundancyРезервирование, при котором резервируются отдельные элементы объекта или их группы7.13. Постоянное резервирование
Continuous redundancyРезервирование, при котором используется нагруженный резерв и при отказе любого элемента в резервированной группе выполнение объектом требуемых функций обеспечивается оставшимися элементами без переключений7.14. Резервирование замещением
Standby redundancyРезервирование, при котором функции основного элемента передаются резервному только после отказа основного элемента7.15. Скользящее резервирование
Sliding redundancyРезервирование замещением, при котором группа основных элементов резервируется одним или несколькими резервными элементами, каждый аз которых может заменить любой из отказавших элементов данной группы7.16. Смешанное резервирование
Combined redundancyСочетание различных видов резервирования в одном и том же объекте7.17. Резервирование с восстановлением
Redundancy with restorationРезервирование, при котором восстановление отказавших основных и (или) резервных элементов технически возможно без нарушения работоспособности объекта в целом и предусмотрено эксплуатационной документацией7.18. Резервирование без восстановления
Redundancy without restorationРезервирование, при котором восстановление отказавших основных и (или) резервных элементов технически невозможно без нарушения работоспособности объекта в целом и (или) не предусмотрено эксплуатационной документацией7.19. Вероятность успешного перехода на резерв
Probability of successful redundancyВероятность того, что переход на резерв произойдет без отказа объекта, т. е. произойдет за время, не превышающее допустимого значения перерыва в функционировании и (или) без снижения качества функционирования

8. НОРМИРОВАНИЕ НАДЕЖНОСТИ [ править ]

8.1. Нормирование надежности
Reliability specificationУстановление в нормативно-технической документации и (или) конструкторской (проектной) документации количественных и качественных требований к надежности
Примечание. Нормирование надежности включает выбор номенклатуры нормируемых показателей надежности; технико-экономическое обоснование значений показателей надежности объекта и его составных частей; задание требований к точности и достоверности исходных данных; формулирование критериев отказов, повреждений и предельных состояний; задание требований к методам контроля надежности на всех этапах жизненного цикла объекта8.2. Нормируемый показатель надежности
Specified reliability measureПоказатель надежности, значение которого регламентировано нормативно-технической и (или) конструкторской (проектной) документацией на объект.
Примечание. В качестве нормируемых показателей надежности могут быть использованы один или несколько показателей, включенных а настоящий стандарт, в зависимости от назначения объекта, степени его ответственности, условий эксплуатации, последствий возможных отказов, ограничений на затраты, а также от соотношения затрат на обеспечение надежности объекта и затрат на его техническое обслужившие и ремонт. По согласованию между заказчиком и разработчиком (изготовителем) допускается нормировать показатели надежности, не включенные в настоящий стандарт, которые не противоречат определениям показателей настоящего стандарта. Значения нормируемых показателей надежности учитывают, в частности, при назначении цены объекта, гарантийного срока и гарантийной наработки

9. ОБЕСПЕЧЕНИЕ, ОПРЕДЕЛЕНИЕ И КОНТРОЛЬ НАДЕЖНОСТИ [ править ]

9.1. Программа обеспечения надежности
Reliability support programmeДокумент, устанавливающий комплекс взаимосвязанных организационно-технических требований и мероприятий, подлежащих проведению на определенных стадиях жизненного цикла объекта и направленных на обеспечение заданных требований к надежности и (или) на повышение надежности9.2. Определение надежности
Reliability assessmentОпределение численных значений показателей надежности объекта9.3. Контроль надежности
Reliability verificationПроверка соответствия объекта заданным требованиям к надежности9.4. Расчетный метод определения надежности
Analytical reliability assessmentМетод, основанный на вычислении показателей надежности по справочным данным о надежности компонентов и комплектующих элементов объекта, по данным о надежности объекта, по данным о свойствах материалов и другой информации, имеющейся к моменту оценки надежности9.5. Расчетно-экспериментальный метод определения надежности
Analytical-experimental reliability assessmentМетод, при котором показатели надежности всех или некоторых составных частей объектов определяют по результатам испытаний и (или) эксплуатации, а показатели надежности объекта в целом рассчитывают по математической модели9.6. Экспериментальный метод определения надежности
Experimental reliability assessmentМетод, основанный на статистической обработке данных, получаемых при испытаниях или эксплуатации объекта в целом
Примечание к терминам 9.4-9.6. Аналогично определяют соответствующие методы контроля надежности

10. ИСПЫТАНИЯ НА НАДЕЖНОСТЬ [ править ]

10.1. Испытания на надежность
Reliability testПо ГОСТ 16504:
«Испытания, проводимые для определения показателей надежности в заданных условиях»
Примечание. В зависимости от исследуемого свойства различают испытания на безотказность, ремонтопригодность, сохраняемость и долговечность (ресурсные испытания)10.2. Определительные испытания на надежность
Determination testИспытания, проводимые для определения показателей надежности с заданными точностью и достоверностью10.3. Контрольные испытания на надежность
Compliance testИспытания, проводимые для контроля показателей надежности10.4. Лабораторные испытания на надежность
Laboratory testИспытания, проводимые в лабораторных или в заводских условиях10.5. Эксплуатационные испытания на надежность
Field testИспытания, проводимые в условиях эксплуатации объекта10.6. Нормальные испытания на надежность
Normal testЛабораторные (стендовый) испытания, методы и условия проведения которых максимально приближены к эксплуатационным для объекта10.7. Ускоренные испытания на надежность
Accelerated testЛабораторные (стендовые) испытания, методы и условия проведения которых обеспечивают получение информации о надежности в более короткий срок, чем при нормальных испытаниях10.8. План испытаний на надежность
Reliability test programmeСовокупность правил, устанавливающих объем выборки, порядок проведения испытаний, критерии их завершения и принятии решений по результатам испытаний10.9. Объем испытаний на надежность
Scope of reliabilityХарактеристика плана испытаний на надежность, включающая число испытываемых образцов, суммарную продолжительность испытаний в единицах наработки и числа серий испытаний

ПРИЛОЖЕНИЕ (Справочное) [ править ]

ПОЯСНЕНИЯ К ТЕРМИНАМ, ПРИВЕДЕННЫМ В СТАНДАРТЕ [ править ]

Терминология по надежности в технике распространяется на любые технические объекты — изделия, сооружения и системы, а также их подсистемы, рассматриваемые с точки зрения надежности на этапах проектирования, производства, испытании, эксплуатации и ремонта. В качестве подсистем могут рассматриваться сборочные единицы, детали, компоненты или элементы. При необходимости в понятие «объект» могут быть включены информация и ее носители, а также человеческий фактор (например при рассмотрении надежности системы «машина-оператор»). Понятие «эксплуатация» включает в себя, помимо применения по назначению, техническое обслуживание, ремонт, хранение и транспортирование.

Термин «объект» может относиться к конкретному объекту, и к одному из представителей, в частности, к наугад выбранному представителю из серии, партии или статистической выборки однотипных объектов. На стадии разработки термин «объект» применяется к наугад выбранному представителю из генеральной совокупности объектов.

Границ понятия «надежность» не изменяет следующее определение: надежность — свойство объекта сохранять во времени способность к выполнению требуемых функций в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования.

Это определение применяют тогда, когда параметрическое описание нецелесообразно (например для простейших объектов, работоспособность которых, характеризуется по типу «да—нет») или невозможно (например для систем «машина—оператор», т. е. таких систем, не все свойства которых могут быть характеризованы количественно).

К параметрам, характеризующим способность выполнять требуемые функции, относят кинематические и динамические параметры, показатели конструкционной прочности, показатели точности функционирования, производительности, скорости и т. п. С течением времени значения этих параметров могут изменяться.

Надежность — комплексное свойство, состоящее в общем случае из безотказности, долговечности, ремонтопригодности и сохраняемости. Например для неремонтируемых объектов основным свойством может являться безотказность. Для ремонтируемых объектов одним из важнейших свойств, составляющих понятие надежности, может быть ремонтопригодность.

Для объектов, которые являются потенциальным источником опасности, важными понятиями являются «безопасность» и «живучесть». Безопасность — свойство объекта при изготовлении и эксплуатации и в случае нарушения работоспособного состояния не создавать угрозу для жизни и здоровья людей, а также для окружающей среды. Хотя безопасность не входит в общее понятие надежности, однако при определенных условиях тесно связана с этим понятием, например, если отказы могут привести к условиям, вредным для людей и окружающей среды сверх предельно допустимых норм.

Понятие «живучесть» занимает пограничное место между понятиями «надежность» и «безопасность». Под живучестью понимают свойство объекта, состоящее в его способности противостоять развитию критических отказов из дефектов и повреждений при установленной системе технического обслуживания и ремонта, или свойство объекта сохранять ограниченную работоспособность при воздействиях, не предусмотренных условиями эксплуатации, или свойство объекта сохранять ограниченную работоспособность при наличии дефектов или повреждений определенного вида, а также при отказе некоторых компонентов. Примером служит сохранение несущей способности элементами конструкции при возникновении в них усталостных трещин, размеры которых не превышают заданных значений.

Термин «живучесть» соответствует международному термину fail-safe concept [6]. Для характеристики отказоустойчивости по отношению к человеческим ошибкам в последнее время начали употреблять термин fool-proof concept. В международных документах ИСО, МЭК и ЕОКК 4 сочетание свойств безотказности и ремонтопригодности с учетом системы технического обслуживания и ремонта называют готовностью объекта (availability).

К термину «Безотказность» (п. 1.2)

Безотказность в той или иной степени свойственна объекту в любом из возможных режимов его существования. В основном безотказность рассматривается применительно к его использованию по назначению, но во многих случаях необходима оценка безотказности при хранении и транспортировании объекта.

Необходимо подчеркнуть, что показатели безотказности (пп. 6.8-6.14) вводятся либо по отношению ко всем возможным отказам объекта, либо по отношению к какому-либо одному типу (типам) отказа с указанием на критерии отказа (отказов).

К термину «Долговечность» (п. 1.3)

Объект может перейти в предельное состояние, оставаясь работоспособным, если, например, его дальнейшее применение по назначению станет недопустимым по требованиям безопасности, экономичности и эффективности.

К термину «Ремонтопригодность» (п. 1.4)

Термин «ремонтопригодность» традиционно трактуется в широком смысле. Этот термин эквивалентен международному термину «приспособленность к поддержанию работоспособного состояния» или, короче, «поддерживаемость» (maintainability). Помимо ремонтопригодности в узком смысле это понятие включает в себя «обслуживаемость», т. е. приспособленность объекта к техническому обслуживанию, «контролепригодность» и приспособленность к предупреждению и обнаружению отказов и повреждений, а также причин их вызывающих. Более общее понятие «поддерживаемость», «эксплуатационная технологичность» (maintenance support, supportability) включает в себя ряд технико-экономических и организационных факторов, например качество подготовки обслуживающего персонала.

Допускается дополнительно к термину «ремонтопригодность» (в узком смысле) применять термины «обслуживаемость», «контролепригодность», «приспособленность к диагностированию», «эксплуатационная технологичность» и др.

К терминам «Сохраняемость» и «Срок сохраняемости» (пп. 1.5; 4.7)

В процессе хранения и транспортирования объекты подвергаются неблагоприятным воздействиям, например колебаниям температуры, действию влажного воздуха, вибрациям и т. п. В результате после хранения и (или) транспортирования объект может оказаться в неработоспособном и даже в предельном состоянии. Сохраняемость объекта характеризуется его способностью противостоять отрицательному влиянию условий и продолжительности его хранения и транспортирования.

В зависимости от условий и режимов применения объекта требования сохраняемости ставят по-разному. Для некоторых классов объектов может быть поставлено требование, чтобы после хранения объект находился в таком же состоянии, что и к моменту начала хранения. В этом случае объект будет удовлетворять требованиям безотказности, долговечности и ремонтопригодности, предъявляемым к объекту к моменту начала хранения. В реальных условиях происходит ухудшение параметров, характеризующих работоспособность объекта, а также снижается его остаточный ресурс. В одних случаях достаточно потребовать, чтобы после хранения и (или) транспортирования объект оставался в работоспособном состоянии. В большинстве других случаев требуется, чтобы объект сохранял достаточный запас работоспособности, т. е. обладал достаточном безотказностью после хранении и (или) транспортирования. В тех случаях, когда предусмотрена специальная подготовка объекта к применению по назначению после хранения и (или) транспортирования, требование о сохранении работоспособности заменяется требованием, чтобы технические параметры объекта, определяющие его безотказность и долговечность, сохранялись в заданных пределах. Очевидно, что все эти случаи охватываются приведенным в стандарта определением понятия сохраняемости.

Требования к показателям безотказности, долговечности и ремонтопригодности для объекта, подвергнутого длительному хранению, должны указываться в техническом задании и в отдельных случаях могут быть снижены относительно уровня требований на новый объект, не находившийся на хранении.

Следует различать сохраняемость объекта до ввода в эксплуатацию и сохраняемость объекта в период эксплуатации (при перерывах в работе). Во втором случае срок сохраняемости входит составной частью в срок службы.

В зависимости от особенностей и назначения объектов срок сохраняемости до ввода объекта в эксплуатацию может включать в себя срок сохраняемости в упаковке и (или) законсервированном виде, срок монтажа и (или) срок хранения на другом упакованном и (или) законсервированном более сложном объекте.

К терминам «Исправное состояние», «Неисправное состояние», «Работоспособное состояние», «Неработоспособное состояние» (пп. 2.1; 2.2; 2.3; 2.4)

Данные понятия охватывают основные технические состояния объекта. Каждое из них характеризуется совокупностью значений параметров, описывающих состояние объекта, а также качественных признаков, для которых не применяют количественные оценки. Номенклатуру этих параметров и признаков, а также пределы допустимых их изменений устанавливают в нормативно-технической и (или) конструкторской (проектной) документации.

Работоспособный объект в отличие от исправного должен удовлетворять лишь тем требованиям нормативно-технической и (или) конструкторской (проектной) документации, выполнение которых обеспечивает нормальное применение объекта по назначению. Работоспособный объект может быть неисправным, например, если он не удовлетворяет эстетическим требованиям, причем ухудшение внешнего вида объекта не препятствует его применению по назначению.

Для сложных объектов возможны частично неработоспособные состояния, при которых объект способен выполнять требуемые функции с пониженными показателями или способен выполнять лишь часть требуемых функций.

Для некоторых объектов признаками неработоспособного состояния, кроме того, могут быть отклонения показателей качества изготавливаемой ими продукции. Например для некоторых технологических систем к неработоспособному состоянию может быть отнесено такое, при котором значение хотя бы одного параметра качества изготавливаемой продукции не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) и технологической документации.

Переход объекта из одного состояния в другое обычно происходит вследствие повреждения или отказа. Переход объекта из исправного состояния в неисправное работоспособное состояние происходит из-за повреждений.

В международных документах ИСО, МЭК и ЕОКК [5, 6] введена более детальная классификация состояний. Так, в работоспособном состоянии различают «рабочее состояние» (operating state) и «нерабочее состояние (non-Operating state), при котором объект не применяется по назначению. «Нерабочее состояние» подразделяют в свою очередь, на состояние дежурства (standby state) и состояние планового простоя (idle, free state). Кроме того, различают «внутренне» неработоспособное состояние (internal disabled state), обусловленное отказом или незавершенностью планового технического обслуживания (ремонта), и внешне неработоспособное состояние (external disabled state), обусловленное организационными причинами. В отраслевой документации допускается использование более детальной классификации состояний, не противоречащей приведенной в настоящем стандарте.

К терминам «Предельное состояние» и «Критерий предельного состояния» (пп. 2.5, 2.6)

Переход объекта в предельное состояние влечет за собой временное или окончательное прекращение эксплуатации объекта. При достижении предельного состояния объект должен быть снят с эксплуатации, направлен в средний или капитальный ремонт, списан, уничтожен или передан для применения не по назначению. Если критерий предельного состояния установлен из соображений безопасности хранения и (или) транспортирования объекта, то при наступлении предельного состояния хранение и (или) транспортирование объекта должно быть прекращено. В других случаях при наступлении предельного состояния должно быть прекращено применение объекта по назначению.

Для неремонтируемых объектов имеет место предельное состояние двух видов. Первый вид совпадает с неработоспособным состоянием. Второй вид предельного состояния обусловлен тем обстоятельством, что начиная с некоторого момента времени дальнейшая эксплуатация еще работоспособного объекта оказывается недопустимой в связи с опасностью или вредностью эксплуатации. Переход неремонтируемого объекта в предельное состояние второго вида происходит до потери объектом работоспособности.

Для ремонтируемых объектов выделяют два или более видов предельных состояний. Например для двух видов предельных состояний требуется отправка объекта в средний или капитальный ремонт, т. е. временное прекращение применения объекта по назначению. Третий вид предельного состояния предполагает, окончательное прекращение применения объекта по назначению. Критерии предельного состояния каждого вида устанавливаются нормативно-технической и (или) конструкторской (проектной) и (или) эксплуатационной документацией.

К терминам «Отказ», «Критерий отказа» (пп. 3.3, 3.4)

Если работоспособность объекта характеризуют совокупностью значений некоторых технических параметров, то признаком возникновения отказа является выход значении любого из этих параметров за пределы допусков. Кроме того в критерии отказов могут входить также качественные признаки, указывающие на нарушение нормальной работы объекта.

Критерии отказов следует отличать от критериев повреждений. Под критериями повреждений понимают признаки или совокупность признаков неисправного, но работоспособного состояния объекта.

К термину «Критичность отказа» (п. 3.7)

Понятие критичности отказа введено для того, чтобы проводить классификацию отказов по их последствиям. Подобная классификация содержится в международных документах ИСО, МЭК и ЕОКК, а также в некоторых отраслевых отечественных документах, например в нормативно-технической документации на объекты сельскохозяйственного машиностроения. Критерием для классификации могут служить прямые и косвенные потери, вызванные отказами, затраты труда и времени на устранение последствий отказов, возможность и целесообразность ремонта силами потребителя или необходимость ремонта изготовителем или третьей стороной, продолжительность простоев из-за возникновения отказов, степень снижения производительности при отказе, приводящем к частично неработоспособному состоянию и т. п. Классификация отказов по последствиям устанавливается по согласованию между заказчиком и разработчиком (изготовителем). Для простых объектов эта классификация не используется.

При классификации отказов по последствиям могут быть введены две, три и большее число категорий отказов. В международных документах ИСО, МЭК, ЕОКК различают критические (critical) и некритические (non-critical). Последние подразделяют на существенные (major) и несущественные (miner) отказы. Границы между категориями отказов достаточно условны.

Отказ одного и того же объекта может трактоваться как критический; существенный или несущественный в зависимости от того, рассматривается объект как таковой или он является составной частью другого объекта. Несущественный отказ объекта, входящего в состав более ответственного объекта, может рассматриваться как существенный и даже критический в зависимости от последствий отказа сложного объекта. Для проведения классификации отказов по последствиям необходим анализ критериев, причин и последствий отказов и построение логической и функциональной связи между отказами.

Классификация отказов по последствиям необходима при нормировании надежности (в частности, для обоснованного выбора номенклатуры и численных значений нормируемых показателей надежности), а также при установлении гарантийных обязательств.

К терминам «Внезапный отказ» и «Постепенный отказ» (пп. 3.11, 3.12)

Эти термины позволяют разделять отказы на две категории в зависимости от возможности прогнозировать момент наступления отказа. В отличие от внезапного отказа, наступлению постепенного отказа предшествует непрерывное и монотонное изменение одного или нескольких параметров, характеризующих способность объекта выполнять заданные функции. Ввиду этого удается предупредить наступление отказа и (или) принять меры по устранению (локализации) его нежелательных последствий.

Четкой границы между внезапными и постепенными отказами однако, провести не удается. Механические, физические и химические процессы, которые составляют причины отказов, как правило, протекают во времени достаточно медленно. Так, усталостная трещина в стенке трубопровода или сосуда давления, зародившаяся из трещинообразного дефекта, медленно растет в процессе эксплуатации; этот рост в принципе может быть прослежен средствами неразрушающего контроля. Однако собственно отказ (наступление течи) происходит внезапно. Если по каким-либо причинам своевременное обнаружение несквозной трещины оказалось невозможным, то отказ придется признать внезапным.

По мере совершенствования расчетных методов и средств контрольно измерительной техники, позволяющих своевременно обнаруживать источники возможных отказов и прогнозировать их развитие во времени, все большее число отказов будет относиться к категории постепенных.

В документе [6] дано следующее определение внезапного отказа: это отказ, наступление которого не может быть предсказано предварительным контролем или диагностированием.

К термину «Сбой» (п. 3.13)

Отличительным признаком сбоя является то, что восстановление работоспособного состояния объекта может быть обеспечено без ремонта, например, путем воздействия оператора на органы управления, устранением обрыва нити, магнитной ленты и т. п., коррекцией положения заготовки.

Характерным примером сбоя служит остановка ЭВМ, устраняемая повторным пуском программы с места останова или ее перезапуском сначала.

К терминам «Конструктивный отказ», «Производственный отказ», «Эксплуатационный отказ» (пп. 3.17, 3.18, 3.19)

Классификация отказов по причинам возникновения введена с целью установления, на какой стадии создания или существования объекта следует провести мероприятия для устранения причин отказов.

Допускается выделить отказы комплектующих изделий, изготовляемых не на том предприятии, где производится объект в целом. Отказы комплектующих элементов также могут быть конструктивными, производственными и эксплуатационными. Классификация не является исчерпывающей, поскольку возможно возникновение отказов, вызванных двумя или тремя причинами.

К термину «Деградационный отказ» (п. 3.20)

При анализе надежности различают ранние отказы, когда проявляется влияние дефектов, не обнаруженных в процессе изготовления, испытаний и (или) приемочного контроля, и поздние, деградационные отказы. Последние происходят на заключительной стадии эксплуатации объекта, когда вследствие естественных процессов старения, изнашивания и т. п. объект или его составные части приближаются к предельному состоянию по условиям физического износа. Вероятность возникновения деградационных отказов в пределах планируемого полного или межремонтного срока службы (ресурса) должна быть достаточно мала. Это обеспечивается расчетом на долговечность с учетом физической природы деградационных отказов, а также надлежащей системой технического обслуживания и ремонта.

В принципе можно практически исключить возникновение ранних отказов, если до передачи объекта в эксплуатацию провести приработку, обкатку, технологический прогон и т. п. При этом соответственно может варьироваться цена объекта.

К термину «Наработка» (п. 4.1)

Наработку объекта, работающего непрерывно можно измерять в единицах календарного времени. Если объект работает с перерывами, то различают непрерывную и суммарную наработку. В этом случае наработку также можно измерять в единицах времени. Для многих объектов физическое изнашивание связано не только с календарной продолжительностью эксплуатации, но с объемом работы объекта, и поэтому зависит от интенсивности применения объекта по назначению. Для таких объектов наработку обычно выражают через объем произведенной работы или число рабочих циклов.

Если трактовать понятие «время» в обобщенном смысле — как параметр, служащий для описания последовательности событий и смены состояний, то принципиальная разница между наработкой и временем отсутствует даже в том случае, когда наработка является целочисленной величиной (например календарное время тоже отсчитывают в днях, месяцах и т. п.). Поэтому наработка и родственные ей величины (ресурс, остаточный ресурс) отнесены к категории временных понятий.

В международных документах [5, 6] введена детальная классификация временных понятий, относящихся к наработке: требуемая наработка (required time), продолжительность планового простоя (non-required time), продолжительность планового простоя работоспособного объекта (idle time) и т. д.

К терминам «Наработка до отказа», «Наработка между отказами», «Время восстановления», «Ресурс», «Срок службы», «Срок сохраняемости», «Остаточный ресурс» (п. 4.2-4.8)

Перечисленные понятия относятся к конкретно взятому индивидуальному объекту. Имеется важное различие между величинами, определяемыми этими понятиями, и большинством величин, характеризующих механические, физические и другие свойства индивидуального объекта. Например, геометрические размеры, масса, температура, скорость и т. д. могут быть измерены непосредственно (в принципе — в любой момент времени существования объекта). Наработка индивидуального объекта до первого отказа, его наработка между отказами, ресурс и т. п. могут быть определены лишь после того, как наступил отказ или было достигнуто предельное состояние. Пока эти события не наступили, можно говорить лишь о прогнозировании этих величин с большей или меньшей достоверностью.

Ситуация осложнена из-за того, что безотказная наработка, ресурс, срок службы и срок сохраняемости зависят от большого числа факторов, часть которых не может быть проконтролирована, а остальные заданы с той или иной степенью неопределенности. Безотказная работа конкретно взятого индивидуального объекта зависит от качества сырья, материалов, заготовок и полуфабрикатов, от достигнутого уровня технологии и степени стабильности технологического процесса, от уровня технологической дисциплины, от выполнения всех требований по хранению, транспортированию и применению объекта по назначению. Многие объекты включают в себя комплектующие изделия, детали и элементы, поставленные другими изготовителями. Перечисленные выше факторы, влияя на работоспособность составных частей объекта, определяют его работоспособность в целом.

Опыт эксплуатации объектов массового производства показывает, что как наработка до отказа, так и наработка между отказами обнаруживают значительный статистический разброс. Аналогичный разброс имеют также ресурс, срок службы и срок сохраняемости. Этот разброс может служить характеристикой технологической культуры и дисциплины, а также достигнутого уровня технологии. Разброс наработки до первого отказа, ресурса и срока службы может уменьшить, а их значения можно увеличить путем надлежащей и экспериментальной отработки каждого индивидуального объекта до передачи в эксплуатацию. Этот подход осуществляют для особо ответственных объектов Целесообразность такого подхода для массовых объектов должна каждый раз подтверждаться технико-экономическим анализом.

Наработка до отказа вводится как для неремонтируемых (невосстанавливаемых), так и для ремонтируемых (восстанавливаемых) объектов. Наработка между отказами определяется объемом работы объекта от k-го до (k+l)-гo отказа, где k=1, 2 …. Эта наработка относится только к восстанавливаемым объектам.

Технический ресурс представляет запас возможной наработки объекта. Для неремонтируемых объектов он совпадает с продолжительностью пребывания работоспособном состоянии в режиме применения по назначению, если переход в предельное состояние обусловлен только возникновением отказа.

Поскольку средний и капитальный ремонт позволяют частично или полностью восстанавливать ресурс, то отсчет наработки при исчислении ресурса возобновляют по окончании такого ремонта, различая в связи с этим доремонтный, межремонтный, послеремонтный и полный (до списания) ресурс.

Доремонтный ресурс исчисляют до первого среднего (капитального) ремонта. Число возможных видов межремонтного ресурса зависит от чередования капитальных и средних ремонтов. Послеремонтный ресурс отсчитывают от последнего среднего (капитального) ремонта.

Полный ресурс отсчитывают от начала эксплуатации объекта до его перехода в предельное состояние, соответствующее окончательному прекращению эксплуатации.

Аналогичным образом выделяют виды срока службы и срока сохраняемости. При этом срок службы и срок сохраняемости измеряют в единицах времени. Соотношение значений ресурса и срока службы зависит от интенсивности использования объекта. Полный срок службы, как правило, включает продолжительности всех видов ремонта.

К терминам «Назначенный ресурс», «Назначенный срок службы», «Назначенный срок хранения» (пп. 4.9; 4.10; 4.11)

Цель установления назначенного срока службы и назначенного ресурса — обеспечить принудительное заблаговременное прекращение применения объекта по назначению, исходя из требований безопасности или технико-экономических соображений. Для объектов, подлежащих длительному хранению, может быть установлен назначенный срок хранения, по истечении которого дальнейшее хранение недопустимо, например, из требований безопасности.

При достижении объемом назначенного ресурса (назначенного срока службы, назначенного срока хранения), и зависимости от назначения объекта, особенности эксплуатации, технического состояния и других факторов объект может быть списан, направлен в средний или капитальный ремонт, передан для применения не по назначению, переконсервирован (при хранении) или может быть принято решение о продолжении эксплуатации.

Назначенный срок службы и назначенный ресурс являются технико-эксплуатационными характеристиками и не относятся к показателям надежности (показателям долговечности). Однако при установлении назначенного срока службы и назначенного ресурса принимают во внимание прогнозируемые (или достигнутые) значения показателей и надежности. Если установлено требование безопасности, то назначенный срок службы (ресурс) должен соответствовать значениям вероятности безотказной работы по отношению к критическим отказам, близким к единице. Из соображений безопасности может быть также введен коэффициент запаса по времени.

К терминам «Техническое обслуживание», «Восстановление», «Ремонт» (пп. 5.1; 5.2; 5.3)

Техническое обслуживание включает регламентированные в конструкторской (проектной) и (или) эксплуатационной документации операции по поддержанию работоспособного и исправного состояния. В техническое обслуживание входят контроль технического состояния, очистка, смазывание и т. п. [9].

Восстановление включает в себя идентификацию отказа (определение его места и характера), наладку или замену отказавшего элемента, регулирование и контроль технического состояния элементов объекта и заключительную операцию контроля работоспособности объекта в целом.

Перевод объекта из предельного состояния в работоспособное состояние осуществляется при помощи ремонта, при котором происходит восстановление ресурса объекта в целом. В ремонт могут входить разборка, дефектовка, замена или восстановление отдельных блоков, деталей и сборочных единиц, сборка и т. д. Содержание отдельных операций ремонта может совпадать с содержанием операций технического обслуживания [9].

К терминам «Обслуживаемый объект», «Необслуживаемый объект», «Ремонтируемый объект», «Неремонтируемый объект», «Восстанавливаемый объект», «Невосстанавливаемый объект» (пп. 5.4; 5.5; 5.8; 5.9)

При разработке объекта предусматривают выполнение (или невыполнение) технического обслуживания объектов на протяжении срока их службы, т. е. объекты делят на технически обслуживаемые и технически необслуживаемые. При этом некоторые неремонтируемые объекты являются технически обслуживаемыми.

Деление объектов на ремонтируемые и неремонтируемые связано с возможностью восстановления работоспособного состояния путем ремонта, что предусматривается и обеспечивается при разработке и изготовлении объекта. Объект может быть ремонтируемым, но не восстанавливаемым в конкретной ситуации.

К термину «Показатель надежности» (п. 6.1)

К показателям надежности относят количественные характеристики надежности, которые вводят согласно правилам статистической теории надежности [2, 3, 7, 12]. Область применения этой теории ограничена крупносерийными объектами, которые изготавливают и эксплуатируют в статистически однородных условиях и к совокупности которых применимо статистическое истолкование вероятности. Примером служат массовые изделия машиностроения, электротехнической и радиоэлектронной промышленности.

Применение статистической теории надежности к уникальным и малосерийным объектам ограничено. Эта теория применима для единичных восстанавливаемых (ремонтируемых) объектов, в которых в соответствии с нормативно-технической документацией допускаются многократные отказы, для описания последовательности которых применима модель потока случайных событий. Теорию применяют также к уникальным и малосерийным объектам, которые в свою очередь состоят из объектов массового производства. В этом случае расчет показателей надежности объекта в целом проводят методами статистической теории надежности по известным показателям надежности компонентов и элементов.

Методы статистической теории надежности позволяют установить требования к надежности компонентов и элементов на основании требований к надежности объекта в целом.

Статистическая теория надежности является составной частью более общего подхода к расчетной оценке надежности технических объектов, при котором отказы рассматривают как результат взаимодействия объекта как физической системы с другими объектами и окружающей средой [8]. Так при проектировании строительных сооружений и конструкций учитывают в явной или неявной форме статистический разброс механических свойств материалов, элементов и соединений, а также изменчивость (во времени и в пространстве) параметров, характеризующих внешние нагрузки и воздействия. Большинство показателей надежности полностью сохраняют смысл и при более общем подходе к расчетной оценке надежности. В простейшей модели расчета на прочность по схеме «параметр нагрузки — параметр прочности» вероятность безотказной работы совпадает с вероятностью того, что в пределах заданного отрезка времени значение параметра нагрузки ни разу не превысит значение, которое принимает параметр прочности. При этом оба параметра могут быть случайными функциями времени.

На стадии проектирования и конструирования показатели надежности трактуют как характеристики вероятностных или полувероятностных математических моделей создаваемых объектов. На стадиях экспериментальной отработки, испытаний и эксплуатации роль показателей надежности выполняют статистические оценки соответствующих вероятностных характеристик.

В целях единообразия все показатели надежности, перечисленные в настоящем стандарте, определены как вероятностные характеристики. Это подчеркивает также возможность прогнозирования значения этих показателей на стадии проектирования [3, 8, 9].

Показатели надежности вводят по отношению к определенным режимам и условиям эксплуатации, установленным в нормативно-технической и (или) конструкторской (проектной) документации.

К терминам «Единичный показатель надежности» и «Комплексный показатель надежности» (пп. 6.2; 6.3)

В отличие от единичного показателя надежности комплексный показатель надежности количественно характеризует не менее двух свойств, составляющих надежность, например безотказность и ремонтопригодность. Примером комплексного показателя надежности служит коэффициент готовности (п. 6.26) K Γ <\displaystyle K_<\Gamma >> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделия, стационарное значение которого (если оно существует) определяют по формуле

К терминам «Расчетный показатель надежности», «Экспериментальный показатель надежности», «Эксплуатационный показатель надежности», «Экстраполированный показатель надежности» (пп. 6.4; 6.5; 6.6; 6.7)

Такую классификацию показателей надежности вводят в зависимости от способов их получения. Аналогичная классификация содержится в международных документах ИСО, МЭК и ЕОКК 5. Наличие этих понятий должно предупредить путаницу, которая имеет место на практике при обсуждении численных данных, полученных разными способами и на разных стадиях жизненного цикла объекта.

К термину «Вероятность безотказной работы» (п. 6.8)

Аналогично вводят вероятность безотказной работы в более общем случае, когда состояние объекта характеризуется набором параметров с допустимой по условиям работоспособности областью значений этих параметров [8].

F ( t ) = 1 − P ( t ) ; f ( t ) = d F ( t ) d t = − d P ( t ) d t <\displaystyle F(t)=1-P(t);f(t)=<\frac

>=-<\frac

>> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделия
(3)

Наряду с понятием «вероятность безотказной работы» часто используют понятие «вероятность отказа», которое определяется следующим образом: это вероятность того, что объект откажет хотя бы один раз в течение заданной наработки, будучи работоспособным в начальный момент времени. Вероятность отказа на отрезке от 0 до t определяют по формуле

Точечные статистические оценки для вероятности безотказной работы P ^ ( t ) <\displaystyle <\hat

>(t)> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделияот 0 до t и для функции распределения наработки до отказа F ^ ( t ) <\displaystyle <\hat >(t)> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделиядаются формулами:

P ^ ( t ) = 1 − n ( t ) N ; F ^ ( t ) = n ( t ) N <\displaystyle <\hat

>(t)=1-<\frac >;<\hat >(t)=<\frac >> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделия

(5)

где N — число объектов, работоспособных в начальный момент времени;
n(t) — число объектов, отказавших на отрезке от 0 до t.

Для получения достоверных оценок объем выборки N должен быть достаточно велик [2, 3, 7].

Определение безотказной работы в соответствии с формулами (1) и (2) относится к объектам, которые должны функционировать в течение некоторого конечного отрезка времени. Для объектов одноразового (дискретного) применения вероятность безотказной работы определяют как вероятность того, что при срабатывании объекта отказ не возникает. Аналогично вводят вероятность безотказного включения (например в рабочий режим из режима ожидания).

К терминам «Гамма-процентная наработка до отказа» «Гамма-процентный ресурс», «Гамма-процентный срок службы», «Гамма-процентное время восстановления», «Гамма-процентный срок сохраняемости» (пп. 6.9; 6.15; 6.20; 6.24)

Перечисленные показатели определяют как корни tγ уравнения

где F(t) — функция распределения наработки до отказа (ресурса, срока службы).

В частности, гамма-процентную наработку до отказа tγ определяют из уравнения

где P(t)-вероятность безотказной работы.

Статистические оценки для гамма-процентных показателей могут быть получены на основе статистических оценок либо непосредственно, либо после аппроксимации эмпирических функций подходящими аналитическими распределениями. Необходимо иметь в виду, что экстраполирование эмпирических результатов за пределы продолжительности испытаний (наблюдений) без привлечения дополнительной информации о физической природе отказов может привести к значительным ошибкам.

К терминам «Средняя наработка до отказа», «Средний ресурс», «Средний срок службы», «Среднее время восстановления», «Средний срок сохраняемости» (пп. 6.10; 6.16; 6.18; 6.21; 6.25)

Перечисленные показатели равны математическим ожиданиям соответствующих случайных величин, наработки до отказа, ресурса, срока службы, времени восстановления, срока сохраняемости.

Среднюю наработку до отказа Т1 вычисляют по формуле

T 1 = ∫ 0 ∞ t f ( t ) d t = ∫ 0 ∞ [ 1 − F ( t ) ] d t <\displaystyle T_<1>=\int _<0>^<\infty >tf(t)dt=\int _<0>^<\infty >[1-F(t)]dt> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделия

где F(t)- функция распределения наработки до отказа,

f(t) — плотность распределения наработки до отказа.

С учетом (3) Т1 выражается через вероятность безотказной работы:

T 1 = ∫ 0 ∞ P ( t ) d t <\displaystyle T_<1>=\int _<0>^<\infty >P(t)dt> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделия

Статистическая оценка для средней наработки до отказа дается формулой

T 1 ^ = 1 N ∑ j = 1 N τ j <\displaystyle <\hat >>=<\frac <1>>\sum _^<\tau _>> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделия(7)

Здесь N- число работоспособных объектов при t=0,

τj — наработка до первого отказа каждого из объектов.

Формула (7) соответствует плану испытаний, при котором все объекты испытываются до отказа [2, 3, 7].

К термину «Средняя наработка на отказ» (п. 6.11)

Этот показатель введен применительно к восстанавливаемым объектам, при эксплуатации которых допускаются многократно повторяющиеся отказы. Очевидно, что это должны быть несущественные отказы, не приводящие к серьезным последствиям и не требующие значительных затрат на восстановление работоспособного состояния. Эксплуатация таких объектов может быть описана следующим образом: в начальный момент времени объект начинает работать и продолжает работать до первого отказа; после отказа происходит восстановление работоспособности, и объект вновь работает до отказа и т. д. На оси времени моменты отказов образуют поток отказов, а моменты восстановлений — поток восстановлений. На оси суммарной наработки (когда время восстановления не учитывается) моменты отказов образуют поток отказов. Полное и строгое математическое описание эксплуатации объектов по этой схеме построено на основе теории восстановления [2, 7].

Определению средней наработки на отказ Т, которое приведено в данном стандарте, соответствует следующая формула

Здесь t — суммарная наработка, r(t) — число отказов, наступивших в течение этой наработки, M — математическое ожидание этого числа. В общем случае средняя наработка на отказ оказывается функцией t. Для стационарных потоков отказов средняя наработка на отказ от t не зависит.

Статистическую оценку средней наработки на отказ Т вычисляют по формуле, которая аналогична формуле (8)

В отличие от формулы (8) здесь r(t) — число отказов, фактически происшедших за суммарную наработку t.

Формула (9) допускает обобщение на случай, когда объединяются данные, относящиеся к группе однотипных объектов, которые эксплуатируются в статистически однородных условиях. Если поток отказов — стационарный, то в формуле (9) достаточно заменить t на сумму наработок всех наблюдаемых объектов и заменить r(t) на суммарное число отказов этих объектов [3].

К терминам «Интенсивность отказов» и «Интенсивность восстановления» (пп. 6.12; 6.22)

Интенсивность отказов λ(t) определяют по формуле

λ ( t ) = f ( t ) 1 − F ( t ) = − 1 P ( t ) d P ( t ) d t <\displaystyle \lambda (t)=<\frac <1-F(t)>>=-<\frac <1>><\frac

>> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделия
(10)

Для высоконадежных систем Р(t)=1, так что интенсивность отказов приближенно равна плотности распределения наработки до отказа.

Статистическая оценка для интенсивности отказов λ ^ ( t ) <\displaystyle <\hat <\lambda >>(t)> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделияимеет вид

λ ^ ( t ) = n ( t + Δ t ) − n ( t ) N Δ t <\displaystyle <\hat <\lambda >>(t)=<\frac >> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделия(11)

где использованы те же обозначения, что и в формуле (5).

Аналогично вводится интенсивность восстановления.

К терминам «Параметр потока отказов» и «Осредненный параметр потока отказов» (пп. 6.13; 6.14)

Параметр потока отказов μ(t) определяют по формуле

μ ( t ) = lim Δ t → 0 M < r ( t + Δ t ) − r ( t ) >Δ t <\displaystyle \mu (t)=\lim _<\Delta t\to 0><\frac ><\Delta t>>> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделия(12)

где Δt — малый отрезок наработки,

r(t) — число отказов, наступивших от начального момента времени до достижения наработки t.

Разность r(t+Δt)-r(t) представляет собой число отказов на отрезке Δt.

Наряду с параметром потока отказов в расчетах и обработке экспериментальных данных часто используют осредненный параметр потока отказов

μ ¯ ( t ) = M < r ( t 2 ) − r ( t 1 ) >t 2 − t 1 <\displaystyle <\bar <\mu >>(t)=<\frac )-r(t_<1>)\>>-t_<1>>>> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделия(13)

По сравнению с формулой (12) здесь рассматривается число отказов за конечный отрезок [t1, t2], причем t 1 ≤ t ≤ t 2 <\displaystyle t_<1>\leq t\leq t_<2>> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделия. Если поток отказов стационарный, то параметры, определяемые по формулам (12) и (13) от t не зависят.

Статистическую оценку для параметра потока отказов μ(t) определяют по формуле

μ ^ ( t ) = r ( t 2 ) − r ( t 1 ) t 2 − t 1 <\displaystyle <\hat <\mu >>(t)=<\frac )-r(t_<1>)>-t_<1>>>> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделия(14)

которая по структуре аналогична формуле (13). Для стационарных потоков можно применять формулу

где T ^ <\displaystyle <\hat>> Что такое сохраняемость изделия. Смотреть фото Что такое сохраняемость изделия. Смотреть картинку Что такое сохраняемость изделия. Картинка про Что такое сохраняемость изделия. Фото Что такое сохраняемость изделия— оценка (8) для средней наработки на отказ.

В международных документах ИСО, МЭК и ЕОКК термину «параметр потока отказов» соответствует термин failure intensity, в то время как термину «интенсивность отказов» (п. 6.12) соответствует термин failure rate. Это необходимо учитывать при использовании англоязычных источников, а также переводной литературы.

К терминам «Вероятность восстановления», «Гамма-процентное время восстановления», «Среднее время восстановления», «Интенсивность восстановления», «Средняя трудоемкость восстановления» (пп. 6.19; 6.20; 6.21; 6.22; 6.23)

Для комплексной оценки ремонтопригодности допускается дополнительно использовать показатели типа удельной трудоемкости ремонта и удельной трудоемкости технического обслуживания.

К терминам «Коэффициент готовности», «Коэффициент оперативной готовности», «Коэффициент технического использования», «Коэффициент сохранения эффективности» (пп. 6.26; 6.27; 6.28; 6.29)

Коэффициент готовности характеризует готовность объекта к применению по назначению только в отношении его работоспособности в произвольный момент времени. Коэффициент оперативной готовности характеризует надежность объекта, необходимость применения которого возникает в произвольный момент времени, после которого требуется безотказная работа в течение заданного интервала времени. Различают стационарный и нестационарный коэффициенты готовности, а также средний коэффициент готовности [3, 5, 6].

Коэффициент технического использования характеризует долю времени нахождения объекта в работоспособном состоянии относительно общей продолжительности эксплуатации. Коэффициент сохранения эффективности характеризует степень влияния отказов на эффективность его применения по назначению. Для каждого конкретного типа объектов содержание понятия эффективности и точный смысл показателя (показателей) эффективности задаются техническим заданием и вводятся в нормативно-техническую и (или) конструкторскую (проектную) документацию.

К термину «Резервирование» (п. 7.1)

Резервирование — одно из основных средств обеспечения заданного уровня надежности объекта при недостаточно надежных компонентах и элементах. Цель резервирования — обеспечить безотказность объекта в целом, т. е. сохранить его работоспособность, когда возник отказ одного или нескольких элементов [11]. Наряду с резервированием путем введения дополнительных (резервных) элементов находят широкое применение другие виды резервирования. Среди них временное резервирование (с использованием резервов времени), информационное резервирование (с использованием резервов информации), функциональное резервирование, при котором используется способность элементов выполнять дополнительные функции или способность объекта перераспределять функции между элементами, нагрузочное резервирование, при котором используется способность элементов воспринимать дополнительные нагрузки сверх номинальных, а также способность объекта перераспределять нагрузки между элементами.

К терминам «Нормирование надежности», «Нормируемый показатель надежности» (пп. 8.1; 8.2)

При выборе номенклатуры нормируемых показателей надежности необходимо учитывать назначение объекта, степень его ответственности, условия эксплуатации, характер отказов (внезапные, постепенные и т. п.), возможные последствия отказов, возможные типы предельных состояний. При этом целесообразно, чтобы общее число нормируемых показателей надежности было минимально; нормируемые показатели имели простой физический смысл, допускали возможность расчетной оценки на этапе проектирования, статистической оценки и подтверждения по результатам испытаний и (или) эксплуатации [10, 11].

При обосновании численных значений нормируемых показателей надежности необходимо руководствоваться принципом оптимального распределения затрат на повышение надежности, техническое обслуживание и ремонт.

Значения нормируемых показателей надежности учитываются, в частности, при назначении гарантийного срока эксплуатации (гарантийной наработки, гарантийного срока хранения), которые являются технико-экономическими (отчасти коммерческими) характеристиками объекта и не относятся к показателям надежности. Гарантийные сроки, показатели надежности и цена объекта должны быть взаимоувязаны.

Длительность гарантийного срока эксплуатации (гарантийной наработки, гарантийного срока хранения) должна быть достаточной для выявления и устранения скрытых дефектов и определяется соглашением между потребителем (заказчиком) и поставщиком (изготовителем).

К термину «Программа обеспечения надежности» (п. 9.1)

Программа обеспечения надежности — важнейший документ, служащий организационно-технической основой для создания объектов, удовлетворяющих заданным требованиям по надежности. Программа должна охватывать все или отдельные стадии жизненного цикла объекта.

Программа обеспечения надежности включает, в частности, программу экспериментальной отработки, которая определяет цели, задачи, порядок проведения и необходимый объем испытаний или экспериментальной отработки, а также регламентирует порядок подтверждения показателей надежности на стадии разработки. Программа обеспечения ремонтопригодности устанавливает комплекс взаимосвязанных организационно-технических требований и мероприятий, направленных на обеспечение заданных требований по ремонтопригодности и (или) повышения ремонтопригодности. Она разрабатывается одновременно с программой обеспечения надежности и является либо ее составной частью, либо самостоятельной программой [1].

К термину «Испытания на надежность» (п. 10.1)

Испытания на надежность относятся к числу важнейших составных частей работы по обеспечению и повышению надежности технических объектов. Эти испытания в зависимости от контролируемых (оцениваемых) свойств, составляющих надежность, могут состоять из испытаний на безотказность, долговечность, ремонтопригодность и сохраняемость. В частности, ресурсные испытания относятся к испытаниям на долговечность.

Планирование испытаний и обработка их результатов проводятся с применением методов математической статистики [2, 3, 7, 10]. Оценивание значений показателей надежности при определительных испытаниях должно проводиться с заданной точностью (т. е. при заданной относительной погрешности) и с заданной достоверностью (т. е. при заданном уровне доверительной вероятности). Аналогичные требования предъявляются к контрольным испытаниям. Ускорение (форсирование) испытаний не должно приводить к снижению точности и достоверности оценок.

ПЕРЕЧЕНЬ ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ [ править ]

1 Надежность и эффективность в технике. Справочник в 10 т. (Ред. совет: В. С. Авдуевский (пред.) и др. Т. 1. Методология. Организация. Терминология) Под ред. А. И. Рембезы.- М.: Машиностроение, 1989.-224 с.

2 Надежность и эффективность в технике. Справочник в 10 т. / Ред. совет:В. С. Авдуевский (пред.) и др. Т. 2. Математические методы в теории надежности и эффективности/Под ред. Б. В. Гнеденко.- М.: Машиностроение, 1987.-280 с.

3 Надежность технических систем. Справочник/Ю. К. Беляев, В. А. Богатырев, В. В. Болотин и др./Под ред. И. А. Ушакова — М.: Радио и связь, 1985—608 с.

4 Data Processing Vocabulary. Section 14. Reliability, Maintenance and Availability. — Geneva: ISO 2382, 1976. — 16 p.

5 International Electrotechnical Vocabulary. Chapter 191. Reliability, Maintainability and Quality of Service (draft). — Geneva: International Electrotechnical Commission, 1987.-75 p.

6 EOQC Glossary. — Bern: EOQC. 1988.-24 p.

7 Гнеденко Б. В., Беляев Ю. К., Соловьев А. Д. Математические методы в теории надежности. — М.: Наука, 1965.-524 с.

8 Болотин В. В. Прогнозирование ресурса машин и конструкций. — М.: Машиностроение, 1984.-312 с.

9 Хазов Б. Ф., Дидусев Б. А. Справочник по расчету надежности машин на стадии проектирования. — М.: Машиностроение, 1986.-224 с.

10 Дзиркал Э. В. Задание и проверка требований к надежности сложных изделий. — М.: Радио и связь, 1981.-176 с.

11 Резиновский А. Я. Испытания и надежность радиоэлектронных комплексов. — М.: Радио и связь, 1985—168 с.

12 F. S. Goodell, Reliability and Maintainability by Design: A Blue-Print for Success. Journal of Aircraft, v. 24, № 8, 1987, p. 481—483.

ИНФОРМАЦИОННЫЕ ДАННЫЕ [ править ]

1. РАЗРАБОТАН И ВНЕСЕН Институтом машиноведения АН СССР, Межотраслевым научно-техническим комплексом «Надежность машин» и Государственным Комитетом СССР по управлению качеством продукции и стандартам

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 15.11.89 № 3375

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *