Что такое солнечный фотоэлектрический преобразователь

Фотоэлектрический преобразователь

Что такое солнечный фотоэлектрический преобразователь. Смотреть фото Что такое солнечный фотоэлектрический преобразователь. Смотреть картинку Что такое солнечный фотоэлектрический преобразователь. Картинка про Что такое солнечный фотоэлектрический преобразователь. Фото Что такое солнечный фотоэлектрический преобразователь

Содержание

Полупроводниковые фотоэлектрические преобразователи энергии

Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. При характерной для ФЭП равновесной температуре порядка 300—350 Кельвинов и Тсолнца

6000 К их предельный теоретический КПД >90 %. В лабораторных условиях уже достигнут КПД 40 %, * а его увеличение до 50 % представляется вполне реальным.

Физический принцип работы солнечных батарей

Преобразование энергии в ФЭП основано на фотовольтаическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.

Основные необратимые потери энергии в ФЭП связаны с:

Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяется различные мероприятия. К их числу относятся:

Также существенного повышения КПД ФЭП удалось добиться за счёт создания преобразователей с двухсторонней чувствительностью (до +80 % к уже имеющемуся КПД одной стороны), применения люминесцентно переизлучающих структур, предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т. д.

Фотоэлементы для промышленного назначения

На солнечных электростанциях (СЭС) можно использовать разные типы ФЭП, однако не все они удовлетворяют комплексу требований к этим системам:

Некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья или сложности его переработки. Отдельные методы улучшения энергетических и эксплуатационных характеристик ФЭП, например за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т. д.

Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, то есть фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью. Изготовление фотоэлементов и сборка солнечных батарей на автоматизированных линиях обеспечит многократное снижение себестоимости батареи.

Наиболее вероятными материалами для фотоэлементов СЭС считаются кремний и арсенид галлия (GaAs), причём в последнем случае речь идёт о гетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs.

Источник

Сенаторов Сергей Сергеевич

Электротехнический факультет

Кафедра Электроснабжение промышленных предприятий и городов

Специальность Электроснабжение и энергосбережение

Анализ применения фотоэлектрических преобразователей в системах электроснабжения

Научный руководитель: к.т.н., профессор Левшов Александр Васильевич

Реферат по теме выпускной работы

Содержание

Введение

В наше время проявляется большой интерес к использованию возобновляемых (альтернативных) источников энергии: солнечной, ветровой, геотермальной и др. По уровню поступающей на Землю возобновляемой энергии Солнце является самым мощным из извест-ных источников. Поэтому разработка устройств использующих солнечную энергию является одной из перспектив.

Применение фотоэлектрических преобразователей для произ-водства электроэнергии позволяет комплексно решать вопросы энергоснабжения, защиты окружающей среды, экономии ископаемых источников энергии. Их совместное использование с различными устройствами силовой электроники в системах электроснабжения, соединенных с сетью, позволяет получать многофункциональные системы [1].

1. Актуальность темы

Солнечная энергетика является относительно новым способом производства электроэнергии. Бурное развитие отрасли началось в середине 2000-х годов и было вызвано, главным образом, политикой развитых стран (в первую очередь, стран Евросоюза) по снижению зависимости от углеводородного сырья в электроэнергетике и стремлением достичь целей по сокращению выбросов парниковых газов. Кроме того, быстрому развитию отрасли способствовало снижение стоимости производства солнечных панелей и рост их эффективности[2].

В настоящее время фотоэлектрические преобразователи энергии становятся все более популярными для электроснабжения различных объектов. За последние 10 лет объемы инсталляций фотоэлектрических модулей серьезно выросли, что на определенном этапе привело к дефициту кристаллического кремния (основного материала фото энергетики) и к появлению альтернативных технологий производства фотоэлектрических преобразователей [3].

2. Цель и задачи исследования, планируемые результаты

Основной целью работы является анализ и применение фотоэлектрических преобразователей в энергоснабжении, их особенностей и недостатков, методов повышения их эффективности, оценки работоспособности и возможности применения в энергорынке.

Основные задачи исследования:

3. Фотоэлектрический преобразователь (ФЭП)

Отдельный фотоэлектрический преобразователь – это полупровод-никовый прибор, который преобразовывает энергию фотонов в электрическую энергию. Преобразование энергии света в электричество происходит на уровне атомного строения тела. Кремний является наиболее распространенным материалом для изготовления ФЭП. Каждый отдельный ФЭП способен вырабатывать напряжение сравнительно малой величины (около 0,5 В), поэтому отдельные элементы собирают в модули, а модули в панели (рис. 1)[4].

Что такое солнечный фотоэлектрический преобразователь. Смотреть фото Что такое солнечный фотоэлектрический преобразователь. Смотреть картинку Что такое солнечный фотоэлектрический преобразователь. Картинка про Что такое солнечный фотоэлектрический преобразователь. Фото Что такое солнечный фотоэлектрический преобразователь

Рисунок 1 – Солнечная панель, модуль и фотоэлектрический преобразователь.

Солнечная батарея вырабатывает электроэнергию при попадании на её поверхность солнечного света, это значит, что в ночное время суток солнечная панель не генерирует электричество. Но, как правило, нам необходима электроэнергия круглые сутки, поэтому в систему солнечных панелей вводиться блок аккумуляторных батарей. По своему назначению он выполняет функцию, накапливание электроэнергии в момент ее излишка, и отдает в момент ее нехватки.

Что такое солнечный фотоэлектрический преобразователь. Смотреть фото Что такое солнечный фотоэлектрический преобразователь. Смотреть картинку Что такое солнечный фотоэлектрический преобразователь. Картинка про Что такое солнечный фотоэлектрический преобразователь. Фото Что такое солнечный фотоэлектрический преобразователь

Рисунок 2 – Типовая схема подключения солнечной панели.

4. Показатели развития солнечной энергетики в мире

Мировые мощности солнечных станций состоят из фотоэлектрических (преобразование солнечной энергии непосредственно в электрическую) и тепловых солнечных станций (могут вырабатывать как тепло, так и электроэнергию)[5].

По данным BP, в 2012 году в мире установленная мощность солнечных фотоэлектрических станций составила 100,1 ГВт – это менее 2% суммарного показателя по всей электроэнергетике мира (данная доля увеличилась с 0,2% в 2007 году). Основной прирост мощностей фотоэлектрических станций произошел за последние 5 лет, когда их объем вырос в 10 раз (рис. 3).

Что такое солнечный фотоэлектрический преобразователь. Смотреть фото Что такое солнечный фотоэлектрический преобразователь. Смотреть картинку Что такое солнечный фотоэлектрический преобразователь. Картинка про Что такое солнечный фотоэлектрический преобразователь. Фото Что такое солнечный фотоэлектрический преобразователь

Рисунок 3 – Развитие фотоэлектрической отрасли в мире (слева) и страны-лидеры по установленным мощностям фотоэлектрических станций (справа).

Еще более низка роль фотоэлектрических станций в производстве электроэнергии, что, в первую очередь, вызвано их сравнительно низким коэффициентом (около 30%) использования мощностей по сравнению с другими видами электростанций (ТЭС, АЭС, ГЭС и др.). Так, по данным МЭА, в 2011 году в мире на солнечных электростанциях было произведено 61,2 млрд. кВт×ч электроэнергии, или 0,28% суммарного мирового производства электроэнергии. Для сравнения, данный объем более чем в 2 раза меньше показателя выработки электроэнергии на ГЭС в России.

Основные мощности фотоэлектрических станций в мире расположены в небольшом количестве стран-лидеров: в 2012 году первые 7 стран обладали 80% суммарных мощностей.

Наибольшее развитие фотоэлектрическая отрасль получила в Европе, где расположено 68% мировых установленных мощностей. Единоличным лидером в регионе является Германия, на которую приходится около 33% мировых мощностей, за ней следуют Италия, Испания и Франция.

Из неевропейских стран в 2012 году в Китае, США и Японии располагались мощности солнечной энергетики по 7-10 ГВт. В последние годы особенно быстро развитие солнечной энергетики происходит в Китае, где суммарная мощность фотоэлектрических станций выросла в 10 раз за 2 года – с 0,8 ГВт в 2010 году до 8,3 ГВт в 2012 году.

По данным Renewable Energy Policy Network for the 21st Century (REN21)[6], в 2012 году мировые установленные мощности по солнеч-ной тепловой энергетике составляли 255 ГВт тепловой мощности (большая часть приходится на Китай). В структуре мощностей основную роль играют станции, нацеленные на обогрев воды и воздуха.

Солнечная энергетика в России находится на стадии становления. Первая фотоэлектрическая станция мощностью 100 кВт была введена в строй в 2010 году в Белгородской области. Поликристаллические солнечные панели для станции закупались на Рязанском заводе металлокерамических приборов. В настоящее время рассматриваются различные проекты в этой сфере, в том числе в Ставропольском и Приморском краях, Челябинской области[5].

5. Система электроснабжения с фотоэлектрическими преобразователями

Объектом разработок и исследований является система электроснабжения, содержащая модули фотоэлектрических преобразователей и полупроводниковые преобразовательные устройства.

Что такое солнечный фотоэлектрический преобразователь. Смотреть фото Что такое солнечный фотоэлектрический преобразователь. Смотреть картинку Что такое солнечный фотоэлектрический преобразователь. Картинка про Что такое солнечный фотоэлектрический преобразователь. Фото Что такое солнечный фотоэлектрический преобразователь

Рисунок 4 – Блок-схема системы электроснабжения.

В этой системе ячейки фотоэлектрических преобразователей (ФЭП) соединяются последовательно между собой, образуя модули с повышенным выходным напряжением (напряжение модуля 12В или 24 В, в то время как напряжение элементарной ячейки составляет 0,6 В), к выходам каждого такого модуля подключается регулятор постоянного тока, затем выходы этих регуляторов соединяются между собой последовательно, образуя звено с напряжением 300 В [7].

6. Принцип действия фотоэлектрических преобразователей

Преобразование энергии электромагнитного солнечного излучения в фотоэлектрических преобразователях (ФЭП) основано на фотовольтаическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.

Основные преимущества ФЭП:

Основные недостатки ФЭП:

Фотоэлектрический элемент состоит из металлического основания, выполняющего роль положительного контакта, полупроводников p-типа и n-типа, образующих p-n-переход. На поверхности n-слоя расположена металлическая токосъемная контактная система.

На рисунке 5 изображен фотоэлектрический элемент и его энергетический баланс, показывающий значительный процент солнечного излучения, которое не преобразуется в электрическую энергию.

Что такое солнечный фотоэлектрический преобразователь. Смотреть фото Что такое солнечный фотоэлектрический преобразователь. Смотреть картинку Что такое солнечный фотоэлектрический преобразователь. Картинка про Что такое солнечный фотоэлектрический преобразователь. Фото Что такое солнечный фотоэлектрический преобразователь

Рисунок 5 – Фотоэлектрический однопереходный элемент [8]

Процесс преобразования солнечного излучения в электричество, сопровождается следующими физическими процессами: 1 – разделение зарядов (возникновение избыточных электронов и дырок); 2 – рекомбинация; 3 – пропускание;4 – отражение и затенение поверхности лицевыми контактами.

Взаимодействие фотонов с материалом фотоэлектрического элемента (ФЭ), определяется известным выражением:

ν – частота электромагнитного излучения (солнечного света).

Согласно зонной теории, если энергия поглощенных фотонов превышает ширину зоны запрещенных энергий полупроводника (Eф>Eз.зоны,) происходит возникновение свободных фотоэлектронов и дырок (фотовольтаический эффект). Для различных полупроводников существует граничное значение частоты νмин, определяемой шириной запрещенной зоны, ниже которой разделения зарядов не происходит.

Поступающая на поверхность ФЭ солнечная энергия, расходуется следующим образом[8]:

Для уменьшения видов потерь энергии в ФЭП разрабатываются и успешно применяется различные мероприятия[9]. К их числу относятся:

7. Каскадные фотоэлектрические преобразователи

Большинство современных солнечных элементов обладают одним p-n-переходом. В таком элементе свободные носители заряда создаются только теми фотонами, энергия которых больше или равна ширине запрещенной зоны. Другими словами, фотоэлектрический отклик однопереходного элемента ограничен частью солнечного спектра, с энергией превышающей ширину запрещенной зоны, а фотоны меньшей энергии полезно не используются. Один из путей преодоления этого ограничения – применение многослойных структур из двух и более солнечных элементов с различной шириной запрещенной зоны. Такие элементы называются многопереходными или каскадными. Каскадные элементы могут достичь большей эффективности фотоэлектрического преобразования, поскольку используют значительно большую часть солнечного спектра[10].

В типичном каскадном солнечном элементе (см. рис. 6) одиночные фотоэлементы расположены друг за другом таким образом, что солнечный свет сначала попадает на элемент с наибольшей шириной запрещенной зоны, при этом поглощаются фотоны с наибольшей энергией. Не поглощенные верхним слоем фотоны проникают в следующий элемент с меньшей шириной запрещенной зоны, где часть их поглощается и т.д.

Что такое солнечный фотоэлектрический преобразователь. Смотреть фото Что такое солнечный фотоэлектрический преобразователь. Смотреть картинку Что такое солнечный фотоэлектрический преобразователь. Картинка про Что такое солнечный фотоэлектрический преобразователь. Фото Что такое солнечный фотоэлектрический преобразователь

Рисунок 6 – Принцип построения каскадного ФЭП [10]

(анимация: 8 кадров, повторов: не ограничено, размер: 78 килобайт, задержка: 200мс)

Современный опыт разработки трехкаскадных фотоэлементов позволяет надеяться на практическую реализацию повышенных значений кпд в четырех-, пяти-, а может быть, и в еще более многокаскадных структурах. Нет никаких научно-теоретических сомнений, что надежды оправдаются, если будут найдены подходящие материалы для промежуточных каскадов, и эти материалы будут иметь надлежащее качество.

8. Линзовые солнечные панели

Эффективное использование солнечной энергии в интересах широкого развития экологически чистой электроэнергетики возможно лишь в случае применения достаточно мощных солнечных фотоэлектрических установок, имеющих высокий КПД и относительно низкую стоимость. Эти противоречивые требования могут быть успешно удовлетворены при создании установок с концентраторами солнечного излучения и высокоэффективными гетероструктурными фотопреобразователями на основе арсенида галлия. В качестве концентраторов при этом целесообразно использовать дешевые плоские линзы Френеля, объединенные в многоэлементные блоки, КПД которых может достигать 85-90%[11].

Что такое солнечный фотоэлектрический преобразователь. Смотреть фото Что такое солнечный фотоэлектрический преобразователь. Смотреть картинку Что такое солнечный фотоэлектрический преобразователь. Картинка про Что такое солнечный фотоэлектрический преобразователь. Фото Что такое солнечный фотоэлектрический преобразователь

Рисунок 7 – Принцип действия линзы Френеля

Оптимальная степень концентрации солнечного излучения в таких установках для наземных условий применения составляет 400-800. Это позволяет примерно в такое же количество раз уменьшить площадь полупроводниковых солнечных элементов (СЭ), необходимую для выработки заданной электрической мощности, по сравнению с плоскими солнечными батареями, преобразующими неконцентрированное солнечное излучение, и дает возможность использовать дорогие высокоэффективные СЭ на основе арсенида галлия без увеличения стоимости установки.

Концентрирование солнечного излучения позволяет, кроме того, повысить КПД гетероструктурных СЭ до 25% и более в однопереходных элементах и до 35% – в каскадных. При таких значениях КПД и непрерывном слежении за Солнцем, необходимом при использовании концентраторов, удельный энергосъем с единицы площади лучевоспринимающей поверхности установки будет в 2-3 раза выше по сравнению с неподвижными плоскими кремниевыми солнечными батареями(СБ). Соответственно меньше будут общая площадь и масса установок с концентраторами, расход материалов и объем работ, связанных с их созданием и монтажом.

Выводы

Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16%, у лучших образцов достигает 25%. В лабораторных условиях летом 2013 года компания Sharp достигла КПД ФЭП в 44,4%, однако уже в сентябре немецкие ученые из Института солнечной энергии общества Фраунгофера и Берлинского центра материалов и энергии имени Гельмгольца заявили о создании самого эффективного фотоэлемента в мире, КПД которого составляет 44,7%[12].

В работе рассмотрены различные виды фотоэлектрических преобразователей, анализ их характеристик, а также методы повышения их эффективности.

Источник

Фотоэлектрические преобразователи солнечной энергии

Виды фотоэлектрических преобразователей

Наиболее эффективными с энергетической точки зрения устройствами для превращения солнечной энергии в электрическую (т.к. это прямой, одноступенчатый переход энергии) являются полупроводниковые фотоэлектрические преобразователи (ФЭП). При характерной для ФЭП равновесной температуре порядка 300-350 Кельвинов и Т солнца

6000 К их предельный теоретический КПД >90%. Это означает, что, в результате оптимизации структуры и параметров преобразователя, направленной на снижение необратимых потерь энергии, вполне реально удастся поднять практический КПД до 50% и более ( в лабораториях уже достигнут КПД 40%).

Теоретические исследования и практические разработки, в области фотоэлектрического преобразования солнечной энергии подтвердили возможность реализации столь высоких значений КПД с ФЭП и определили основные пути достижения этой цели.

Концентрация легирующей примеси в этом слое должна быть значительно выше, чем концентрация примеси в базовом (первоначальном монокристалле) материале, чтобы нейтрализовать имеющиеся там основные свободные носители заряда и создать проводимость противоположного знака. У границы n-и p- слоёв в результате перетечки зарядов образуются обеднённые зоны с нескомпенсированным объёмным положительным зарядом в n-слое и объёмным отрицательным зарядом в p-слое. Эти зоны в совокупности и образуют p-n-переход. Возникший на переходе потенциальный барьер (контактная разность потенциалов) препятствует прохождению основных носителей заряда, т.е. электронов со стороны p-слоя, но беспрепятственно пропускают неосновные носители в противоположных направлениях. Это свойство p-n-переходов и определяет возможность получения фото-ЭДС при облучении ФЭП солнечным светом. Созданные светом в обоих слоях ФЭП неравновесные носители заряда (электронно-дырочные пары ) разделяются на p-n-переходе: неосновные носители (т.е.электроны) свободно проходят через переход, а основные (дырки) задерживаются. Таким образом, под действием солнечного излучения через p-n-переход в обоих направлениях будет протекать ток неравновесных неосновных носителей заряда- фотоэлектронов и фотодырок, что как раз и нужно для работы ФЭП. Если теперь замкнуть внешнюю цепь, то электроны из n-слоя, совершив работу на нагрузке, будут возвращаться в p-слой и там рекомбинировать (объединяться) с дырками, движущимися внутри ФЭП в противоположном направлении. Для сбора и отвода электронов во внешнюю цепь на поверхности полупроводниковой структуры ФЭП имеется контактная система. На передней, освещённой поверхности преобразователя контакты выполняются в виде сетки или гребёнки, а на тыльной могут быть сплошными.

Основные необратимые потери энергии в ФЭП связаны с:

Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяется различные мероприятия. К их числу относятся:

Также существенного повышения КПД ФЭП удалось добиться за счёт создания преобразователей с двухсторонней чувствительностью (до +80 % к уже имеющемуся КПД одной стороны), применения люминесцентно переизлучающих структур, предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т.д.

В системах преобразования энергии СЭС (солнечных электростанций) в принципе могут быть использованы любые созданные и разрабатываемые в настоящее время типы ФЭП различной структуры на базе разнообразных полупроводниковых материалов, однако не все они удовлетворяют комплексу требований к этим системам:

Так, например, некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья и сложности его переработки. Отдельные методы улучшения энергетических и эксплутационных характеристик ФЭП, например, за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т.д. Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, т.е. фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью. Изготовление солнечных элементов и сборка солнечных батарей на автоматизированных линиях обеспечит снижение себестоимости модуля батареи в 2-2,5 раза.

В качестве наиболее вероятных материалов для фотоэлектрических систем преобразования солнечной энергии СЭС в настоящее время рассматривается кремний и арсенид галлия (GaAs), причём в последнем случае речь идёт о гетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs.

ФЭП (фотоэлектрические преобразователи) на основе соединения мышьяка с галлием (GaAs), как известно, имеют более высокий, чем кремниевые ФЭП, теоретический КПД, так как ширина запрещённой зоны у них практически совпадает с оптимальной шириной запрещённой зоны для полупроводниковых преобразователей солнечной энергии =1,4 эВ. У кремниевых этот показатель =1,1 эВ.

Также ГФП на основе GaAs в значительно меньшей степени, чем кремниевые ФЭП, подвержены разрушению потоками протонов и электронов высоких энергий вследствие высокого уровня поглощения света в GaAs, а также малых требуемых значений времени жизни и диффузионной длины неосновных носителей. Более того, эксперименты показали, что значительная часть радиационных дефектов в ГФП на основе GaAs исчезает после их термообработки ( отжига) при температуре как раз порядка 150-180 °С. Если ГФП из GaAs будут постоянно работать при температуре порядка 150°С, то степень радиационной деградации их КПД будет относительно небольшой на протяжении всего срока активного функционирования станций ( особенно это касается космических солнечных энергоустановок, для которых важен малые вес и размер ФЭП и высокий КПД).

В отличие от кремния галлий является весьма дефицитным материалом, что ограничивает возможности производства ГФП на основе GaAs в количествах, необходимых для широкого внедрения.

В космических аппаратах, где основным источником тока являются солнечные батареи и где очень важны понятные соотношения массы, размера и КПД, главным материалом для солн. батарей, конечно, является арсенид галлия. Очень важна для космических СЭС способность этого соединения в ФЭП не терять КПД при нагревании концентрированным в 3-5 раз солнечным излучением, что соответственно, снижает потребности в дефицитном галлии. Дополнительный резерв экономии галлия связан с использованием в качестве подложки ГФП не GaAs, а синтетического сапфира (Al2O3).

Расчет фотоэлектрической системы.

Использовать энергию солнечных элементов можно также как и энергию других источников питания, с той разницей, что солнечные элементы не боятся короткого замыкания. Каждый из них предназначен для поддержания определенной силы тока при заданном напряжении. Но в отличии от других источников тока характеристики солнечного элемента зависят от количества падающего на его поверхность света. Например, набежавшее облако может снизить выходную мощность более чем на 50%. Кроме того отклонения в технологических режимах влекут за собой разброс выходных параметров элементов одной партии. Следовательно, желание обеспечить максимальную отдачу от фотоэлектрических преобразователей приводит к необходимости сортировки элементов по выходному току. В качестве наглядного примера “вшивой овцы портящей все стадо” можно привести следующий: в разрыв водопроводной трубы большого диаметра врезать участок трубы с гораздо меньшим диаметром, в результате водоток резко сократится. Нечто аналогичное происходит и в цепочке из неоднородных по выходным параметрам солнечных элементов.

Что такое солнечный фотоэлектрический преобразователь. Смотреть фото Что такое солнечный фотоэлектрический преобразователь. Смотреть картинку Что такое солнечный фотоэлектрический преобразователь. Картинка про Что такое солнечный фотоэлектрический преобразователь. Фото Что такое солнечный фотоэлектрический преобразователь

Напряжение холостого хода, генерируемое одним элементом, слегка изменяется при переходе от одного элемента к другому в одной партии и от одной фирмы изготовителя к другой и составляет около 0.6 В. Эта величина не зависит от размеров элемента. По иному обстоит дело с током. Он зависит от интенсивности света и размера элемента, под которым подразумевается площадь его поверхности.

Элемент размером 100 100 мм в 100 раз превосходит элемент размером 10 10 мм и, следовательно, он при той же освещенности выдаст ток в 100 раз больший.

Нагружая элемент, можно построить график зависимости выходной мощности от напряжения, получив нечто подобное изображенному на рис.2

Что такое солнечный фотоэлектрический преобразователь. Смотреть фото Что такое солнечный фотоэлектрический преобразователь. Смотреть картинку Что такое солнечный фотоэлектрический преобразователь. Картинка про Что такое солнечный фотоэлектрический преобразователь. Фото Что такое солнечный фотоэлектрический преобразователь

Пиковая мощность соответствует напряжению около 0,47 В. Таким образом, чтобы правильно оценить качество солнечного элемента, а также ради сравнения элементов между собой в одинаковых условиях, необходимо нагрузить его так, чтобы выходное напряжение равнялось 0,47 В. После того, как солнечные элементы подобраны для работы, необходимо их спаять. Серийные элементы снабжены токосъемными сетками, которые предназначены для припайки к ним проводников.

Батареи можно составлять в любой желаемой комбинации. Простейшей батареей является цепочка из последовательно включенных элементов. Можно также соединить параллельно цепочки, получив так называемое последовательно-параллельное соединение.

Важным моментом работы солнечных элементов является их температурный режим. При нагреве элемента на один градус свыше 25°С он теряет в напряжении 0,002 В, т.е. 0,4 %/градус. На рис.3 приведено семейство кривых ВАХ для температур 25°С и 60°С.

Что такое солнечный фотоэлектрический преобразователь. Смотреть фото Что такое солнечный фотоэлектрический преобразователь. Смотреть картинку Что такое солнечный фотоэлектрический преобразователь. Картинка про Что такое солнечный фотоэлектрический преобразователь. Фото Что такое солнечный фотоэлектрический преобразователь

В яркий солнечный день элементы нагреваются до 60-70оС теряя 0,07-0,09 В каждый. Это и является основной причиной снижения КПД солнечных элементов, приводя к падению напряжения, генерируемого элементом. КПД обычного солнечного элемента в настоящее время колеблется в пределах 10-16 %. Это значит, что элемент размером 100 100 мм при стандартных условиях может генерировать 1-1,6 Вт.

Все фотоэлектрические системы можно разделить на два типа: автономные и соединенные с электрической сетью. Станции второго типа отдают излишки энергии в сеть, которая служит резервом в случае возникновения внутреннего дефицита энергии.

Простейшей батареей является цепочка из последовательно соединенных элементов.

Можно соединить эти цепочки параллельно, получив так называемое последовательно-параллельное соединение. Параллельно можно соединять лишь цепочки (линейки) с идентичным напряжением, при этом их токи согласно закону Кирхгофа суммируются.

Что такое солнечный фотоэлектрический преобразователь. Смотреть фото Что такое солнечный фотоэлектрический преобразователь. Смотреть картинку Что такое солнечный фотоэлектрический преобразователь. Картинка про Что такое солнечный фотоэлектрический преобразователь. Фото Что такое солнечный фотоэлектрический преобразователь

Значение рабочего напряжения для модуля, состоящего из 36 элементов, таким образом, будет около 16…17 В (0,45….0,47 В на элемент) при 25о С.

Следует заметить, что напряжение холостого хода модуля мало зависит от освещенности, в то время как ток короткого замыкания, а соответственно и рабочий ток, прямо пропорциональны освещенности.

Исходя из всего выше сказанного надо подходить к расчету числа последовательно соединенных элементов модуля.Если потребителю необходимо иметь переменное напряжение, то к этому комплекту добавляется инвертор-преобразователь постоянного напряжения в переменное.

Что такое солнечный фотоэлектрический преобразователь. Смотреть фото Что такое солнечный фотоэлектрический преобразователь. Смотреть картинку Что такое солнечный фотоэлектрический преобразователь. Картинка про Что такое солнечный фотоэлектрический преобразователь. Фото Что такое солнечный фотоэлектрический преобразователь

Под расчетом ФЭС понимается определение номинальной мощности модулей, их количества, схемы соединения; выбор типа, условий эксплуатации и емкости АКБ; мощностей инвертора и контроллера заряда-разряда; определение параметров соединительных кабелей.

Прежде всего, надо определить суммарную мощность всех потребителей, подключаемых одновременно. Мощность каждого из них измеряется в ваттах и указана в паспортах изделий. На этом этапе уже можно выбрать мощность инвертора, которая должна быть не менее, чем в 1,25 раза больше расчетной. Следует иметь в виду, что такой хитрый прибор как компрессорный холодильник в момент запуска потребляет мощность в 7 раз больше паспортной.

Номинальный ряд инверторов 150, 300, 500, 800, 1500, 2500, 5000 Вт. Для мощных станций (более 1кВт) напряжение станции выбирается не менее 48 В, т.к. на больших мощностях инверторы лучше работают с более высоких исходных напряжений.

1000 / (12 x 0,5) = 167 А*ч

При расчете емкости АКБ в полностью автономном режиме необходимо принимать во внимание и наличие в природе пасмурных дней в течении которых аккумулятор должен обеспечивать работу потребителей.

В разделе “метеорология” даны месячные и суммарные годовые значения солнечной радиации для основных регионов России, а также с градацией по различным ориентациям световоспринимающей плоскости.

Взяв оттуда значение солнечной радиации за интересующий нас период и разделив его на 1000, получим так называемое количество пикочасов, т.е., условное время, в течении которого солнце светит как бы с интенсивностью 1000 Вт/м2.

Например, для широты Москвы и месяца-июля значение солнечной радиации составляет 167 кВтч/м2 при ориентации площадки на юг под углом 40о к горизонту. Это значит, что среднестатистически солнце светит в июле 167 часов (5,5 часов в день) с интенсивностью 1000 Вт/м2, хотя максимальная освещенность в полдень на площадке, ориентированной перпендикулярно световому потоку, не превышает 700-750 Вт/м2.

Этот коэффициента делает поправку на потерю мощности солнечных элементов при нагреве на солнце, а также учитывает наклонное падение лучей на поверхность модулей в течении дня.

Разница в его значении зимой и летом обусловлена меньшим нагревом элементов в зимний период.

При создании ФЭС настоятельно рекомендуется максимально снизить мощность потребителей. Например, в качестве осветителей использовать (по возможности) только люминесцентные лампы. Такие светильники, при потреблении в 5 раз меньшем, обеспечивают световой поток, эквивалентный световому потоку лампы накаливания.

Для небольших ФЭС целесообразно устанавливать ее модули на поворотном кронштейне для оптимального разворота относительно падающий лучей. Это позволит увеличить мощность станции на 20-30 %.

Немного об инверторах.

Инверторы или преобразователи постоянного тока в переменный ток, предназначены для обеспечения качественного электропитания различной аппаратуры и приборов в условиях отсутствия или низкого качества электросети переменного тока частотой 50 Гц напряжением 220 В, различных аварийных ситуациях и т. п.

Инвертор представляет собой импульсный преобразователь постоянного тока напряжением 12 (24, 48, 60) В в переменный ток со стабилизированным напряжением 220 В частотой 50 Гц. Большинство инверторов имеет на выходе СТАБИЛИЗИРОВАННОЕ напряжение СИНУСОИДАЛЬНОЙ формы, что позволяет использовать их для электропитания практически любого оборудования и приборов.

Конструктивно инвертор выполнен в виде настольного блока. На передней панели инвертора расположены выключатель работы изделия и индикатор работы преобразователя. На задней панели изделия находятся выводы (клеммы) для подключения источника постоянного тока, например, АКБ, вывод заземления корпуса инвертора, отверстие с креплением вентилятора (охлаждение), трёхполюсная евро розетка для подключения нагрузки.

Стабилизированное напряжение на выходе инвертора позволяет обеспечить качественное электропитание нагрузки при изменениях/колебаниях напряжения на входе, например при разряде АКБ, или колебаниях тока, потребляемого нагрузкой. Гарантированная гальваническая развязка источника постоянного тока на входе и цепи переменного тока с нагрузкой на выходе инвертора позволяют не предпринимать дополнительных мер для обеспечения безопасности работы при использовании различных источников постоянного тока или какого-либо электрооборудования. Принудительное охлаждение силовой части и низкий уровень шума при работе инвертора позволяют, с одной стороны, обеспечить хорошие массогабаритные показатели изделия, с другой стороны, при данном типе охлаждения не создают неудобств при эксплуатации в виде шума.

Функционально обеспечивает: повышение, снижение частоты, контроль перегрузки, перегрева.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *