Что такое состав и структура системы
Состав системы
Структурный аспект системы.
Тема 3. Структура и организация системы.
3.1. Структурный аспект системы.
Состав системы. Классификация элементов системы.
Разновидности связей в системах. Понятие структуры системы.
3.2. Организация системы.
Классификация целей системы. «Дерево целей».
Внутреннее устройство системы представляет собой единство состава, организации и структуры системы.
Состав системы сводится к полному перечню ее элементов, то есть это совокупность всех элементов, из которых состоит система. Состав характеризует богатство, многообразие системы, ее сложность.
Природа системы во многом зависит от ее состава, изменение которого приводит к изменению свойств системы. Например, меняя состав стали при добавке в нее компонента, можно получить сталь с заданными свойствами. Состав как определенный набор частей, компонентов элементов составляет субстанцию системы.
Заметим, что состав – необходимая характеристика системы, но, отнюдь, не достаточная. Системы, имеющие одинаковый состав, нередко обладают разными свойствами, поскольку элементы систем:
1. имеют различную внутреннюю организацию,
2. по-разному взаимосвязаны.
Поэтому в теории систем есть 2 дополнительные характеристики: организация системы и структура системы. Нередко их отождествляют.
Элементы представляют собой кирпичики, из которых строится системы. Они существенно влияют на свойства системы, в значительно степени определяют ее природу. Но свойства системы не сводятся к свойствам элементов.
Элемент – это далее не разложимая единица при данном способе расчленения, входящая в состав системы. Наличие связей между элементами ведет к появлению в целостной системе новых свойств (эмерджентность), не присущих элементам в отдельности. Для элементов системы характерны некоторые свойства.
Свойство – это вхождение вещи, элемента в некоторый класс вещей, когда не образуется новый предмет; характеристика, присущая вещам и явлениям, позволяющая отличать или отождествлять их.
Все элементы обладают 2 видами свойств:
1. элементальность при данном способе расчленения,
2. свойства природы элементов (например, свойства химических элементов – валентность, атомные веса; свойства живых организмов – место в иерархии видов, активность; свойства человека – система ролей, статусов, ценностей, интересов и т.п.).
Многое в системе зависит от типов элементов. Поэтому в теории систем значительную методологическую роль играет построение классификации элементов (табл.1).
Таблица 1 – Классификация элементов системы
Основание классификации | Элемент | |
Тип | Характеристика | |
Степень родства с другими элементами | Гомогенный | Однотипен с другими элементами |
Гетерогенный | Разнотипен с другими элементами | |
Степень самостоятельности элемента | Программный | Действует по жесткой программе |
Адаптивный | Обладает способностью приспособления | |
Инициативный | Обладает способностью изменять действительность | |
Длительность существования | Постоянный | Отличается относительно длительным временем существования |
Временный | Возникающий временно | |
Временная принадлежность | Прошлого (атавизм[1]) | Остался от прошлых этапов жизни системы |
Настоящего | Характерен для настоящего времени существования системы | |
Будущего | Свойственен для будущего данной системы (инновационный элемент) | |
Роль в системе | Основной | Играет главную роль в системе |
Неосновной | Играет второстепенную роль в системе | |
Активность в системе | Активный | Воздействующий на процессы |
Пассивный | Слабо воздействующий на процессы системы | |
Характер воздействия на систему | Определенный или предсказуемый | Оказывает вполне определенное воздействие на систему |
Неопределенный или непредсказуемый | Оказывает непредсказуемое воздействие на систему | |
Характер восприятия сигнала | Отторгающий | Не воспринимает сигнал, нередко отражает его |
Преобразующий | Преобразует поступивший на вход сигнал | |
Передающий | Передает сигнал в том виде, в котором получил |
Элементы в системе находятся не сами о себе, а связаны один с другим. Под связью понимается любого рода взаимоотношения между частями системы. Она выступает в виде качества, которое присуще материи и заключается в том, что все предметы, явления объективной действительности находятся в бесконечно многообразной зависимости и в многообразных отношениях.
Связь – взаимное ограничение объектов, создающее ограничение на их поведение, зависимость между ними, обмен между элементами веществом, энергией, информацией. Связи играют исключительно важную роль в системе. На них ложится значительная смысловая нагрузка в понимании природы систем. Без них принципиально невозможна система.
Связи выполняют в системе несколько функций, наиболее важные из них:
· системообразующая – связи выступают основой архитектоники системы, обеспечивают взаимодействие элементов, их взаимное влияние, участие в общесистемных процессах;
· специфицирующая– связи задают конкретные свойства системы, ее специфику. Определенный набор, характер, направленность и другие характеристики связей системы предопределяют ее свойства, функциональные возможности и развитие;
· витальная – связи обеспечивают жизнедеятельность системы, они поддерживают обмен системы с окружающей средой, изменения в связях предопределяет характеристики различных этапов развития системы.
Прифункциональном подходе связи рассматриваются с точки зрения выполняемой ими функции. При этом выделим 2 вида:
1. нейтральные (или статические), при которых действие и противодействие равны по величине, изменений не происходит;
2. функциональные, характеризующиеся тем, что действие и противодействие не совпадают, и элемент начинает реализовывать в системе некоторую функцию:
· связи порождения (причинно-следственные связи),
· связи преобразования – реализуются путем непосредственного взаимодействия 2 объектов с переходом их в новое состояние;
· связи строения (структурные) – обеспечивают строение системы;
· функциональные связи (в узком смысле слова) – обеспечивают функционирование системы;
· связи развития – смена состояний отличается качественными изменениями;
· связи управления – обеспечивают процесс управления системой.
Кроме того, под функциональный подход попадают прямые и обратные связи, каждая из которых выполняет свое назначение. Обратная связь информирует вход системы о состоянии ее выхода, а прямая– связывает один элемент с другим. Обратным связям принадлежит исключительно важная роль в управлении, поскольку они несут для субъекта управления необходимую информацию об объекте управления.
При содержательном подходе связи подразделяются на:
1. энергетические – процессы передачи энергии между элементами системы;
2. материально-вещественные – характеризуются материально-вещественными преобразованиями;
3. информационные – представляют собой информационные потоки.
Связи выступают важнейшей системной характеристикой. Можно с уверенностью утверждать, чем большим числом связей характеризуется система, тем она сложнее.
Максимальное количество связей в системе определяется числом возможных сочетаний между элементами и может быть найдено по формуле:
где n – количество элементов, входящих в систему; С – количество связей между ними.
Если система состоит из 5 элементов (n=5), то максимальное количество связей для нее равно 20 (С=5*4=20).
Эта формула верна только для тех систем, у которых между двумя элементами допустима одна связь.
Понятие структуры системы
Структура системы (лат. structura – строение, порядок связи) – это совокупность устойчивых связей между элементами системы, которые обеспечивают целостность системы и тождественность самой себе. Структура намного богаче состава, так как состав отвечает на вопрос: «Из чего состоит система?», а структура обеспечивает ответ на более сложный вопрос: «Как устроена система?».
Любая структура описывается следующими основными характеристиками:
· общим числом связей, характеризующих сложность системы;
· общим числом взаимодействий, которые определяют устойчивость системы;
· частотой связей, то есть количеством связей, приходящихся на один элемент, определяющих интенсивность взаимодействия элементов;
· числом внутренних связей, которые определяют внутреннее устройство системы;
· числом внешних связей, характеризующих взаимодействие системы со средой, ее открытость.
Для практической деятельности особенно важны две проблемы: описание и оптимизация структур. Для описания структур применяется теория графов. Граф – графическая модель структуры, которая состоит из множества вершин и ребер (дуг), символизирующих элементы и их связи. Граф определяется: множеством вершин графа и множеством пар вершин, между которыми существует связь. Теория графов – это область дискретной математики, занимающаяся исследованием и решением разнообразных проблем, связанных с графами. Для графа свойственно то, что число путей, по которым можно пройти от одной вершины к другой, отличается разнообразием. При этом наблюдаются различия в длительности этих путей.
На идее сокращения пути прохождения между крайними вершинами графа строится оптимизация структур.
Системный анализ
Для того чтобы получить информационную модель любого реального объекта или процесса, необходимо рассмотреть его с системной точки зрения — выполнить системный анализ объекта. Задача системного анализа, который проводит исследователь, — упорядочить свои представления об изучаемом объекте для того, чтобы отразить их в информационной модели. Таким образом, просматривается следующий порядок этапов перехода от реального объекта к информационной модели:
Понятие системы
Под системой понимается любой объект, состоящий из множества взаимосвязанных частей и существующий как единое целое.
Наука о системах называется системологией. Любой объект окружающего мира можно рассматривать как систему. Системы бывают материальные, нематериальные и смешанные. Примеры материальных систем: дерево, здание, человек, планета Земля, Солнечная система. Примеры нематериальных систем: человеческий язык, математика. Пример смешанных систем — школа. Она включает в себя как материальные части (школьное здание, оборудование, тетради, учебники и пр.), так и нематериальные (учебные планы, программы, расписания уроков).
Все разнообразие существующих систем можно разделить на две категории: на естественные системы, т.е. существующие в природе, и искусственные системы — созданные человеком. Например, Солнечная система — естественная, а компьютер — искусственная система. Для всякой искусственной системы существует цель ее создания человеком: автомобиль — перевозить людей и грузы, компьютер — работать с информацией, завод — производить продукцию. В системологии искусственную систему определяют как “средство достижения цели”*. Именно целесообразностью системы определяется ее состав и структура.
Состав системы. Подсистемы
Состав системы — это множество входящих в нее частей. В качестве примера системы рассмотрим объект, с которым ученикам приходится иметь дело на уроках информатики, — персональный компьютер.
Самое поверхностное описание ПК такое: это система, составными частями которой являются системный блок, клавиатура, монитор, принтер, мышь. Можно ли назвать их простыми элементами компьютера? Конечно, нет! Каждая из этих частей — это тоже система, состоящая из множества взаимосвязанных частей. В состав системного блока входят: центральный процессор, оперативная память, накопители на жестких и гибких магнитных дисках, CD-ROM, контроллеры внешних устройств и пр. В свою очередь, каждое из этих устройств — также сложная система. Например, центральный процессор состоит из арифметико-логического устройства, устройства управления, регистров. Так можно продолжать и дальше, все более углубляясь в подробности устройства компьютера.
Систему, входящую в состав какой-то другой, более крупной системы, называют подсистемой.
Из данного определения следует, что системный блок является подсистемой персонального компьютера, а процессор — подсистемой системного блока.
А можно ли сказать, что какая-то простейшая деталь компьютера, например гайка, системой не является? Все зависит от точки зрения. В устройстве компьютера гайка — простая деталь, поскольку на более мелкие части она не разбирается. Но с точки зрения строения вещества, из которого сделана гайка, это не так. Металл состоит из молекул, образующих кристаллическую структуру, молекулы — из атомов, атомы — из ядра и электронов. Чем глубже наука проникает в вещество, тем больше убеждается, что нет абсолютно простых объектов. Даже частицы атома, которые называли “элементарными” (например, электроны), тоже оказались не простыми.
Любой реальный объект бесконечно сложен. Описание его состава и структуры всегда носит модельный характер, т.е. является приближенным. Степень подробности такого описания зависит от его назначения. Одна и та же часть системы в одних случаях может рассматриваться как ее простой элемент, в других случаях — как подсистема, имеющая свой состав и структуру.
Структура системы
Всякая система определяется не только составом своих частей, но также порядком и способом объединения этих частей в единое целое. Все части (элементы) системы находятся в определенных отношениях или связях друг с другом. Здесь мы выходим на следующее важнейшее понятие системологии — понятие структуры.
Структура — это совокупность связей между элементами системы.
Можно еще сказать так: структура — это внутренняя организация системы. Многие открытия в науке связаны именно с выяснением структуры природных систем. Например, экспериментально было доказано, что атом состоит из положительно и отрицательно заряженных частиц. Однако лишь открытие орбитальной структуры атома, сделанное Нильсом Бором, в полной мере объяснило природу атома. Стали понятны многие физические явления (например, механизм электромагнитного излучения).
Всякая система обладает определенным составом и структурой. Свойства системы зависят от того и от другого. Даже при одинаковом составе системы с разной структурой обладают разными свойствами, могут иметь разное назначение.
С примерами зависимости свойств различных систем от их структуры ученики встречаются в разных школьных дисциплинах. Например, известно, что графит и алмаз состоят из молекул одного и того же химического вещества — углерода. Но в алмазе молекулы углерода образуют кристаллическую структуру, а у графита структура совсем другая — слоистая. В результате алмаз — самое твердое в природе вещество, а графит — мягкий, из него делают грифели для карандашей. В химии известно явление, которое называется изомерией. Вещества, состоящие из молекул одинакового атомарного состава, но различающиеся структурой молекул, обладают разными свойствами.
Типы связей в системах
Связи в системах бывают материальными и информационными. В естественных системах неживой природы (космические системы, атомы и молекулы, природные системы на Земле и пр.) связи носят только материальный характер, а в системах живой природы существуют связи материальные и информационные.
Информационные связи — это обмен информацией между частями системы, поддерживающий ее целостность и функциональность.
Очевидно существование информационных связей в животном мире, в человеческом обществе. В технических системах, используемых в информационной сфере (радио, телевидение, компьютерные сети), также действуют связи информационного типа. В них информация — это семантическое содержание физических сигналов, передаваемых между частями системы.
Общественные (социальные) системы — это различные объединения людей. Конечно, между ними тоже есть определенные материальные связи (например, общее помещение, экономическая зависимость, родственно-генетические связи), но очень важны информационные связи. Ни один коллектив, от семьи до государства, не может существовать без информационного обмена.
Системный эффект
Следующее важное положение системологии формулируется так: всякая система приобретает новые качества, не присущие ее составным частям.
Например, отдельные детали велосипеда: рама, руль, колеса, педали, сиденье — не обладают способностью к езде. Но вот эти детали соединили определенным образом, создав систему под названием “велосипед”, которая приобрела новое качество — способность к езде, т.е. возможность служить транспортным средством. Этим свойством не обладала ни одна из деталей в отдельности. То же самое можно показать на примере самолета: ни одна часть самолета в отдельности не обладает способностью летать; но собранный из них самолет (система) — летающее устройство. Еще пример: социальная система — строительная бригада. Один рабочий, владеющий одной специальностью (каменщик, сварщик, плотник, крановщик и пр.), не может построить многоэтажный дом, но вся бригада вместе справляется с этой работой.
Появление нового качества у системы называется системным эффектом. Это же свойство выражается фразой: “Целое больше суммы своих частей”.
Модели систем
Наши представления о реальных системах носят приближенный, модельный характер. Описывая в какой-либо форме реальную систему, мы создаем ее информационную модель. Рассмотрим три разновидности информационных моделей систем:
— модель “черного ящика”;
Модель “черного ящика”. Всякая система — это нечто цельное и выделенное из окружающей среды. Система и среда взаимодействуют между собой. В системологии используются представления о входах и выходах системы. Вход системы — это воздействие на систему со стороны внешней среды, а выход — это воздействие, оказываемое системой на окружающую среду. Такое представление о системе называется моделью “черного ящика” (см. рисунок).
Модель “черного ящика”
Модель “черного ящика” используется в тех случаях, когда внутреннее устройство системы недоступно или не представляет интереса, но важно описать ее внешние взаимодействия. Например, в любой инструкции по использованию бытовой техники (телевизор, магнитофон, стиральная машина и пр.) дается описание работы с ней на уровне входов и выходов: как включить, как регулировать работу, что получим на выходе. Такого представления может быть вполне достаточно для пользователя данной техникой, но не достаточно для специалиста по ее ремонту.
Модель “черного ящика” отражает лишь взаимодействие системы с окружающей средой. Такой подход к сложным системам был введен в кибернетике. Казалось бы, это простейшая модель, которая не углубляется во внутреннее устройство системы. Однако и внешние взаимодействия реальной системы оказываются бесконечно сложными. Поэтому модель “черного ящика”, как и любая другая, строится в соответствии с целью моделирования, учитывая лишь те входы и выходы системы, которые существенны с точки зрения цели моделирования, назначения создаваемой модели.
Если описать компьютер как “черный ящик”, учитывая только его информационное взаимодействие с внешней средой, то модель получится следующей:
Модель “черного ящика” компьютера
Если, кроме информационного, учитывать еще и физическое взаимодействие компьютера с внешней средой, то на входе надо добавить: “электропитание”, “температурное воздействие”, “вибрационное воздействие”. На выходе: “излучение экрана”, “шум вентилятора”, “нагрев от монитора”. В таком расширенном списке входов и выходов следует выделить основные параметры и побочные. Основные — это те, которые связаны с главной функцией системы: работа с информацией. Среди побочных можно выделить необходимые (электропитание) и нежелательные (излучение экрана, шум вентилятора).
Модель можно расширить, добавив в нее экономические параметры, связанные с финансовыми расходами на входе (исходная цена, оплата электроэнергии, оплата за пользование Интернетом) и возможными доходами на выходе, если компьютер является рабочим инструментом, в результате использования которого человек зарабатывает деньги.
Модель состава системы дает описание входящих в нее элементов и подсистем, но не рассматривает связей между ними. Очевидно, что и модель состава компьютера может иметь разные варианты в зависимости от отражаемой в ней точки зрения на систему. Например:
Вариант 1: системный блок, клавиатура, монитор, принтер, мышь.
Вариант 2: оперативная память, внешняя память, центральный процессор, устройства ввода, устройства вывода.
Вариант 3: центральный процессор, ОЗУ, ПЗУ, жесткий диск, флоппи-диск, лазерный диск, информационная магистраль, клавиатура, монитор, контроллеры внешних устройств и пр.
Структурную модель системы еще называют структурной схемой. На структурной схеме отражается состав системы и ее внутренние связи. Наряду с термином “связь” нередко употребляют термин “отношение”.
Наглядным способом описания структурной модели системы являются графы (см. “Графические модели”). На рисунке в виде ориентированного графа приведена структурная модель компьютера.
Структурная модель кмпьютера с информационными связями
Здесь стрелки обозначают информационные связи между элементами системы. Направление стрелок указывает на направление передачи информации.
Однако если нас интересуют связи по управлению, то получится следующая граф-модель компьютера:
Структурная модель кмпьютера со связями по управлению
Здесь стрелка обозначает направление управляющего воздействия. Смысл схемы заключается в том, что процессор управляет работой всех остальных устройств компьютера.
Следовательно, структурная модель одной и той же системы может быть разной. Все определяется целями моделирования.
Методические рекомендации
Одной из наиболее заметных тенденций в современном развитии школьной информатики стало проникновение в ее содержание элементов системного анализа. Знакомство учащихся с системным анализом может происходить по двум целевым направлениям:
— развитие системного мышления учащихся;
— знакомство с системным анализом как этапом информационного моделирования.
Начиная обсуждение понятия “система”, следует обратить внимание учащихся на то, что с этим понятием они многократно встречались как в учебных дисциплинах, так и в повседневной жизни. Примеров можно привести достаточно много: Солнечная система, периодическая система химических элементов, системы растений и животных, система образования, система транспорта, система здравоохранения и многое другое. Безусловно, ученики имеют некоторое интуитивное понимание того, что такое система. Однако для информатики это понятие является одним из фундаментальных и поэтому здесь нельзя ограничиться интуитивным представлением.
Сформулировав определение системы, его необходимо подробно обсудить. В ходе такого обсуждения следует использовать знакомые и понятные ученикам примеры систем. Наряду с теми, что были перечислены выше, нужно напомнить примеры систем, с которыми ученики встречались в курсе информатики. Например, совокупность взаимосвязанных данных, предназначенных для обработки на компьютере, называется системой данных. Совокупность взаимосвязанных программ определенного назначения образует программные системы: операционные системы, системы программирования. Файловая система — организованная совокупность файлов и папок на дисках компьютера.
Двигаясь от интуитивного представления учащихся о системах к более строгому, научному пониманию, необходимо последовательно раскрыть следующие свойства систем:
— функция (цель, назначение) системы;
— взаимодействие системы с окружающей средой;
На конкретных примерах необходимо показать неразрывность системного анализа с информационным моделированием. Информационная модель базируется на данных, т.е. на информации об объекте моделирования. Любой реальный объект — это сложная система, которая обладает бесконечным множеством различных свойств и характеристик. Важнейшим этапом моделирования является разделение параметров, характеризующих моделируемый объект или процесс, по степени важности влияния их изменений на поведение объекта или процесса, — то поведение, которое представляется важным с точки зрения достижения целей моделирования. Такой процесс называется ранжированием. Чаще всего невозможно (да и не нужно) учитывать все факторы, которые могут повлиять на поведение объекта или процесса, — нужно выделить важнейшие из них. От того, насколько удачно на этапе системного анализа будут выделены важнейшие факторы, зависит успех моделирования, быстрота и эффективность достижения цели.
Выделить более важные (или, как говорят, значимые) факторы и отсеять менее важные может лишь специалист в той предметной области, к которой относится модель. Например, если учитель хочет создать модель учебного процесса в классе, то ему потребуются данные об изучаемых предметах, расписании занятий, сведения об оценках учеников, о преподавателях. Если же он задался целью смоделировать процесс летнего отдыха (например, коллективную поездку на юг), то ему потребуются совсем другие данные: сроки поездки, маршрут поезда, стоимость билетов, стоимость расходов на питание и пр. Возможно, что единственными общими данными для этих двух моделей будет список учеников класса.