Что такое составное число правило
Простые и составные числа, определения, примеры, таблица простых чисел, решето Эратосфена.
В этой статье мы изучим простые и составные числа. Сначала дадим определения простых и составных чисел, а также приведем примеры. После этого докажем, что простых чисел бесконечно много. Далее запишем таблицу простых чисел, и рассмотрим методы составления таблицы простых чисел, особо тщательно остановимся на способе, получившем название решето Эратосфена. В заключение осветим основные моменты, которые нужно учитывать при доказательстве того, что данное число является простым или составным.
Навигация по странице.
Простые и составные числа – определения и примеры
Понятия простые числа и составные числа относятся к целым положительным числам, которые больше единицы. Такие целые числа, в зависимости от количества их положительных делителей, подразделяются на простые и составные числа. Таким образом, чтобы понять определения простых и составных чисел, нужно хорошо представлять себе, что такое делители и кратные.
Составные числа – это целые числа, большие единицы, которое имеют, по крайней мере, три положительных делителя.
Учитывая, что целые положительные числа – это натуральные числа, и что единица имеет только один положительный делитель, можно привести другие формулировки озвученных определений простых и составных чисел.
Простыми числами называют натуральные числа, которые имеют только два положительных делителя.
Составными числами называют натуральные числа, имеющие более двух положительных делителей.
Исходя из информации предыдущего абзаца, можно дать следующее определение составных чисел.
Натуральные числа, которые не являются простыми, называются составными.
Приведем примеры простых и составных чисел.
В заключение этого пункта хочется еще обратить внимание на то, что простые числа и взаимно простые числа – это далеко ни одно и то же.
Таблица простых чисел
Теперь разберемся с возможностью (а точнее с невозможностью) составления таблицы всех существующих простых чисел. Мы не можем составить таблицу всех простых чисел, потому что простых чисел бесконечно много. Последнее утверждение представляет собой теорему, которую мы докажем после следующей вспомогательной теоремы.
Наименьший положительный и отличный от 1 делитель натурального числа, большего единицы, является простым числом.
Теперь мы можем доказать, что простых чисел бесконечно много.
Простых чисел бесконечно много.
Так доказано, что всегда может быть найдено новое простое число, не заключающееся среди любого количества наперед заданных простых чисел. Следовательно, простых чисел бесконечно много.
Решето Эратосфена
Опишем несколько первых шагов.
Такой подход к составлению таблицы простых чисел является далеко не идеальным. Так или иначе, он имеет право на существование. Отметим, что при этом способе построения таблицы целых чисел можно использовать признаки делимости, которые немного ускорят процесс поиска делителей.
Существует более удобный способ для составления таблицы простых чисел, называемый решето Эратосфена. Присутствующее в названии слово «решето» не случайно, так как действия этого метода помогают как бы «просеять» сквозь решето Эратосфена целые числа, большие единицы, чтобы отделить простые от составных.
Первое записанное число 2 является простым. Теперь от числа 2 последовательно перемещаемся вправо на два числа и зачеркиваем эти числа, пока не доберемся до конца составляемой таблицы чисел. Так будут вычеркнуты все числа, кратные двум.
Давайте еще сформулируем и докажем теорему, которая позволит ускорить процесс составления таблицы простых чисел при помощи решета Эратосфена.
Что же нам дает доказанная теорема, касательно решета Эратосфена?
Данное число простое или составное?
Некоторые задания требуют выяснения, является ли данное число простым или составным. В общем случае эта задача далеко не проста, особенно для чисел, запись которых состоит из значительного количества знаков. В большинстве случаев приходится искать какой-либо специфический способ ее решения. Однако мы попробуем дать направление ходу мыслей для несложных случаев.
Несомненно, можно попробовать воспользоваться признаками делимости для доказательства того, что данное число является составным. Если, к примеру, некоторый признак делимости показывает, что данное число делится на некоторое целое положительное число большее единицы, то исходное число является составным.
Докажите, что число 898 989 898 989 898 989 составное.
Существенный недостаток такого подхода заключается в том, что признаки делимости не позволяют доказать простоту числа. Поэтому при проверке числа на то, является ли оно простым или составным, нужно действовать иначе.
Число 11 723 простое или составное?
Составное число
Составно́е число́ — натуральное число, бо́льшее 1, не являющееся простым. Каждое составное число является произведением двух натуральных чисел, бо́льших 1.
Последовательность составных чисел начинается так:
4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, … (последовательность A002808 в OEIS)







содержит только составные числа:
делится на 2,
делится на 3 и т. д.








