Что такое состояние термодинамического равновесия
Термодинамическое равновесие
Термодинамическое равновесие — состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в метастабильном равновесии. В состоянии равновесия в системе отсутствуют потоки материи или энергии, неравновесные потенциалы (или движущие силы), изменения количества присутствующих фаз. Отличают тепловое, механическое, радиационное (лучистое) и химическое равновесия. На практике условие изолированности означает, что процессы установления равновесия протекают гораздо быстрее, чем происходят изменения на границах системы (то есть изменения внешних по отношению к системе условий), и осуществляется обмен системы с окружением веществом и энергией. Иными словами, термодинамическое равновесие достигается, если скорость релаксационных процессов достаточно велика (как правило, это характерно для высокотемпературных процессов) либо велико время для достижения равновесия (этот случай имеет место в геологических процессах).
В реальных процессах часто реализуется неполное равновесие, однако степень этой неполноты может быть существенной и несущественной. При этом возможны три варианта:
В неравновесных системах происходят изменения потоков материи или энергии, или, например, фаз.
Устойчивость термодинамического равновесия
Состояние термодинамического равновесия называется устойчивым, если в этом состоянии не происходит изменения макроскопических параметров системы.
Критерии термодинамической устойчивости различных систем:
Равновесие термодинамическое
Термодинамическое равновесие — состояние изолированной термодинамической системы, при котором в каждой точке для всех химических, диффузионных, ядерных, и других процессов скорость прямой реакции равна скорости обратной.
Термодинамическое равновесие можно делить на термическое, механическое и химическое равновесие, выделяя различные типы физических процессов, на которых достигнуто состояние равновесия.
Согласно нулевому началу термодинамики к термодинамическому равновесию стремится термодинамическая система, изолированная от внешних воздействий.
На практике условие изолированности означает, что процессы внутри системы протекают гораздо быстрее, чем обменные процессы с внешней средой.
В реальных процессах часто реализуется неполное равновесие, однако степень этой неполноты может быть существенной и несущественной. При этом возможны три варианта:
Содержание
Устойчивость термодинамического равновесия
Из нулевого начала термодинамики следует устойчивость состояния термодинамического равновесия. В этом состоянии не меняются интегральные параметры системы (макропараметры) — температура, давление, плотность. Собственно, эти и другие макропараметры строго определяются только для систем, которые находятся в состоянии термодинамического равновесия.
В состоянии термодинамического равновесия не меняются также и различные вероятностные величины, например, функции распределения по энергиям и скоростям для всех составляющих системы (молекул, атомов, электронов, ионов). Для идеального газа, распределение частиц по энергиям в равновесном состоянии описывается функцией распределения Максвелла.
Достижимость термодинамического равновесия
В природе не существуют полного термодинамического равновесия. Всякая система в реальном мире изолирована лишь отчасти, и в каждой системе химические, ядерные процессы или процессы передачи энергии уравновешены лишь с определённой точностью. Невозможно достичь постоянства граничных условий вокруг какой-либо замкнутой области, также как невозможно бесконечно долго ждать момента наступления полного термодинамического равновесия в этой замкнутой области.
Но при этом в жизни есть множество примеров систем, достаточно близких к термодинамическому равновесию, чтобы получать полезные выводы из расчетов, проведённых в предположении термодинамического равновесия.
Примеры
Для герметического сосуда произвольной формы (это может быть закрытая стеклянная бутылка или, камера от велосипеда), наполненного любым газом или жидкостью и помещённым в другой сосуд, наполненный газом или жидкостью с постоянной температурой условия теплового равновесия выполняются.
Плазма, полученная в земных условиях, например, в газоразрядной камере всегда неравновесна. Энергия, поступающая в объём, из электрического разряда, уходит в окружающее пространство, например, с излучением из газа. Заряженные частицы, электроны усваивают энергию электрического поля и отдают её тяжёлым частицам — атомам и ионам в столкновениях. В этом случае говорят о локальном термодинамическом равновесии внутри малых объёмов или о приближённом термодинамическом равновесии внутри ансамблей частиц (электронов, ионов, атомов, фотонов). Поэтому в физике плазмы используют термины: температура электронов, температура ионов, температура атомов, подразумевая, что распределение каждого класса частиц по энергиям приближённо описывается функцией Максвелла, но со своей температурой.
Герметичный цилиндр, разделённый герметичным теплопроводящим поршнем, который перемещается без трения и разделяет объём цилиндра на две части, наполненные газом. Если давления и/или температуры с разных сторон поршня различаются, то он начнёт колебательное движение, которое со временем затухнет и система, ограниченная внутренностью поршня, перейдёт в состояние термодинамического равновесия — поршень неподвижен, давления и температуры с обоих сторон поршня одинаковы.
Термодинамическое равновесие
Термодинамическое равновесие — состояние изолированной термодинамической системы, при котором в каждой точке для всех химических, диффузионных, ядерных, и других процессов скорость прямой реакции равна скорости обратной.
Термодинамическое равновесие можно делить на термическое, механическое и химическое равновесие, выделяя различные типы физических процессов, на которых достигнуто состояние равновесия.
Согласно нулевому началу термодинамики к термодинамическому равновесию стремится термодинамическая система, изолированная от внешних воздействий.
На практике условие изолированности означает, что процессы внутри системы протекают гораздо быстрее, чем обменные процессы с внешней средой.
В реальных процессах часто реализуется неполное равновесие, однако степень этой неполноты может быть существенной и несущественной. При этом возможны три варианта:
Содержание
Устойчивость термодинамического равновесия
Из нулевого начала термодинамики следует устойчивость состояния термодинамического равновесия. В этом состоянии не меняются интегральные параметры системы (макропараметры) — температура, давление, плотность. Собственно, эти и другие макропараметры строго определяются только для систем, которые находятся в состоянии термодинамического равновесия.
В состоянии термодинамического равновесия не меняются также и различные вероятностные величины, например, функции распределения по энергиям и скоростям для всех составляющих системы (молекул, атомов, электронов, ионов). Для идеального газа, распределение частиц по энергиям в равновесном состоянии описывается функцией распределения Максвелла.
Достижимость термодинамического равновесия
В природе не существуют полного термодинамического равновесия. Всякая система в реальном мире изолирована лишь отчасти, и в каждой системе химические, ядерные процессы или процессы передачи энергии уравновешены лишь с определённой точностью. Невозможно достичь постоянства граничных условий вокруг какой-либо замкнутой области, также как невозможно бесконечно долго ждать момента наступления полного термодинамического равновесия в этой замкнутой области.
Но при этом в жизни есть множество примеров систем, достаточно близких к термодинамическому равновесию, чтобы получать полезные выводы из расчетов, проведённых в предположении термодинамического равновесия.
Примеры
Для герметического сосуда произвольной формы (это может быть закрытая стеклянная бутылка или, камера от велосипеда), наполненного любым газом или жидкостью и помещённым в другой сосуд, наполненный газом или жидкостью с постоянной температурой условия теплового равновесия выполняются.
Критерии термодинамической устойчивости различных систем
См. также
Термодинамическое равновесие
На практике условие изолированности означает, что процессы установления равновесия протекают гораздо быстрее, чем происходят изменения на границах системы (то есть изменения внешних по отношению к системе условий), и осуществляется обмен системы с окружением веществом и энергией. Иными словами, термодинамическое равновесие достигается, если скорость релаксационных процессов достаточно велика (как правило, это характерно для высокотемпературных процессов) либо велико время для достижения равновесия (этот случай имеет место в геологических процессах).
В реальных процессах часто реализуется неполное (относительное, подвижное, динамическое) равновесие, однако степень этой неполноты может быть существенной и несущественной. При этом возможны три варианта:
равновесие достигается в какой-либо части (или частях) относительно большой по размерам системы — локальное равновесие,
неполное равновесие достигается вследствие разности скоростей релаксационных процессов, протекающих в системе — частичное равновесие,
имеют место как локальное, так и частичное равновесие.В неравновесных системах происходят изменения потоков материи или энергии, или, например, фаз.
Связанные понятия
Упоминания в литературе
Связанные понятия (продолжение)
Эта статья — об энергетическом спектре квантовой системы. О распределении частиц по энергиям в излучении см. Спектр, Спектр излучения. Об энергетическом спектре сигнала см. Спектральная плотность.Энергетический спектр — набор возможных энергетических уровней квантовой системы.
Термодинамика
Лекция 1. Предмет технической термодинамики и ее методы
1. Предмет термодинамики
2. Основные параметры состояния тела
3. Понятие о термодинамическом процессе
4. Гомогенные и гетерогенные термодинамические системы
5. Термодинамическое равновесие
1. Предмет термодинамики
Термодинамика наука о превращениях различных видов энергии из одного в другой, и о наиболее общих макроскопических свойствах материи. Она изучает различные как физические, так и химические явления, обусловленные превращениями энергии. Применение закономерностей термодинамики позволяет анализировать свойства веществ, предсказывать их поведение в различных условиях. Термодинамика дает возможность исследовать различные процессы от простых в однородных средах до сложных с физическими и химическими превращениями, биологических и др.
Слово «термодинамика» происходит от греч. «therme» – тепло и «dynamis» – сила. Название науки возникло в период ее основания – в начале XIX в. В настоящее время слово «термодинамика» трактуют так: наука «о силах, связанных с теплотой».
Термодинамика основана на двух, экспериментально установленных законах (началах).
Первый закон (начало) является по существу законом преобразования и сохранения энергии применительно к процессам, изучаемым в термодинамике; невозможен процесс возникновения или исчезновения энергии.
Второй закон (начало) – определяет направление течения реальных (неравновесных) процессов; невозможен процесс, имеющий единственным своим результатом превращение теплоты в работу.
Термодинамический метод исследования основан на законах (началах) термодинамики и представляет собой их логическое и математическое развитие.
Объект исследования в термодинамике называют термодинамической системой или, в простом случае, термодинамическим телом. Одна из особенностей метода термодинамики состоит в том, что система (тело) противопоставляется всем другим телам, которые называют окружающей средой. Термодинамика построена дедуктивно: частные выводы получены из общих законов (начал).
Принято разделять термодинамику на физическую, или общую, химическую и техническую.
Физическая термодинамика разрабатывает метод термодинамики и применяет его для изучения фазовых превращений термоэлектрических и магнитных явлений, излучения, поверхностных явлений и т. п.
Химическая термодинамика изучает процессы с физическими и химическими превращениями с помощью метода термодинамики.
Техническая термодинамика устанавливает закономерности взаимного преобразования теплоты и работы, для чего изучает свойства газов и паров (рабочих тел) и процессы изменения их состояния; устанавливает взаимосвязь между тепловыми, механическими и химическими процессами, протекающими в тепловых двигателях и холодильных установках. Одна из основных ее задач – отыскание наиболее рациональных способов взаимного превращения теплоты, и работы.