Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΎΠΊΡΠ°ΡΠ½ΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ
Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅
Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ (Π°Π½Π³Π». Standard Deviation) β ΠΏΡΠΎΡΡΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ ΡΡΠΎ ΠΌΠ΅ΡΠ° ΡΠΎΠ³ΠΎ, Π½Π°ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π·Π±ΡΠΎΡΠ°Π½ Π½Π°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ .
ΠΡΡΠΈΡΠ»ΡΡ Π΅Π³ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠ·Π½Π°ΡΡ, ΡΠ²Π»ΡΡΡΡΡ Π»ΠΈ ΡΠΈΡΠ»Π° Π±Π»ΠΈΠ·ΠΊΠΈΠΌΠΈ ΠΊ ΡΡΠ΅Π΄Π½Π΅ΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ Π΄Π°Π»Π΅ΠΊΠΈ ΠΎΡ Π½Π΅Π³ΠΎ. ΠΡΠ»ΠΈ ΡΠΎΡΠΊΠΈ Π΄Π°Π½Π½ΡΡ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π΄Π°Π»Π΅ΠΊΠΎ ΠΎΡ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΡΠΎ Π² Π½Π°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΡ ΠΈΠΌΠ΅Π΅ΡΡΡ Π±ΠΎΠ»ΡΡΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅; ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΡΠ°Π·Π±ΡΠΎΡ Π΄Π°Π½Π½ΡΡ , ΡΠ΅ΠΌ Π²ΡΡΠ΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅.
Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π±ΡΠΊΠ²ΠΎΠΉ Ο (Π³ΡΠ΅ΡΠ΅ΡΠΊΠ°Ρ Π±ΡΠΊΠ²Π° ΡΠΈΠ³ΠΌΠ°).
Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ°ΠΊΠΆΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ:
ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ
Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄Π²Π° ΠΌΠ°Π»ΡΡ ΠΏΡΠ΅Π΄ΠΏΡΠΈΡΡΠΈΡ, Ρ Π½Π°Ρ Π΅ΡΡΡ Π΄Π°Π½Π½ΡΠ΅ ΠΎ Π·Π°ΠΏΠ°ΡΠ΅ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-ΡΠΎ ΡΠΎΠ²Π°ΡΠ° Π½Π° ΠΈΡ ΡΠΊΠ»Π°Π΄Π°Ρ .
ΠΠ΅Π½Ρ 1 | ΠΠ΅Π½Ρ 2 | ΠΠ΅Π½Ρ 3 | ΠΠ΅Π½Ρ 4 | |
---|---|---|---|---|
ΠΡΠ΅Π΄.Π | 19 | 21 | 19 | 21 |
ΠΡΠ΅Π΄.Π | 15 | 26 | 15 | 24 |
Π ΠΎΠ±Π΅ΠΈΡ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΡΡ ΡΡΠ΅Π΄Π½Π΅Π΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠΎΠ²Π°ΡΠ° ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 20 Π΅Π΄ΠΈΠ½ΠΈΡ:
ΠΠ΄Π½Π°ΠΊΠΎ, Π³Π»ΡΠ΄Ρ Π½Π° ΡΠΈΡΡΡ, ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅ΡΠΈΡΡ:
ΠΡΠ»ΠΈ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ, ΠΎΠ½ΠΎ ΠΏΠΎΠΊΠ°ΠΆΠ΅Ρ, ΡΡΠΎ
Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΡΡΡ Π²ΠΎΠ»Π°ΡΠΈΠ»ΡΠ½ΠΎΡΡΡ Π΄Π°Π½Π½ΡΡ β ΡΠΎ, Ρ ΠΊΠ°ΠΊΠΈΠΌ ΡΠ°Π·ΠΌΠ°Ρ ΠΎΠΌ ΠΎΠ½ΠΈ ΠΌΠ΅Π½ΡΡΡΡΡ; Ρ.Π΅. ΠΊΠ°ΠΊ ΡΠΈΠ»ΡΠ½ΠΎ ΡΡΠΎΡ Π·Π°ΠΏΠ°Ρ ΡΠΎΠ²Π°ΡΠ° Π½Π° ΡΠΊΠ»Π°Π΄Π°Ρ ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΉ ΠΊΠΎΠ»Π΅Π±Π»Π΅ΡΡΡ (ΠΏΠΎΠ΄Π½ΠΈΠΌΠ°Π΅ΡΡΡ ΠΈ ΠΎΠΏΡΡΠΊΠ°Π΅ΡΡΡ).
Π Π°ΡΡΠ΅Ρ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠ³ΠΎ (ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ) ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ
Π€ΠΎΡΠΌΡΠ»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ
Π Π°Π·Π½ΠΈΡΠ° ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΡΠΌΡΠ»Π°ΠΌΠΈ S ΠΈ Ο («n» ΠΈ «nβ1»)
Π‘ΠΎΡΡΠΎΠΈΡ Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΌΡ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΠΌ β Π²ΡΡ Π²ΡΠ±ΠΎΡΠΊΡ ΠΈΠ»ΠΈ ΡΠΎΠ»ΡΠΊΠΎ Π΅Ρ ΡΠ°ΡΡΡ:
ΠΠ°ΠΊ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅?
ΠΡΠΈΠΌΠ΅Ρ 1 (Ρ Ο)
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π΄Π°Π½Π½ΡΠ΅ ΠΎ Π·Π°ΠΏΠ°ΡΠ΅ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-ΡΠΎ ΡΠΎΠ²Π°ΡΠ° Π½Π° ΡΠΊΠ»Π°Π΄Π°Ρ ΠΡΠ΅Π΄ΠΏΡΠΈΡΡΠΈΡ Π.
ΠΠ΅Π½Ρ 1 | ΠΠ΅Π½Ρ 2 | ΠΠ΅Π½Ρ 3 | ΠΠ΅Π½Ρ 4 | |
ΠΡΠ΅Π΄.Π | 15 | 26 | 15 | 24 |
ΠΡΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π²ΡΠ±ΠΎΡΠΊΠΈ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ (Π½Π΅Π±ΠΎΠ»ΡΡΠΎΠ΅ n, Π·Π΄Π΅ΡΡ ΠΎΠ½ ΡΠ°Π²Π΅Π½ 4) ΠΈ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΡΡΡΡ Π²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΡΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ ΡΡΠ° ΡΠΎΡΠΌΡΠ»Π°:
ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΡΡΠΈ ΡΠ°Π³ΠΈ:
1. ΠΠ°ΠΉΡΠΈ ΡΡΠ΅Π΄Π½Π΅Π΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΡΠ±ΠΎΡΠΊΠΈ:
ΞΌ = (15 + 26 + 15+ 24) / 4 = 20
2. ΠΡ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²ΡΠ±ΠΎΡΠΊΠΈ ΠΎΡΠ½ΡΡΡ ΡΡΠ΅Π΄Π½Π΅Π΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅:
3. ΠΠ°ΠΆΠ΄ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠ°Π·Π½ΠΈΡΡ Π²ΠΎΠ·Π²Π΅ΡΡΠΈ Π² ΠΊΠ²Π°Π΄ΡΠ°Ρ:
4. Π‘Π΄Π΅Π»Π°ΡΡ ΡΡΠΌΠΌΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ:
5. ΠΠΎΠ΄Π΅Π»ΠΈΡΡ Π½Π° ΡΠ°Π·ΠΌΠ΅Ρ Π²ΡΠ±ΠΎΡΠΊΠΈ (Ρ.Π΅. Π½Π° n):
6. ΠΠ°ΠΉΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ:
ΠΡΠΈΠΌΠ΅Ρ 2 (Ρ S)
ΠΠ°Π΄Π°ΡΠ° ΡΡΠ»ΠΎΠΆΠ½ΡΠ΅ΡΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΡΡΠ΅ΡΡΠ²ΡΡΡ ΡΠΎΡΠ½ΠΈ, ΡΡΡΡΡΠΈ ΠΈΠ»ΠΈ Π΄Π°ΠΆΠ΅ ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Ρ Π΄Π°Π½Π½ΡΡ . Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π±Π΅ΡΡΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ°ΡΡΡ ΡΡΠΈΡ Π΄Π°Π½Π½ΡΡ ΠΈ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΠ΅ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π²ΡΠ±ΠΎΡΠΊΠΈ.
Π£ ΠΠ½Π΄ΡΠ΅Ρ 20 ΡΠ±Π»ΠΎΠ½Ρ, Π½ΠΎ ΠΎΠ½ ΠΏΠΎΡΡΠΈΡΠ°Π» ΡΠ±Π»ΠΎΠΊΠΈ ΡΠΎΠ»ΡΠΊΠΎ Π½Π° 6 ΠΈΠ· Π½ΠΈΡ .
ΠΠΎΠΏΡΠ»ΡΡΠΈΡ β ΡΡΠΎ Π²ΡΠ΅ 20 ΡΠ±Π»ΠΎΠ½Ρ, Π° Π²ΡΠ±ΠΎΡΠΊΠ° β 6 ΡΠ±Π»ΠΎΠ½Ρ, ΡΡΠΎ Π΄Π΅ΡΠ΅Π²ΡΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΠ½Π΄ΡΠ΅ΠΉ ΠΏΠΎΡΡΠΈΡΠ°Π».
Π―Π±Π»ΠΎΠ½Ρ 1 | Π―Π±Π»ΠΎΠ½Ρ 2 | Π―Π±Π»ΠΎΠ½Ρ 3 | Π―Π±Π»ΠΎΠ½Ρ 4 | Π―Π±Π»ΠΎΠ½Ρ 5 | Π―Π±Π»ΠΎΠ½Ρ 6 |
9 | 2 | 5 | 4 | 12 | 7 |
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΌΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌ ΡΠΎΠ»ΡΠΊΠΎ Π²ΡΠ±ΠΎΡΠΊΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΎΡΠ΅Π½ΠΊΠΈ Π²ΡΠ΅ΠΉ ΠΏΠΎΠΏΡΠ»ΡΡΠΈΠΈ, ΡΠΎ Π½ΡΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΡΡ ΡΠΎΡΠΌΡΠ»Ρ:
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ ΠΎΠ½Π° ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΉ ΡΠΎΡΠΌΡΠ»Ρ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ΅ΠΌ, ΡΡΠΎ ΠΎΡ n Π½ΡΠΆΠ½ΠΎ Π±ΡΠ΄Π΅Ρ Π²ΡΡΠ΅ΡΡΡ 1. Π€ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎ Π½ΡΠΆΠ½ΠΎ Π±ΡΠ΄Π΅Ρ ΡΠ°ΠΊΠΆΠ΅ Π²ΠΌΠ΅ΡΡΠΎ ΞΌ (ΡΡΠ΅Π΄Π½Π΅Π΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅) Π½Π°ΠΏΠΈΡΠ°ΡΡ X ΡΡ.
ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ ΡΠ΅ ΠΆΠ΅ ΡΠ°Π³ΠΈ:
1. ΠΠ°ΠΉΡΠΈ ΡΡΠ΅Π΄Π½Π΅Π΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²ΡΠ±ΠΎΡΠΊΠΈ:
XΡΡ = (9 + 2 + 5 + 4 + 12 + 7) / 6 = 39 / 6 = 6,5
2. ΠΡ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²ΡΠ±ΠΎΡΠΊΠΈ ΠΎΡΠ½ΡΡΡ ΡΡΠ΅Π΄Π½Π΅Π΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅:
X1 β XΡΡ = 9 β 6,5 = 2,5
X2 β XΡΡ = 2 β 6,5 = β4,5
X3 β XΡΡ = 5 β 6,5 = β1,5
X4 β XΡΡ = 4 β 6,5 = β2,5
X5 β XΡΡ = 12 β 6,5 = 5,5
X6 β XΡΡ = 7 β 6,5 = 0,5
3. ΠΠ°ΠΆΠ΄ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΠ°Π·Π½ΠΈΡΡ Π²ΠΎΠ·Π²Π΅ΡΡΠΈ Π² ΠΊΠ²Π°Π΄ΡΠ°Ρ:
4. Π‘Π΄Π΅Π»Π°ΡΡ ΡΡΠΌΠΌΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ:
Ξ£ (Xi β XΡΡ)Β² = 6,25 + 20,25+ 2,25+ 6,25 + 30,25 + 0,25 = 65,5
5. ΠΠΎΠ΄Π΅Π»ΠΈΡΡ Π½Π° ΡΠ°Π·ΠΌΠ΅Ρ Π²ΡΠ±ΠΎΡΠΊΠΈ, Π²ΡΡΠΈΡΠ°Π² ΠΏΠ΅ΡΠ΅Π΄ ΡΡΠΈΠΌ 1 (Ρ.Π΅. Π½Π° nβ1):
(Ξ£ (Xi β XΡΡ)Β²)/(n-1) = 65,5 / (6 β 1) = 13,1
6. ΠΠ°ΠΉΡΠΈ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ:
S = β((Ξ£ (Xi β XΡΡ)Β²)/(nβ1)) = β 13,1 β 3,6193
ΠΠΈΡΠΏΠ΅ΡΡΠΈΡ ΠΈ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅
Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌΡ ΠΊΠΎΡΠ½Ρ ΠΈΠ· Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ (S = βD). Π’ΠΎ Π΅ΡΡΡ, Π΅ΡΠ»ΠΈ Ρ Π²Π°Ρ ΡΠΆΠ΅ Π΅ΡΡΡ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΈ Π½ΡΠΆΠ½ΠΎ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΡ, Π½ΡΠΆΠ½ΠΎ Π»ΠΈΡΡ Π²ΠΎΠ·Π²Π΅ΡΡΠΈ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π² ΠΊΠ²Π°Π΄ΡΠ°Ρ (SΒ² = D).
ΠΠΈΡΠΏΠ΅ΡΡΠΈΡ β Π² ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠ΅ ΡΡΠΎ «ΡΡΠ΅Π΄Π½Π΅Π΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ ΠΎΡ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ». Π§ΡΠΎΠ±Ρ Π΅Ρ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π½ΡΠΆΠ½ΠΎ:
ΠΡΡ ΡΠ°ΡΡΡΡ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ ΠΏΠΎ ΡΡΠΎΠΉ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΡΡ ΡΠΈΠ³ΠΌ
ΠΡΠΎ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ Π³Π»Π°ΡΠΈΡ: Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠ»ΡΡΠ°ΠΉΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΎΡΠΊΠ»ΠΎΠ½ΠΈΡΡΡ ΠΎΡ ΡΠ²ΠΎΠ΅Π³ΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΡ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ Π½Π° ΡΡΠΈ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΡ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ (Π½Π° ΡΡΠΈ ΡΠΈΠ³ΠΌΡ), ΠΏΠΎΡΡΠΈ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΠ»ΡΠ΄Ρ Π½Π° ΡΠΈΡΡΠ½ΠΎΠΊ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ½ΡΡΡ, ΡΡΠΎ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ :
ΠΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ Π·Π° ΠΏΡΠ΅Π΄Π΅Π»Π°ΠΌΠΈ ΠΎΡΡΠ°ΡΡΡΡ Π»ΠΈΡΡ 0,28% β ΡΡΠΎ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠ»ΡΡΠ°ΠΉΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΏΡΠΈΠΌΠ΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½ΡΠ΅ΡΡΡ ΠΎΡ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π±ΠΎΠ»Π΅Π΅ ΡΠ΅ΠΌ Π½Π° 3 ΡΠΈΠ³ΠΌΡ.
Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π² excel
ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ Ρ «n β 1» Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅ (ΡΠ»ΡΡΠ°ΠΉ Π²ΡΠ±ΠΎΡΠΊΠΈ ΠΈΠ· Π³Π΅Π½Π΅ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ):
1. ΠΠ°Π½Π΅ΡΠΈΡΠ΅ Π²ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ Π² Π΄ΠΎΠΊΡΠΌΠ΅Π½Ρ Excel.
2. ΠΡΠ±Π΅ΡΠΈΡΠ΅ ΠΏΠΎΠ»Π΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π²Ρ Ρ ΠΎΡΠΈΡΠ΅ ΠΎΡΠΎΠ±ΡΠ°Π·ΠΈΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ.
3. ΠΠ²Π΅Π΄ΠΈΡΠ΅ Π² ΡΡΠΎΠΌ ΠΏΠΎΠ»Π΅ «=Π‘Π’ΠΠΠΠΠ’ΠΠΠΠΠ(«
4. ΠΡΠ΄Π΅Π»ΠΈΡΠ΅ ΠΏΠΎΠ»Ρ, Π³Π΄Π΅ Π½Π°Ρ ΠΎΠ΄ΡΡΡΡ Π΄Π°Π½Π½ΡΠ΅, ΠΏΠΎΡΠΎΠΌ Π·Π°ΠΊΡΠΎΠΉΡΠ΅ ΡΠΊΠΎΠ±ΠΊΠΈ.
5. ΠΠ°ΠΆΠΌΠΈΡΠ΅ ΠΠ²ΠΎΠ΄ (Enter).
Π ΡΠ»ΡΡΠ°Π΅ Π΅ΡΠ»ΠΈ Π΄Π°Π½Π½ΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ Π²ΡΡ Π³Π΅Π½Π΅ΡΠ°Π»ΡΠ½ΡΡ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ (n Π² Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Π΅), ΡΠΎ Π½ΡΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π‘Π’ΠΠΠΠΠ’ΠΠΠΠΠΠ.
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π²Π°ΡΠΈΠ°ΡΠΈΠΈ
ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π²Π°ΡΠΈΠ°ΡΠΈΠΈ β ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΊ ΡΡΠ΅Π΄Π½Π΅ΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Ρ.Π΅. Cv = (S/ΞΌ) Γ 100% ΠΈΠ»ΠΈ V = (Ο/XΜ ) Γ 100%.
Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π΄Π΅Π»ΠΈΡΡΡ Π½Π° ΡΡΠ΅Π΄Π½Π΅Π΅ ΠΈ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΡΡΡ Π½Π° 100%.
ΠΠΎΠΆΠ½ΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ Π²Π°ΡΠΈΠ°Π±Π΅Π»ΡΠ½ΠΎΡΡΡ Π²ΡΠ±ΠΎΡΠΊΠΈ ΠΏΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π²Π°ΡΠΈΠ°ΡΠΈΠΈ:
Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅
Π Π°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Ρ ΠΊΠ°ΠΊΠΈΠ΅-Π»ΠΈΠ±ΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΈΠ»ΠΈ ΠΈΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠ°ΠΊΠΈΠ΅ ΠΊΡΠΈΡΠ΅ΡΠΈΠΈ ΠΊΠ°ΠΊ ΡΡΠ΅Π΄Π½Π΅Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΈ Π΅Π΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅. Π Π°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΠΎΡΠ΅Π½ΠΈΡΡ ΡΠ°Π·Π±ΡΠΎΡ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΠΌΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΈ Π΅Π΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅. Π Π½ΠΈΠΌ ΠΎΡΠ½ΠΎΡΠΈΡΡΡ Π°Π±ΡΠΎΠ»ΡΡΠ½Π°Ρ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π½Π°ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½Π°Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π° ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎ ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΡΠΌΠΌΠ° Π²ΡΠ΅Ρ Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΡ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΠ΅ΠΉ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ, ΡΠΎ ΡΡΠΎΡ ΠΊΡΠΈΡΠ΅ΡΠΈΠΉ Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ°Π·Π±ΡΠΎΡ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΠΌΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½. Π Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ Π±ΡΠ» Π²Π²Π΅Π΄Π΅Π½ Π½ΠΎΠ²ΡΠΉ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ β ΡΡΠ΅Π΄Π½Π΅Π΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅.
ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΠΎΠ±ΡΡΡΠ½ΠΈΡΡ Π΅Π³ΠΎ ΡΠΌΡΡΠ» Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ.
Π‘ΡΠ΅Π΄Π½Π΅ΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ ΠΈΠ»ΠΈ ΡΡΠ΅Π΄Π½ΠΈΠΌ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΈΡΠ»ΠΎ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ΅ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠΌΠΌΡ Π²ΡΠ΅Ρ Π²Π΅Π»ΠΈΡΠΈΠ½ Π½Π° ΠΈΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ.
ΠΡΡΠΎΡΠΎΠΆΠ½ΠΎ! ΠΡΠ»ΠΈ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΡ ΠΏΠ»Π°Π³ΠΈΠ°Ρ Π² ΡΠ°Π±ΠΎΡΠ΅, Π½Π΅ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ ΠΊΡΡΠΏΠ½ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ (Π²ΠΏΠ»ΠΎΡΡ Π΄ΠΎ ΠΎΡΡΠΈΡΠ»Π΅Π½ΠΈΡ). ΠΡΠ»ΠΈ Π½Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π½Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΌΠΎΠΌΡ, Π·Π°ΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΡ.
Π‘ΡΠ΅Π΄Π½Π΅Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄Π»Ρ 3 ΡΠΈΡΠ΅Π» b1, b2 ΠΈ b3 ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ:
Π‘ΠΎ ΡΡΠ΅Π΄Π½Π΅ΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ²ΡΠ·Π°Π½Π° ΠΈ Π΄ΡΡΠ³Π°Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° β ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅.
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΏΡΠΈ ΡΡΡΠ΅ΠΌΠ»Π΅Π½ΠΈΠΈ Π΅Π³ΠΎ ΡΠ»Π΅Π½ΠΎΠ² ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΠ΅ΠΌ (Π).
Π ΠΎΡΠ΅Π½ΠΊΠΎΠΉ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ΅Π΄Π½Π΅Π΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΈΠ·ΡΡΠ°Π΅ΠΌΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ.
ΠΠ°ΡΠΈΠ°Π½ΡΠΎΠΉ ΠΈΠ»ΠΈ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠΉ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ°Π·Π½ΠΎΡΡΡ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΠΌΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ.
ΠΠ½Π° ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Π³ΡΠ΅ΡΠ΅ΡΠΊΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ D. ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ Π²Π°ΡΠΈΠ°Π½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ai ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΎΡΠ½ΡΡΡ ΠΎΡ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅Π΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅:
Π’Π°ΠΊΠΆΠ΅ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡ, Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠΎΡΠΎΠΉ Π²ΡΡΠ°ΠΆΠ°Π΅ΡΡΡ Π² ΠΏΡΠΎΡΠ΅Π½ΡΠ°Ρ . ΠΠ΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠ²ΠΎΠ΄ΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΡΠ±ΡΠΎΡΠΈΡΡ ΠΈΠ· Π²Π°ΡΠΈΠ°ΡΠΈΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΠ΅Π½Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡΡ ΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΡΡ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠΎΠ»ΡΠΊΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½ Ρ Π½Π΅Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡΡ.
Π₯Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΎΠΉ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΈΠ·ΠΌΠ΅ΡΡΠ΅ΠΌΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΡ (D).
ΠΠΈΡΠΏΠ΅ΡΡΠΈΠ΅ΠΉ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ΅Π΄Π½Π΅Π΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² Π²ΡΠ΅Ρ Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΡ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΠ΅ΠΉ.
Π’Π΅ΠΏΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π΄Π°ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ Β«ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΌΡ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡΒ».
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΡΠ½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΈΠ· Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΡΠΌ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ΠΌ ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Β«ΟΒ».
ΠΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΡΠ΅ΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅:
ΠΠ΄ΠΈΠ½ΠΈΡΠ΅ΠΉ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΠ°Π½Π½ΡΠΉ ΠΊΡΠΈΡΠ΅ΡΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ²Π΅ΡΠΊΠΈ Π³ΠΈΠΏΠΎΡΠ΅Π·Ρ, ΡΠ°ΡΡΠ΅ΡΠ΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΎΡΠΈΠ±ΠΊΠΈ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π΄ΠΎΠ²Π΅ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ².
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅
ΠΡΡΠΈΡΠ»Π΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ Π½Π° ΠΏΠ΅ΡΠ²ΡΠΉ Π²Π·Π³Π»ΡΠ΄ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΡΡΡ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ½ΡΠΌ ΠΈ Π·Π°ΠΏΡΡΠ°Π½Π½ΡΠΌ. ΠΠΎ ΡΡΠΎΡ ΠΏΡΠΎΡΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±Π»Π΅Π³ΡΠΈΡΡ, Π΅ΡΠ»ΠΈ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠΌ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ:
Π€ΠΎΡΠΌΡΠ»Π°, ΠΏΡΠΈΠΌΠ΅ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ
ΠΠ»Ρ ΡΠ΅ΡΡΡΠ΅Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½Π½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ b ΡΠΎΡΠΌΡΠ»Π° ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ Π±ΡΠ΄Π΅Ρ Π²ΡΠ³Π»ΡΠ΄Π΅ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ.
ΠΠ°Π΄Π°ΡΠ°
ΠΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΠΏΠΎ ΡΠΈΠ·ΠΈΠΊΠ΅ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠ°Π· ΠΈΠ·ΠΌΠ΅ΡΠΈΠ»ΠΈ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠΎΠΊΠ° ΠΈ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ:
ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ°ΡΡΡΠΈΡΠ°ΡΡ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΠΈ (Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΠ΅ ΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅) ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ, Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΡ ΠΈ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ ΡΡΠ΅Π΄Π½Π΅Π΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΡ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅:
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°ΡΡΡΠΈΡΠ°Π΅ΠΌ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΡ ΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΠΈ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π°Π±ΡΠΎΠ»ΡΡΠ½Π°Ρ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ ΡΠ°Π·Π½ΠΈΡΠ° ΠΌΠ΅ΠΆΠ΄Ρ ΡΡΠ΅Π΄Π½ΠΈΠΌ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ, ΡΠΎ
\(\triangle U_1=0.024\\\triangle U_2=-0.056\\\triangle U_3=-0.026\\\triangle U_4=0.014\\\triangle U_5=0.044\)
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΡ:
ΠΠ½Π°Ρ Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΠ΅ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΠΈ Π½Π΅ΡΠ»ΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΡ:
Π’Π΅ΠΏΠ΅ΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅:
Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅
Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΜΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅ΜΠ½ΠΈΠ΅ (ΡΠΈΠ½ΠΎΠ½ΠΈΠΌΡ: ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΜΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅ΜΠ½ΠΈΠ΅, ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΜΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅ΜΠ½ΠΈΠ΅; Π±Π»ΠΈΠ·ΠΊΠΈΠ΅ ΡΠ΅ΡΠΌΠΈΠ½Ρ: ΡΡΠ°Π½Π΄Π°ΜΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅ΜΠ½ΠΈΠ΅, ΡΡΠ°Π½Π΄Π°ΜΡΡΠ½ΡΠΉ ΡΠ°Π·Π±ΡΠΎΜΡ) β Π² ΡΠ΅ΠΎΡΠΈΠΈ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ΅ΠΉ ΠΈ ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½ΡΠ½Π½ΡΠΉ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΠ°ΡΡΠ΅ΠΈΠ²Π°Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΅Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΡ.
Π‘ΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ
ΠΠ·ΠΌΠ΅ΡΡΠ΅ΡΡΡ Π² Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°ΠΌΠΎΠΉ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. Π Π°Π²Π½ΠΎ ΠΊΠΎΡΠ½Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΠΎΠΌΡ ΠΈΠ· Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΏΡΠΈ ΡΠ°ΡΡΡΡΠ΅ ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠΉ ΠΎΡΠΈΠ±ΠΊΠΈ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ, ΠΏΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π΄ΠΎΠ²Π΅ΡΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ², ΠΏΡΠΈ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Π³ΠΈΠΏΠΎΡΠ΅Π·, ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΠΌΠΈ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ.
Π‘ΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ (ΠΎΡΠ΅Π½ΠΊΠ° ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΠΎΠ», ΡΡΠ΅Π½Ρ Π²ΠΎΠΊΡΡΠ³ Π½Π°Ρ ΠΈ ΠΏΠΎΡΠΎΠ»ΠΎΠΊ, x ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΅Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΠΆΠΈΠ΄Π°Π½ΠΈΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π½Π΅ΡΠΌΠ΅ΡΡΠ½Π½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ Π΅Ρ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ):
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΡΡ ΡΠΈΠ³ΠΌ
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΡΡΡ
ΡΠΈΠ³ΠΌ () β ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΡΠ½Π½ΠΎΠΉ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π»Π΅ΠΆΠ°Ρ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅
. ΠΠΎΠ»Π΅Π΅ ΡΡΡΠΎΠ³ΠΎ β Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ ΡΠ΅ΠΌ Ρ 99,7 % Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΡΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Π»Π΅ΠΆΠΈΡ Π² ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ (ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π°
ΠΈΡΡΠΈΠ½Π½Π°Ρ, Π° Π½Π΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½Π°Ρ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ Π²ΡΠ±ΠΎΡΠΊΠΈ).
ΠΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ
ΠΠΎΠ»ΡΡΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΠ°Π·Π±ΡΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π² ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ ΡΠΎ ΡΡΠ΅Π΄Π½Π΅ΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½ΠΎΠΉ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π°; ΠΌΠ°Π»Π΅Π½ΡΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ ΡΠ³ΡΡΠΏΠΏΠΈΡΠΎΠ²Π°Π½Ρ Π²ΠΎΠΊΡΡΠ³ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Ρ Π½Π°Ρ Π΅ΡΡΡ ΡΡΠΈ ΡΠΈΡΠ»ΠΎΠ²ΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π°: <0, 0, 14, 14>, <0, 6, 8, 14>ΠΈ <6, 6, 8, 8>. Π£ Π²ΡΠ΅Ρ ΡΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ² ΡΡΠ΅Π΄Π½ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ°Π²Π½Ρ 7, Π° ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, ΡΠ°Π²Π½Ρ 7, 5 ΠΈ 1. Π£ ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΎΠ΅, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ ΡΠ³ΡΡΠΏΠΏΠΈΡΠΎΠ²Π°Π½Ρ Π²ΠΎΠΊΡΡΠ³ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ; Ρ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΡΠ°ΠΌΠΎΠ΅ Π±ΠΎΠ»ΡΡΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ β Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π²Π½ΡΡΡΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΡΠΈΠ»ΡΠ½ΠΎ ΡΠ°ΡΡ ΠΎΠ΄ΡΡΡΡ ΡΠΎ ΡΡΠ΅Π΄Π½ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ.
Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠΌΡΡΠ»Π΅ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΈΡΠ°ΡΡ ΠΌΠ΅ΡΠΎΠΉ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΡΡΠΈ. Π ΠΏΡΠΈΠΌΠ΅ΡΡ, Π² ΡΠΈΠ·ΠΈΠΊΠ΅ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ³ΡΠ΅ΡΠ½ΠΎΡΡΠΈ ΡΠ΅ΡΠΈΠΈ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ. ΠΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΎΡΠ΅Π½Ρ Π²Π°ΠΆΠ½ΠΎ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΡΠ°Π²Π΄ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΡΡΠΈ ΠΈΠ·ΡΡΠ°Π΅ΠΌΠΎΠ³ΠΎ ΡΠ²Π»Π΅Π½ΠΈΡ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½Π½ΡΠΌ ΡΠ΅ΠΎΡΠΈΠ΅ΠΉ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ: Π΅ΡΠ»ΠΈ ΡΡΠ΅Π΄Π½Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΠΈΠ»ΡΠ½ΠΎ ΠΎΡΠ»ΠΈΡΠ°Π΅ΡΡΡ ΠΎΡ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½Π½ΡΡ ΡΠ΅ΠΎΡΠΈΠ΅ΠΉ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ (Π±ΠΎΠ»ΡΡΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ), ΡΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ ΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΏΠ΅ΡΠ΅ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ.
ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅
ΠΠ° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, Π½Π°ΡΠΊΠΎΠ»ΡΠΊΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ ΠΌΠΎΠ³ΡΡ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ.
ΠΠ»ΠΈΠΌΠ°Ρ
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΡΠ΅ΡΡΠ²ΡΡΡ Π΄Π²Π° Π³ΠΎΡΠΎΠ΄Π° Ρ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ Π΄Π½Π΅Π²Π½ΠΎΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΎΠΉ, Π½ΠΎ ΠΎΠ΄ΠΈΠ½ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ Π½Π° ΠΏΠΎΠ±Π΅ΡΠ΅ΠΆΡΠ΅, Π° Π΄ΡΡΠ³ΠΎΠΉ Π²Π½ΡΡΡΠΈ ΠΊΠΎΠ½ΡΠΈΠ½Π΅Π½ΡΠ°. ΠΠ·Π²Π΅ΡΡΠ½ΠΎ, ΡΡΠΎ Π² Π³ΠΎΡΠΎΠ΄Π°Ρ , ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΡ Π½Π° ΠΏΠΎΠ±Π΅ΡΠ΅ΠΆΡΠ΅, ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ Π΄Π½Π΅Π²Π½ΡΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ Ρ Π³ΠΎΡΠΎΠ΄ΠΎΠ², ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΡΡ Π²Π½ΡΡΡΠΈ ΠΊΠΎΠ½ΡΠΈΠ½Π΅Π½ΡΠ°. ΠΠΎΡΡΠΎΠΌΡ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΡ Π΄Π½Π΅Π²Π½ΡΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ Ρ ΠΏΡΠΈΠ±ΡΠ΅ΠΆΠ½ΠΎΠ³ΠΎ Π³ΠΎΡΠΎΠ΄Π° Π±ΡΠ΄Π΅Ρ ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ Ρ Π²ΡΠΎΡΠΎΠ³ΠΎ Π³ΠΎΡΠΎΠ΄Π°, Π½Π΅ΡΠΌΠΎΡΡΡ Π½Π° ΡΠΎ, ΡΡΠΎ ΡΡΠ΅Π΄Π½Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠΉ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ Ρ Π½ΠΈΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅, ΡΡΠΎ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° Π²ΠΎΠ·Π΄ΡΡ Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ Π΄Π½Ρ Π² Π³ΠΎΠ΄Ρ Π±ΡΠ΄Π΅Ρ ΡΠΈΠ»ΡΠ½Π΅Π΅ ΠΎΡΠ»ΠΈΡΠ°ΡΡΡΡ ΠΎΡ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Π²ΡΡΠ΅ Ρ Π³ΠΎΡΠΎΠ΄Π°, ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π²Π½ΡΡΡΠΈ ΠΊΠΎΠ½ΡΠΈΠ½Π΅Π½ΡΠ°.
Π‘ΠΏΠΎΡΡ
ΠΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, ΡΡΠΎ Π΅ΡΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΡΡΠ±ΠΎΠ»ΡΠ½ΡΡ ΠΊΠΎΠΌΠ°Π½Π΄, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΎΡΠ΅Π½ΠΈΠ²Π°ΡΡΡΡ ΠΏΠΎ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌΡ Π½Π°Π±ΠΎΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ², Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Ρ Π·Π°Π±ΠΈΡΡΡ ΠΈ ΠΏΡΠΎΠΏΡΡΠ΅Π½Π½ΡΡ Π³ΠΎΠ»ΠΎΠ², Π³ΠΎΠ»Π΅Π²ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ² ΠΈ Ρ. ΠΏ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π΅ΡΠΎΡΡΠ½ΠΎ, ΡΡΠΎ Π»ΡΡΡΠ°Ρ Π² ΡΡΠΎΠΉ Π³ΡΡΠΏΠΏΠ΅ ΠΊΠΎΠΌΠ°Π½Π΄Π° Π±ΡΠ΄Π΅Ρ ΠΈΠΌΠ΅ΡΡ Π»ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠΎ Π±ΠΎΠ»ΡΡΠ΅ΠΌΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ². Π§Π΅ΠΌ ΠΌΠ΅Π½ΡΡΠ΅ Ρ ΠΊΠΎΠΌΠ°Π½Π΄Ρ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ ΠΈΠ· ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ², ΡΠ΅ΠΌ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·ΡΠ΅ΠΌΠ΅Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΊΠΎΠΌΠ°Π½Π΄Ρ, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠΎΠΌΠ°Π½Π΄Ρ ΡΠ²Π»ΡΡΡΡΡ ΡΠ±Π°Π»Π°Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ. Π‘ Π΄ΡΡΠ³ΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ, Ρ ΠΊΠΎΠΌΠ°Π½Π΄Ρ Ρ Π±ΠΎΠ»ΡΡΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΡΠ»ΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ, ΡΡΠΎ Π² ΡΠ²ΠΎΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ ΠΎΠ±ΡΡΡΠ½ΡΠ΅ΡΡΡ Π΄ΠΈΡΠ±Π°Π»Π°Π½ΡΠΎΠΌ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠΈΠ»ΡΠ½ΠΎΠΉ Π·Π°ΡΠΈΡΠΎΠΉ, Π½ΠΎ ΡΠ»Π°Π±ΡΠΌ Π½Π°ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ΠΌ.
ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΊΠΎΠΌΠ°Π½Π΄Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π² ΡΠΎΠΉ ΠΈΠ»ΠΈ ΠΈΠ½ΠΎΠΉ ΠΌΠ΅ΡΠ΅ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΌΠ°ΡΡΠ° Π΄Π²ΡΡ ΠΊΠΎΠΌΠ°Π½Π΄, ΠΎΡΠ΅Π½ΠΈΠ²Π°Ρ ΡΠΈΠ»ΡΠ½ΡΠ΅ ΠΈ ΡΠ»Π°Π±ΡΠ΅ ΡΡΠΎΡΠΎΠ½Ρ ΠΊΠΎΠΌΠ°Π½Π΄, Π° Π·Π½Π°ΡΠΈΡ, ΠΈ Π²ΡΠ±ΠΈΡΠ°Π΅ΠΌΡΡ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² Π±ΠΎΡΡΠ±Ρ.
Π’Π΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ·
Π ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠΌ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π»ΠΈΠ½ΠΈΠΉ ΠΠΎΠ»Π»ΠΈΠ½Π΄ΠΆΠ΅ΡΠ°.
Π‘ΠΌ. ΡΠ°ΠΊΠΆΠ΅
ΠΠΈΡΠ΅ΡΠ°ΡΡΡΠ°
ΠΠΏΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠ° |
| ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Π‘ΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π²ΡΠ²ΠΎΠ΄ ΠΈ ΠΏΡΠΎΠ²Π΅ΡΠΊΠ° Π³ΠΈΠΏΠΎΡΠ΅Π· |
| ||||||||||||
ΠΠΎΡΡΠ΅Π»ΡΡΠΈΡ | ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΈ ΠΠΈΡΡΠΎΠ½Π° Β· Π Π°Π½Π³ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΉ (ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ Π‘ΠΏΠΈΡΠΌΠ°Π½Π° Π΄Π»Ρ ΡΠ°Π½Π³Π° ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΉ, ΠΠΎΡΡΡΠΈΡΠΈΠ΅Π½Ρ ΡΠ°Ρ ΠΠ΅Π½Π΄Π°Π»Π»Π° Π΄Π»Ρ ΡΠ°Π½Π³Π° ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΠΉ) Β· ΠΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ ΡΠΌΠ΅ΡΠΈΠ²Π°Π½ΠΈΡ | ||||||||||||
ΠΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ | ΠΡΠ½ΠΎΠ²Π½Π°Ρ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Β· ΠΠ±ΠΎΠ±ΡΡΠ½Π½Π°Ρ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Β· ΠΠ½Π°Π»ΠΈΠ· Π²Π°ΡΠΈΠ°ΡΠΈΠΉ Β· ΠΠΎΠ²Π°ΡΠΈΠ°ΡΠΈΠΎΠ½Π½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· | ||||||||||||
Π Π΅Π³ΡΠ΅ΡΡΠΈΡ | ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ Β· ΠΠ΅Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ Β· ΠΠ΅ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ Β· ΠΠΎΠ»ΡΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ Β· ΠΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ |
ΠΠΎΠ»Π΅Π·Π½ΠΎΠ΅
Π‘ΠΌΠΎΡΡΠ΅ΡΡ ΡΡΠΎ ΡΠ°ΠΊΠΎΠ΅ «Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅» Π² Π΄ΡΡΠ³ΠΈΡ ΡΠ»ΠΎΠ²Π°ΡΡΡ :
Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ β ΠΌΠ΅ΡΠ° ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΎΠΏΡΡΠ½ΡΡ Π΄Π°Π½Π½ΡΡ ΠΎΡ Π²ΡΠ±ΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈΠ»ΠΈ ΠΎΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ, Π²ΡΡΠ°ΠΆΠ°Π΅ΠΌΠ°Ρ Π² Π°Π±ΡΠΎΠ»ΡΡΠ½ΡΡ Π΅Π΄ΠΈΠ½ΠΈΡΠ°Ρ , Π²ΡΡΠΈΡΠ»ΡΠ΅ΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π°ΠΌ (4), (12). ΠΡΡΠΎΡΠ½ΠΈΠΊ: ΠΠΠ‘Π’ 20522 96: ΠΡΡΠ½ΡΡ. ΠΠ΅ΡΠΎΠ΄Ρ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ²β¦ β¦ Π‘Π»ΠΎΠ²Π°ΡΡ-ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ² Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎ-ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ
Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ β ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ ΡΠ²ΡΠ·ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π΄Π΅ΡΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π²Π·Π°ΠΈΠΌΠ½ΠΎΠ³ΠΎ ΡΠΎΠ½Π΄Π° Ρ ΠΎΠ±ΡΠ΅ΠΉ ΡΠΈΡΡΠ°ΡΠΈΠ΅ΠΉ Π½Π° ΡΡΠ½ΠΊΠ΅ ΠΈΠ»ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠΎΠΉ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠ΅Π³ΠΎ Π±Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΠΈΠ½Π΄Π΅ΠΊΡΠ°. ΠΡΠ»ΠΈ ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ°Π²Π½ΠΎ 1, ΡΠΎ ΡΡΠΎΠΈΠΌΠΎΡΡΡ ΠΏΠΎΡΡΡΠ΅Π»Ρ ΡΠΎΠ½Π΄Π° Π² ΡΠΎΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡβ¦ β¦ Π€ΠΈΠ½Π°Π½ΡΠΎΠ²ΡΠΉ ΡΠ»ΠΎΠ²Π°ΡΡ
Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ β ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΠΌΠΎΡΡΠΈ: ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΠΌΠΎΡΡΠΈ (ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠ΅ΡΠΎΠΉ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΠΌΠΎΡΡΠΈ). ΠΡΡΠΎΡΠ½ΠΈΠΊ: ΠΠΠ‘Π£ΠΠΠ Π‘Π’ΠΠΠΠΠΠ― Π‘ΠΠ‘Π’ΠΠΠ ΠΠΠΠ‘ΠΠΠ§ΠΠΠΠ― ΠΠΠΠΠ‘Π’ΠΠβ¦ β¦ ΠΡΠΈΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΡ
Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ β * ΡΡΡΡΠ΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΡΡΠ½Π°Π΅ Π°Π΄Ρ ΡΠ»Π΅Π½Π½Π΅ * mean square deviation or standard deviation ΠΎΠΏΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠ° (ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡ), ΡΠ²Π»ΡΡΡΠ°ΡΡΡ ΠΌΠ΅ΡΠΎΠΉ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΡ Π΄Π»Ρ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΡ Π΄Π°Π½Π½ΡΡ . ΠΡΠ»ΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π½Π΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π·Π°ΠΊΠΎΠ½Ρ Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎβ¦ β¦ ΠΠ΅Π½Π΅ΡΠΈΠΊΠ°. ΠΠ½ΡΠΈΠΊΠ»ΠΎΠΏΠ΅Π΄ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΠ»ΠΎΠ²Π°ΡΡ
ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ β vidutinis kvadratinis nuokrypis statusas T sritis automatika atitikmenys: angl. root mean square deviation vok. mittlere quadratische Abweichung, f rus. ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅, n pranc. Γ©cart moyen quadratique, m β¦ Automatikos terminΕ³ ΕΎodynas
Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ β Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ: ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ (ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠ΅ΡΠΎΠΉ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ). ΠΡΡΠΎΡΠ½ΠΈΠΊ:β¦ β¦ ΠΡΠΈΡΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ»ΠΎΠ³ΠΈΡ
ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ β 3.6.5.1 ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ: Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ (ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠ΅ΡΠΎΠΉ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ). ΠΡΡΠΎΡΠ½ΠΈΠΊ:β¦ β¦ Π‘Π»ΠΎΠ²Π°ΡΡ-ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ² Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎ-ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ
ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ β 3.21 ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ sR:Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ Π²ΠΎΡΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ (ΡΠΌ. 3.19) [5]. ΠΡΡΠΎΡΠ½ΠΈΠΊ β¦ Π‘Π»ΠΎΠ²Π°ΡΡ-ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ² Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎ-ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ
ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΠΌΠΎΡΡΠΈ (ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ) ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ β 3.24 ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΠΌΠΎΡΡΠΈ (ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ) ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ sr: Π‘ΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΈΡΠΏΡΡΠ°Π½ΠΈΠΉ, ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ ΠΏΠΎΠ²ΡΠΎΡΡΠ΅ΠΌΠΎΡΡΠΈ (ΡΡ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ) (ΡΠΌ. 3.22) [5]. ΠΡΡΠΎΡΠ½ΠΈΠΊ β¦ Π‘Π»ΠΎΠ²Π°ΡΡ-ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ² Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎ-ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ
ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ (ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ), ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ (ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ) β 3.13 ΡΡΠ΅Π΄Π½Π΅ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ (ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ), ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΠΎΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ (ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ) [(population) standard deviation] Ο: ΠΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΠΉ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΠΈ Ο2. ΠΡΡΠΎΡΠ½ΠΈΠΊ: ΠΠΠ‘Π’ Π ΠΠ‘Π 12491 2011: ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΈΠ·Π΄Π΅Π»ΠΈΡβ¦ β¦ Π‘Π»ΠΎΠ²Π°ΡΡ-ΡΠΏΡΠ°Π²ΠΎΡΠ½ΠΈΠΊ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠ² Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎ-ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΎΠΉ Π΄ΠΎΠΊΡΠΌΠ΅Π½ΡΠ°ΡΠΈΠΈ