Что такое средняя квадратичная погрешность

Погрешность средняя квадратическая

Смотреть что такое «Погрешность средняя квадратическая» в других словарях:

средняя квадратическая погрешность уравненного значения (результата геодезических измерений) — 3.7.11 средняя квадратическая погрешность уравненного значения (результата геодезических измерений) <тx0>Оценка значения геодезической величины по результатам уравнивания измерений, получаемая по формуле где mQ средняя квадратическая погрешность … Словарь-справочник терминов нормативно-технической документации

средняя квадратическая погрешность результата измерений — aritmetinio vidurkio vidutinė kvadratinė paklaida statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. root sum square error vok. mittlerer quadratischer Fehler, m;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

средняя квадратическая погрешность результата (геодезических) измерений — 3.6.13 средняя квадратическая погрешность результата (геодезических) измерений; СКП <т>Эмпирическая оценка среднего квадратического отклонения результата измерений. Примечание: Оценка т погрешности отдельного результата геодезических измерений… … Словарь-справочник терминов нормативно-технической документации

интегральная средняя квадратическая погрешность телеметрирования — Показатель, характеризующий среднюю квадратическую погрешность телеметрирования на наблюдаемом интервале времени и равный корню квадратному из результата усреднения квадрата погрешности как по времени, так и по множеству реализаций. [ГОСТ 19619… … Справочник технического переводчика

Интегральная средняя квадратическая погрешность телеметрирования — 54. Интегральная средняя квадратическая погрешность телеметрирования Е. Integral mean square error of telemetering Показатель, характеризующий среднюю квадратическую погрешность телеметрирования на наблюдаемом интервале времени и равный корню… … Словарь-справочник терминов нормативно-технической документации

Интегральная средняя квадратическая погрешность телеметрирования — 1. Показатель, характеризующий среднюю квадратическую погрешность телеметрирования на наблюдаемом интервале времени и равный корню квадратному из результата усреднения квадрата погрешности как по времени, так и по множеству реализаций… … Телекоммуникационный словарь

Погрешность — 10. Погрешность По title= РМГ 29 99 ГСИ. Метрология. Основные термины и определения Источник: ГОСТ 12.1.016 79: Система станд … Словарь-справочник терминов нормативно-технической документации

Средняя — периодическое увлажнение пола, при котором поверхность покрытия пола влажная или мокрая; покрытие пола пропитывается жидкостями. Источник: МДС 31 12.2007: Полы жилых, общественных и производственных зданий с применением м … Словарь-справочник терминов нормативно-технической документации

Погрешность измерения — Сюда перенаправляется запрос «Относительная точность». На эту тему нужна отдельная статья. Сюда перенаправляется запрос «Абсолютная то … Википедия

Погрешность — измерения оценка отклонения величины измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения. Поскольку выяснить с абсолютной точностью истинное значение любой величины… … Википедия

Источник

Средняя квадратическая погрешность

Вот и еще одна средняя, которая связана с погрешностями.

Средняя квадратическая погрешность (СКП) является мерой точности результатов измерений либо функций измеренных величин и является вероятностной характеристикой.

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

Рис. 3.1. Нормальный закон распределения

— для диапазона ±m ® Р = 68,3% (» 68%);

— для диапазона ±2m® Р = 95,5% (» 95%);

— для диапазона ±3m® Р = 99,7% (практически 100%).

Таким образом, только в 3-х случаях из 1000 может появиться погрешность, превышающая значение 3m. Погрешности, по абсолютной величине превышающие 3m (предельную погрешность), принято считать грубыми, и результаты измерений, содержащие эту грубую погрешность, исключают из дальнейшей обработки. В некоторых случаях, для ужесточения требований к точности измерений, устанавливают предельную погрешность в диапазоне от 2m до 3m.

Значения коэффициента Стьюдента (t) для различных вероятностей (Р)

tP%tP%tP%
0,18,01,172,92,196,4
0,215,91,277,02,297,2
0,323,61,380,62,397,9
0,431,11,483,82,498,4
0,538,31,586,62,598,8
0,645,11,689,02,699,1
0,751,61,791,12,799,3
0,857,61,892,82,899,5
0,963,21,994,32,999,6
1,068,32,095,53,099,7

Часто значение СКП указывают с коэффициентом t (коэффициент Стьюдента), который и определяет доверительный вероятностный интервал (х ± tm) результата измерений при установленном уровне вероятности Р. Для этого удобно пользоваться табл. 3.1.

Например, необходимо определить доверительный интервал для величины Х с вероятностью 90%. По таблице интерполированием находим, что для Р1 = 89,0% t1 = 1,6, для Р2 = 91,1% t2 = 1,7: tх = 1,6476 » 1,65.

Это значит, что результат измерений с вероятностью 90% находится в пределах (Х ± 1,65 m).

Если измеряемая величина Х известна, то значение СКП определяется по формуле Гаусса:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность, (3.9)

Напомним, что знак [. ] – это знак гауссовой суммы.

Для случаев, когда измеряемая величина неизвестна, используется формула Бесселя:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность, (3.10)

Как видно из формул (3.9) и (3.10), в случае, когда измеряемая величина известна, для оценки точности достаточно уже одного измерения (оно и является необходимым). Как уже указывалось выше, чаще всего формулу Гаусса используют при оценках точности эталонируемых приборов при измерении известных величин (эталонов). Для оценки точности по формуле Бесселя необходимыми являются как минимум два измерения. Формула Бесселя используется при оценках точности результатов массовых (многократных) измерений одной величины, заранее неизвестной.

При возрастании числа измерений значения СКП, полученные по формулам Гаусса и Бесселя, становятся практически одинаковыми (примерно с n ³ 20). При этом значение СКП одного измерения стремится к пределу mпред, который определяется точностью прибора, точностью метода или программы измерений. Очевидно, выше об этом уже было сказано, что на практике невозможно, да и нецелесообразно по ряду причин, обеспечивать весьма большое число измерений одной величины. При этом практическое число измерений должно обеспечивать получение результата измерения с заданной точностью при установленном уровне доверительной вероятности.

Поскольку число измерений является ограниченным, то сама СКП содержит погрешность, определяемую по приближенной формуле:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность. (3.11)

Она так и называется – средняя квадратическая погрешность средней квадратической погрешности (СКП СКП).

Здесь уместно возвратиться к классификации погрешностей. Не все виды погрешностей рассмотрены нами выше.

Часто при исследованиях рядов погрешностей измерений используют т.н. вероятную погрешность, которую обозначают буквой r. Величина вероятной погрешности может быть оценена по приближенной формуле

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность(3.12)

в предположении, конечно, что распределение погрешностей подчиняется нормальному закону.

Вероятную погрешность называют еще срединной погрешностью. Если не хочется делать вычисления по формуле (3.12), потому что в неё входит значение m, которое необходимо получить по формуле Бесселя, то можно определить вероятную или срединную погрешность, расположив ряд погрешностей по их возрастанию по абсолютным величинам. В середине полученного ряда и будет находиться значение этой погрешности. Это если число погрешностей нечётное. А если оно чётное, то срединной погрешностью будет среднее значение соседних погрешностей в середине ряда.

Не надо путать срединную погрешность со средней погрешностью vo, которую можно получить тоже по простой формуле:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность. (3.13)

Здесь также требуется условие подчинения ряда измерений (погрешностей) нормальному закону.

Средняя погрешность является математическим ожиданием абсолютных значений отклонений результатов измерений какой-либо величины от математического ожидания для этих результатов. Приближенно значение средней погрешности можно оценить по формуле:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность, (3.14)

где vi – уклонения результатов измерений от их среднего арифметического.

Часто формулу (3.13) используют для предварительной оценки средней квадратической погрешности:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность. (3.15)

Источник

Средняя квадратическая, предельная и относительная погрешности

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

Для правильного использования результатов измерений необходимо знать, с какой точностью, т.е. с какой степенью близости к истинному значению измеряемой величины, они получены. Характеристикой точности отдельного измерения в теории погрешностей служит предложенная Гауссом средняя квадратическая погрешность m, вычисляемая по формуле

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

где n – число измерений данной величины.

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

где Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность— отклонения отдельных значений измеренной величины от арифметической средины, называемые вероятнейшими погрешностями, причем [ Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность] = 0.

Точность арифметической средины, естественно, будет выше точности отдельного измерения. Ее средняя квадратическая погрешность M определяется по формуле

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

где m – средняя квадратическая погрешность одного измерения, вычисляемая по формуле Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьили Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность.

Часто в практике для контроля и повышения точности определяемую величину измеряют дважды – в прямом и обратном направлениях, например, длину линий, превышения между точками. Из двух полученных значений за окончательное применяется среднее из них. В этом случае средняя квадратическая погрешность одного измерения подсчитывается по формуле

а среднего результата из двух измерений – по формуле

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность,

где d – разность двукратно измеренных величин, n – число разностей (двойных измерений).

В соответствии с первым свойством случайных погрешностей для абсолютной величины случайной погрешности при данных условиях измерений существует допустимый предел, называемый предельной погрешностью. В строительных нормах предельная погрешность называется допускаемым отклонением.

Теорией погрешностей измерений доказывается, что абсолютное большинство случайных погрешностей (68,3%) данного ряда измерений находится в интервале от 0 до ±m; в интервал от 0 до ±2m попадает 95,4%, а от 0 до ±3m – 99,7% погрешностей. Таким образом, из 100 погрешностей данного ряда измерений лишь пять могут оказаться больше или равны 2m, а из 1000 погрешностей только три будут больше или равны 3m. На основании этого в качестве предельной погрешности ∆пред для данного ряда измерений принимается утроенная средняя квадратическая погрешность, т.е. ∆пред = 3m. На практике во многих работах для повышения требований точности измерений принимают ∆пред = 2m. Погрешность измерений, величины которых превосходят ∆пред, считают грубыми.

Иногда о точности измерений судят не по абсолютной величине средней квадратической или предельной погрешности, а по величине относительной погрешности.

Источник

Что такое средняя квадратичная погрешность

Всероссийский научно-исследовательский институт
оптико-физических измерений

ПОИСК И НАВИГАЦИЯ

МЫ НА YOUTUBE

Погрешности измерений

Погрешность результата измерения (англ. error of a measurement) – отклонение результата измерения от истинного (действительного) значения измеряемой величины.
Примечания:

Инструментальная погрешность измерения (англ. instrumental error) – составляющая погрешности измерения, обусловленная погрешностью применяемого средства измерений.

Погрешность метода измерений (англ. error of method) – составляющая систематической погрешности измерений, обусловленная несовершенством принятого метода измерений.
Примечания:

Погрешность (измерения) из-за изменений условий измерения – составляющая систематической погрешности измерения, являющаяся следствием неучтенного влияния отклонения в одну сторону какого-либо из параметров, характеризующих условия измерений, от установленного значения.
Примечание. Этот термин применяют в случае неучтенного или недостаточно учтенного действия той или иной влияющей величины (температуры, атмосферного давления, влажности воздуха, напряженности магнитного поля, вибрации и др.); неправильной установки средств измерений, нарушения правил их взаимного расположения и др.

Субъективная погрешность измерения – составляющая систематической погрешности измерений, обусловленная индивидуальными особенностями оператора.
Примечания:

Неисключенная систематическая погрешность – составляющая погрешности результата измерений, обусловленная погрешностями вычисления и введения поправок на влияние систематических погрешностей или систематической погрешностью, поправка на действие которой не введена вследствие ее малости.
Примечания:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

Случайная погрешность измерения (англ. random error) – составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях, проведенных с одинаковой тщательностью, одной и той же физической величины.

Абсолютная погрешность измерения (англ. absolute error of a measurement) – погрешность измерения, выраженная в единицах измеряемой величины.

Абсолютное значение погрешности (англ. absolute value of an error) – значение погрешности без учета ее знака (модуль погрешности).
Примечание. Необходимо различать термины абсолютная погрешность и абсолютное значение погрешности.

Относительная погрешность измерения (англ. relative error) – погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или измеренному значению измеряемой величины.
Примечание. Относительную погрешность в долях или процентах находят из отношений:

Рассеяние результатов в ряду измерений (англ. dispersion) – несовпадение результатов измерений одной и той же величины в ряду равноточных измерений, как правило, обусловленное действием случайных погрешностей.
Примечания:

Размах результатов измерений (англ. ) – оценка Rn рассеяния результатов единичных измерений физической n величины, образующих ряд (или выборку из n измерений), вычисляемая по формуле:

Среднее квадратическое отклонение результатов единичных измерений в ряду измерений (англ. experimental (sample) standard deviation) – характеристика S рассеяния результатов измерений в ряду равноточных измерений одной и той же физической величины, вычисляемая по формуле:

Среднее квадратическое отклонение среднего арифметического значения результатов измерений (англ. experimental (sample) standard deviation) – характеристика Sx рассеяния среднего арифметического значения результатов равноточных измерений одной и той же величины, вычисляемая по формуле:

Доверительные границы погрешности результата измерений – наибольшее и наименьшее значения погрешности измерений, ограничивающие интервал, внутри которого с заданной вероятностью находится искомое (истинное) значение погрешности результата измерений.

Поправка (англ. correction) – значение величины, вводимое в неисправленный результат измерения с целью исключения составляющих систематической погрешности.
Примечание. Знак поправки противоположен знаку погрешности. Поправку, прибавляемую к номинальному значению меры, называют поправкой к значению меры; поправку, вводимую в показание измерительного прибора, называют поправкой к показанию прибора.

Поправочный множитель (англ. correction factor) – числовой коэффициент, на который умножают неисправленный результат измерения с целью исключения влияния систематической погрешности.
Примечание. Поправочный множитель используют в случаях, когда систематическая погрешность пропорциональна значению величины.

Точность результата измерений (англ. accuracy of measurement) – одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения.
Примечание. Считают, что чем меньше погрешность измерения, тем больше его точность.

Неопределенность измерений (англ. uncertainty of measurement) – параметр, связанный с результатом измерений и характеризующий рассеяние значений, которые можно приписать измеряемой величине.

Погрешность метода поверки – погрешность применяемого метода передачи размера единицы при поверке.

Погрешность градуировки средства измерений – погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешность воспроизведения единицы физической величины – погрешность результата измерений, выполняемых при воспроизведении единицы физической величины.
Примечание. Погрешность воспроизведения единицы при помощи государственных эталонов обычно указывают в виде ее составляющих: неисключенной систематической погрешности; случайной погрешности; нестабильности за год.

Погрешность передачи размера единицы физической величины – погрешность результата измерений, выполняемых при передаче размера единицы.
Примечание. В погрешность передачи размера единицы входят как неисключенные систематические, так и случайные погрешности метода и средств измерений.

Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения.

Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения.

Промах – погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда.
Примечание. Иногда вместо термина промах применяют термин грубая погрешность измерений.

Предельная погрешность измерения в ряду измерений – максимальная погрешность измерения (плюс, минус), допускаемая для данной измерительной задачи.

Погрешность результата однократного измерения – погрешность одного измерения (не входящего в ряд измерений), оцениваемая на основании известных погрешностей средства и метода измерений в данных условиях (измерений).
Пример. При однократном измерении микрометром какого-либо размера детали получено значение величины, равное 12,55 мм. При этом еще до измерения известно, что погрешность микрометра в данном диапазоне составляет +/- 0,01 мм, и погрешность метода (непосредственной оценки) в данном случае принята равной нулю. Следовательно, погрешность полученного результата будет равна +/- 0,01 мм в данных условиях измерений.

Суммарное среднее квадратическое отклонение среднего арифметического значения результатов измерений – характеристика S рассеяния среднего арифметического результатов измерений, обусловленная влиянием случайных и неисключенных систематических погрешностей и вычисляемая по формуле:

Источник

Среднеквадратическая погрешность

Класс точности СИ

Класс точности— основная метрологическая характеристика прибора, определяющая допустимые значения основных и дополнительных погрешностей, влияющих на точность измерения.

Погрешность может нормироваться, в частности, по отношению к:

результату измерения (по относительной погрешности);

длине (верхнему пределу) шкалы прибора (по приведенной погрешности).

Для стрелочных приборов принято указывать класс точности, записываемый в виде числа, например, 0,05 или 4,0. Это число дает максимально возможную погрешность прибора, выраженную в процентах от наибольшего значения величины, измеряемой в данном диапазоне работы прибора. Так, для вольтметра, работающего в диапазоне измерений 0 — 30 В, класс точности 1,0 определяет, что указанная погрешность при положении стрелки в любом месте шкалы не превышает 0,3 В. Соответственно, среднее квадратичное отклонение s прибора составляет 0,1 В.

Относительная погрешность результата, полученного с помощью указанного вольтметра, зависит от значения измеряемого напряжения, становясь недопустимо высокой для малых напряжений. При измерении напряжения 0,5 В погрешность составит 60 %. Как следствие, такой прибор не годится для исследования процессов, в которых напряжение меняется на 0,1 — 0,5 В.

Обычно цена наименьшего деления шкалы стрелочного прибора согласована с погрешностью самого прибора. Если класс точности используемого прибора неизвестен, за погрешность s прибора всегда принимают половину цены его наименьшего деления. Понятно, что при считывании показаний со шкалы нецелесообразно стараться определить доли деления, так как результат измерения от этого не станет точнее.

Обозначения класса точности могут иметь вид заглавных букв латинского алфавита, римских цифр и арабских цифр с добавлением условных знаков. Если класс точности обозначается латинскими буквами, то класс точности определяется пределами абсолютной погрешности. Если класс точности обозначается арабскими цифрами без условных знаков, то класс точности определяется пределами приведённой погрешности и в качестве нормирующего значения используется наибольший по модулю из пределов измерений. Если класс точности обозначается арабскими цифрами с галочкой, то класс точности определяется пределами приведённой погрешности, но в качестве нормирующего значения используется длина шкалы. Если класс точности обозначается римскими цифрами, то класс точности определяется пределами относительной погрешности.

Погрешность измерения —отклонение измеренного значения величины от её истинного (действительного) значения. Погрешность измерения является характеристикой точности измерения.

Поскольку выяснить с абсолютной точностью истинное значение никакой величины невозможно, то невозможно и указать величину отклонения измеренного значения от истинного. (Это отклонение принято называть ошибкой измерения. В ряде источников, например в Большой советской энциклопедии, термины ошибка измерения и погрешность измерения используются как синонимы, но согласно РМГ 29-99 термин ошибка измерения не рекомендуется применять как менее удачный). Возможно лишь оценить величину этого отклонения, например, при помощи статистических методов. На практике вместо истинного значения используют действительное значение величины хд, то есть значение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него. Такое значение, обычно, вычисляется как среднестатистическое значение, полученное при статистической обработке результатов серии измерений. Это полученное значение не является точным, а лишь наиболее вероятным. Поэтому в измерениях необходимо указывать, какова их точность. Для этого вместе с полученным результатом указывается погрешность измерений. Например, запись T=2,8±0,1 c. означает, что истинное значение величины T лежит в интервале от 2,7 с. до 2,9 с. с некоторой оговорённой вероятностью.

Доверительным называется интервал, который с заданной надежностью покрывает оцениваемый параметр.

Доверительный интервал — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью.

Доверительным интервалом параметра Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьраспределения случайной величины Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьс уровнем доверия p, порождённым выборкой Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность, называется интервал с границами Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьи Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность, которые являются реализациями случайных величин Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьи Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность, таких, что

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность.

Граничные точки доверительного интервала Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьи Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьназываются доверительными пределами.

Стандартная ошибка среднего в математической статистике — величина, характеризующая стандартное отклонение выборочного среднего, рассчитанное по выборке размера Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьиз генеральной совокупности. Термин был впервые введён Удни Юлом в 1897 году. Величина стандартной ошибки зависит от дисперсии генеральной совокупности Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьи объёма выборки Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность.

Стандартная ошибка среднего вычисляется по формуле:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

где Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность— величина среднеквадратического отклонения генеральной совокупности, и Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность— объём выборки.

Поскольку дисперсия генеральной совокупности, как правило, неизвестна, то оценка стандартной ошибки вычисляется по формуле:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

где Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность— стандартное отклонение случайной величины на основе несмещённой оценки её выборочной дисперсии и Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность— объём выборки.

Пример использования: «средний рост студента первого курса составляет 180 ± 20 см с вероятностью 95 %»

180 см — среднее значение выборки;

95 % — доверительная вероятность (коэффициент надёжности);

160—200 см — доверительный интервал;

20 см — предел погрешности.

Толкование: «с вероятностью 95 % истинное среднее значение генеральной совокупности лежит в интервале 160—200 см»

Для нормального распределения:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

где, Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность— среднее значение, z — Z-оценка (зависит от выбранной доверительной вероятности), Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность— среднеквадратическое отклонение, n — размер выборки.

Пределом относительной погрешности называют величину:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

Среднеквадратическая погрешность

Метод Корнфельда, заключается в выборе доверительного интервала в пределах от минимального до максимального результата измерений, и погрешность как половина разности между максимальным и минимальным результатом измерения:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

Средняя квадратическая погрешность среднего арифметического:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

По форме представления

Абсолютная погрешностьЧто такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьявляется оценкой абсолютной ошибки измерения. Вычисляется разными способами. Способ вычисления определяется распределением случайной величины Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность. Соответственно, величина абсолютной погрешности в зависимости от распределения случайной величины Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьможет быть различной. Если Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность— измеренное значение, а Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность— истинное значение, то неравенство Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьдолжно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьраспределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

Существует несколько способов записи величины вместе с её абсолютной погрешностью.

Обычно используется запись со знаком ±. Например, рекорд в беге на 100 метров, установленный в 1983 году, равен 9,930±0,005 с.

Для записи величин, измеренных с очень высокой точностью, используется другая запись: цифры, соответствующие погрешности последних цифр мантиссы, дописываются в скобках. Например, измеренное значение постоянной Больцмана равно 1,3806488(13)×10 −23 Дж/К, что также можно записать значительно длиннее как 1,3806488×10 −23 ±0,0000013×10 −23 Дж/К

Относительная погрешность — погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или среднему значению измеряемой величины (РМГ 29-99):

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность, Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность.

Относительная погрешность является безразмерной величиной; её численное значение может указываться, например, в процентах.

Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность, где Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность— нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

если шкала прибора односторонняя, то есть нижний предел измерений равен нулю, то Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьопределяется равным верхнему пределу измерений;

если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведённая погрешность также является безразмерной величиной.

По причине возникновения

Инструментальные / приборные погрешности — погрешности, которые определяются погрешностями применяемых средств измерений и вызываются несовершенством принципа действия, неточностью градуировки шкалы, ненаглядностью прибора.

Методические погрешности — погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.

Субъективные / операторные / личные погрешности — погрешности, обусловленные степенью внимательности, сосредоточенности, подготовленности и другими качествами оператора.

В технике применяют приборы для измерения лишь с определённой заранее заданной точностью — основной погрешностью, допускаемой в нормальных условиях эксплуатации для данного прибора. В различных областях науки и техники могут подразумеваться различные стандартные (нормальные) условия (например, Национальный институт стандартов и технологий США за нормальную температуру принимает 20 °C, а за нормальное давление — 101,325 кПа); кроме того, для прибора могут быть определены специфические требования (например, нормальное рабочее положение). Если прибор работает в условиях, отличных от нормальных, то возникает дополнительная погрешность, увеличивающая общую погрешность прибора — например, температурная (вызванная отклонением температуры окружающей среды от нормальной), установочная (обусловленная отклонением положения прибора от нормального рабочего положения), и т. п.

Обобщённой характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведённых основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)×10n, где показатель степени n = 1; 0; −1; −2 и т. д.

По характеру проявления

Случайная погрешность — составляющая погрешности измерения, изменяющаяся случайным образом в серии повторных измерений одной и той же величины, проведенных в одних и тех же условиях. В появлении таких погрешностей не наблюдается какой-либо закономерности, они обнаруживаются при повторных измерениях одной и той же величины в виде некоторого разброса получаемых результатов. Случайные погрешности неизбежны, неустранимы и всегда присутствуют в результате измерения, однако их влияние обычно можно устранить статистической обработкой. Описание случайных погрешностей возможно только на основе теории случайных процессов и математической статистики.

Математически случайную погрешность, как правило, можно представить белым шумом: как непрерывную случайную величину, симметричную относительно 0, независимо реализующуюся в каждом измерении (некоррелированную по времени).

Основным свойством случайной погрешности является возможность уменьшения искажения искомой величины путем усреднения данных. Уточнение оценки искомой величины при увеличении количества измерений (повторных экспериментов) означает, что среднее случайной погрешности при увеличении объёма данных стремится к 0 (закон больших чисел).

Часто случайные погрешности возникают из-за одновременного действия многих независимых причин, каждая из которых в отдельности слабо влияет на результат измерения. По этой причине часто полагают распределение случайной погрешности «нормальным» (см. Центральная предельная теорема). «Нормальность» позволяет использовать в обработке данных весь арсенал математической статистики.

Однако априорная убежденность в «нормальности» на основании ЦПТ не согласуется с практикой — законы распределения ошибок измерений весьма разнообразны и, как правило, сильно отличаются от нормального.

Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т. п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления).

Систематическая погрешность— погрешность, изменяющаяся во времени по определённому закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т. п.), неучтёнными экспериментатором.

Систематическую ошибку нельзя устранить повторными измерениями. Её устраняют либо с помощью поправок, либо «улучшением» эксперимента.

Прогрессирующая (дрейфовая) погрешность — непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.

Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора или если произошло замыкание в электрической цепи).

Надо отметить, что деление погрешностей на случайные и систематические достаточно условно. Например, ошибка округления при определённых условиях может носить характер как случайной, так и систематической ошибки.

По способу измерения

Погрешность прямых измерений вычисляется по формуле

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность— абсолютная погрешность средства измерения (обычно это число, равное половине цены деления измерительного прибора).

Погрешность косвенных воспроизводимых измерений — погрешность вычисляемой (не измеряемой непосредственно) величины. Если Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность, где Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность— непосредственно измеряемые независимые величины, имеющие погрешность Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность, то:

Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешность

Погрешность косвенных невоспроизводимых измерений вычисляется аналогично вышеизложенной формуле, но вместо Что такое средняя квадратичная погрешность. Смотреть фото Что такое средняя квадратичная погрешность. Смотреть картинку Что такое средняя квадратичная погрешность. Картинка про Что такое средняя квадратичная погрешность. Фото Что такое средняя квадратичная погрешностьставится значение, полученное в процессе расчётов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Основные метрологические термины и определения: по РМГ 29-99 (с изменениями от 04.08.2010)