Что такое средняя скорость переменного движения
Неравномерное движение и средняя скорость
теория по физике 🧲 кинематика
Неравномерное движение — движение с переменной скоростью, которая может менять как направление, так и модуль.
Неравномерное движение можно охарактеризовать средней скоростью. Различают среднюю векторную и среднюю скалярную скорости.
Средняя векторная скорость
Средняя векторная скорость — это скорость, равная отношению перемещения тела ко времени, в течение которого это перемещение было совершено.
v ср — средняя векторная скорость, s — перемещение тела, совершенное за время t
Направление вектора средней скорости всегда совпадает с направлением вектора перемещения.
Чтобы вычислить среднюю векторную скорость, нужно поделить сумму всех перемещений на сумму всех временных промежутков, в течение которых эти перемещения были совершены:
Пример №1. Миша пробежал стометровку за 16 секунд. Через 1 минуту он вернулся на старт. Найти среднюю векторную скорость мальчика.
Миша совершил одинаковые по модулю, но разные по направлению перемещения. При сложении этих векторов получается 0. Поэтому средняя векторная скорость также равна нулю:
Средняя скалярная скорость
Средняя скалярная (путевая) скорость — это скорость, равная отношению пути, пройденного телом, ко времени, в течение которого этот путь был пройден.
vср — средняя путевая скорость, s — путь, пройденный телом за время t
Чтобы вычислить среднюю путевую скорость, нужно поделить сумму всех путей на сумму всех временных промежутков, в течение которых эти пути были преодолены:
Пример №2. Мальчик пробежал по периметру квадратного поля сто стороной 100 м. На первые две стороны мальчик потратил по 15 секунд, а на последние две — по 20 секунд. Найти среднюю путевую скорость мальчика.
У квадрата 4 стороны, поэтому путь мальчика составляют 4 дистанции по 100 м каждая. Поэтому средняя путевая скорость равна:
Средняя скалярная скорость всегда больше или равна модулю средней векторной скорости:
Пример №3. Рыболов остановился на берегу круглого пруда и увидел на противоположном берегу удобное для рыбалки место. Он к нему шел в течение 2 минут. Вычислите среднюю путевую и среднюю векторную скорости рыболова после того, как он придет на новое место, если радиус пруда равен 50 м.
Две противоположные точки окружности соединяются отрезком, проходящим через его центр — диаметром. Поэтому модуль вектора перемещения равен двум радиусам пруда:
Чтобы дойти до диаметрально противоположной точки окружности, нужно пройти путь, равный половине окружности:
Переведя 2 минуты в СИ, получим 120 с. Модуль средней векторно скорости равен:
Пример №4. Первые полчаса автомобиль двигался со скоростью 90 км/ч, а потом 1 час он двигался со скоростью 60 км/ч. Найти среднюю скорость автомобиля.
Нам известны скорости на каждом из участков пути и время, в течение которого каждый из этих участков был преодолен. Поэтому:
Что такое средняя скорость переменного движения
§ 17. Переменное движение. Средняя скорость. Средний модуль скорости
1. Переменное движение.
2. Средняя скорость.
Определение 2а. Средней скоростью переменного движения называется отношение перемещения ко времени, за которое это перемещение произошло.
Запишем формулу скорости равномерного движения и средней скорости переменного движения.
Если посмотреть на правые части этих равенств, заметим, что они одинаковы. В этом заключается смысл средней скорости.
Определение 2б. Под средней скоростью переменного движения понимают скорость некоторого воображаемого равномерного прямолинейного движения, у которого перемещение и время одинаковы с переменным движением.
Согласно рисунку, представленному выше, это понимать надо так. Если бы точка двигалась не переменно по криволинейной траектории, а равномерно и прямолинейно прямо по вектору перемещения , то она за время
попала бы в точку A из точки
, если бы скорость этого воображаемого равномерного движения была бы одинаковой со средней скоростью переменного движения.
Модуль вектора средней скорости, или модуль средней скорости :
.
3. Средний модуль скорости.
На практике при составлении расписания движения поездов, автобусов используют ещё одно понятие средней скорости, которое называют средним модулем скорости, то есть средним по времени модулем всех скоростей, которые имела точка на различных участках траектории.
Определение 3а. Средним модулем скорости переменного движения называется отношение пути S ко времени t, за которое этот путь пройден.
— средний модуль скорости
Не надо путать средний модуль скорости с модулем вектора средней скорости.
Например, если автобус вышел на маршрут в начале дня и к концу дня возвратился в гараж, то перемещение за всё время движения равно нулю . Поэтому равны нулю средняя скорость и её модуль:
,
.
Но средний модуль скорости отличен от нуля, так как не равен нулю путь, пройденный автобусом:
.
Аналогично для бумеранга.
За время полёта бумеранга средняя скорость его движения и модуль средней скорости равны нулю, так как равно нулю перемещение бумеранга относительно точки А (см. рис.). Но так как путь, который проделал бумеранг, не равен нулю, то и средний модуль скорости движения бумеранга отличен от нуля.
Если посмотреть на правые части формул модуля скорости равномерного движения и среднего модуля скорости переменного движения, то увидим, что правые части равенств одинаковы.
В этом заключается смысл среднего модуля скорости.
Определение 3б. Средний модуль скорости переменного движения равен модулю скорости такого воображаемого равномерного прямолинейного движения, у которого путь и время одинаковы с переменным движением.
Никакую часть этого материала ни в каких целях, включая образовательные и научные, нельзя без письменного разрешения владельца авторских прав дублировать в сети Интернет и воспроизводить в какой бы то ни было форме и какими бы то ни было средствами, будь то электронные или механические, включая запись на магнитный или электронный носитель, вывод на печать, фотокопирование.
Неравномерное(переменное) движение. Средняя скорость
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
План-конспект урока по теме « Неравномерное (переменное) движение. Средняя скорость »
Тема: Неравномерное (переменное) движение. Средняя скорость
Образовательная: формирование знаний и представлений о неравномерном (переменном) движении, а также о средней скорости;
Развивающая: развитие и формирование практических умений пользоваться физическими понятиями и величинами для описания равномерного прямолинейного движения; развивать познавательный интерес;
Воспитательная: прививать культуру умственного труда, аккуратность, учить видеть практическую пользу знаний, продолжить формирование коммуникативных умений, воспитывать внимательность, наблюдательность.
Тип урока: урок усвоения новых знаний
Оборудование и источники информации:
Исаченкова, Л. А. Физика : учеб. для 7 кл. учреждений общ. сред. образования с рус. яз. обучения / Л. А. Исаченкова, Г. В. Пальчик, А. А. Сокольский ; под ред. А. А. Сокольского. Минск : Народная асвета, 2017.
Организационный момент(5 мин)
Актуализация опорных знаний(5мин)
Изучение нового материала (14 мин)
Физкультминутка (1 мин)
Закрепление знаний (15 мин)
Организационный момент (проверка присутствующих в классе, проверка выполнения домашнего задания, озвучивание темы и основных целей урока)
Актуализация опорных знаний
Что выражает график пути?
Для какого движения график пути представляет собой прямую?
Как по графику скорости определить пройденный путь?
Изучение нового материала
Проанализируйте движение автобуса. Он уменьшает скорость перед остановкой. Затем в течение ка кого-то промежутка времени стоит на остановке, т. е. его скорость равна нулю, после чего скорость увеличивается. Значит, скорость автобуса в процессе движения изменяется, т. е. является переменной величиной.
Движение, при котором скорость изменяется, называется неравномерным (переменным).
Практически все движения, наблюдаемые в природе и технике, — неравномерные. С изменяющейся скоростью движутся, например, люди, птицы (рис. 103), дельфины (рис. 104), поезда, падают предметы (рис. 105). Но как же тогда характеризовать это движение?
Неравномерное движение характеризуется средней скоростью. Как определить среднюю скорость? Рассмотрим пример. Вы едете на экскурсию в Брест поездом. Поезд проходит от Минска до Бреста путь s = 330 км. На прохождение этого пути затрачивается время t = 4,5 ч. В течение данного времени поезд стоит на станциях, движется то с увеличивающейся, то с уменьшающейся скоростью.
Среднюю скорость находят путем деления всего пути на весь промежуток времени, за который этот путь пройден. Обозначим среднюю скорость ( v ) и запишем формулу:
Тогда поезд «Минск — Брест» движется со средней скоростью
Вас не удивило, что мы использовали формулу равномерного движения? Да, действительно, формально мы нашли среднюю скорость так, как будто поезд весь путь s = 330 км двигался равномерно с постоянной скоростью v = 73 Это, конечно же, не означает, что он на самом деле двигался равномерно. На отдельных участках пути скорость движения поезда была как значительно
Средняя скорость дает лишь приблизительное представление о быстроте движения тела. Описание переменного движения более сложно по сравнению с описанием равномерного.
Например, если скорость поезда на участке разгона возрастает от 0 до 90 то в различных точках траектории она принимает различные значения из этого промежутка. Таким образом, можно говорить не только о средней скорости на данном участке траектории, но и о скорости в данной точке траектории. Такую скорость называют в физике мгновенной скоростью.
Рассмотрим пример решения задачи со стр. 66
А сейчас поработаем с карточками по теме «Неравномерное (переменное) движение. Средняя скорость» (приложение 1)
Карточка по теме «Неравномерное (переменное) движение. Средняя скорость»
Выполните задания и решите задачи
Заполните таблицу, ответьте устно на контрольные вопросы, решите задачи.
Движение, при кото-ром скорость изменя-ется, называется неравномерным (переменным).
Среднюю скорость находят путем деления всего пути на весь промежуток времени, за который этот путь пройден.
Чем отличается неравномерное движение тела от равномерного?
Ответ: при равномерном движении тело за равное время проходит равное расстояние, а при неравномерном – разное.
Как найти среднюю скорость неравномерного движения?
Какое физическое значение имеют слова «всего» и «весь» в определении средней скорости
Яблоко падало с высоты h = 2,2 м в течение времени t = 0,67 с. Найдите среднее значение скорости падения яблока.
По данным графика (см. рисунок) опишите движение мотоциклиста.
Ответ: сначала мотоциклист за 3 секунды разогнался до скорости 6 м/с, затем 6 секунд ехал с постоянной скоростью равной 6 м/с, а после начал тормозить и через 3,5 секунды остановился.
Итак, подведем итоги:
Характеристикой неравномерного движения является средняя скорость.
Для вычисления средней скорости нужно путь разделить на весь промежуток времени, затраченный на прохождение этого пути.
Организация домашнего задания
§18,ответить на контрольные вопросы.
Определите среднюю скорость своего движения от дома до школы. Оцените полученный результат.
Сегодня на уроке я узнал…
Знания, которые я получил на уроке, пригодятся.
Равнопеременное прямолинейное движение
Равномерное прямолинейное движение – это частный случай неравномерного движения.
Неравномерное движение – это движение, при котором тело (материальная точка) за равные промежутки времени совершает неодинаковые перемещения. Например, городской автобус движется неравномерно, так как его движение состоит в основном из разгонов и торможений.
Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.
Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).
Равнопеременное движение может быть равноускоренным или равнозамедленным.
Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.
Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.
В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.
Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.
Мгновенная скорость – это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:
Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:
Проекция вектора скорости на ось ОХ:
это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).
Ускорение – это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:
Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:
Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:
Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.
Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).
Рис. 1.15. Зависимость ускорения тела от времени.
Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).
Рис. 1.16. Зависимость скорости тела от времени.
График зависимости скорости от времени (рис. 1.16) показывает, что
При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).
Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:
Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:
В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).
Общая формула для определения проекции перемещения:
График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.
Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.
Рис. 1.18. Зависимость перемещения тела от времени.
Скорость тела в данный момент времени t1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:
Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:
Формула сокращённого умножения разности квадратов поможет нам вывести формулу для проекции перемещения:
Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, то уравнение движения тела будет выглядеть следующим образом:
Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При аx
Средняя скорость
Перемещение материальной точки
\[\Delta s=\left|\Delta x\right|\left(1\right).\]
Если точка движется сначала в одном направлении, затем останавливается и движется в противоположном направлении, (например, так движется тело брошенное вертикально вверх) то путь равен сумме модулей перемещений в обоих направлениях:
\[\Delta s=\left|\Delta x_1\right|+\left|\Delta x_2\right|+\dots \left(2\right).\]
Определение средней скорости
\[\left\langle v\right\rangle =\frac<\Delta x><\Delta t>\left(3\right).\]
Направление средней скорости такое же, как у перемещения.
Единицей скорости является скорость такого движения, при котором перемещение точки в единицу времени равно единице длины:
Единица измерения скорости (в том числе и средней скорости) в Международной системе единиц (СИ) является метр в секунду:
Средняя скорость при переменном движении
При неравномерном движении величина средней скорости сильно зависит от выбора промежутка времени движения тела.
Рассмотрим движение тела, которое свободно падает вниз. Закон движения при этом:
Средняя скорость равномерного движения
Только при равномерном движении средняя скорость является постоянной величиной и не зависит от выбора промежутка времени, в который движется тело. При равномерном движении материальной точки по оси X кинематические уравнения для перемещения запишем как:
Найдем среднюю скорость движения, используя определение (3) и выражения (6):
\[\left\langle v\right\rangle =\frac
Определяемая таким образом средняя скорость является скалярной величиной.
Примеры задач с решением
Решение. Сделаем рисунок.
Для решения задачи используем формулу, определяющую среднюю скорость:
\[\left\langle v\right\rangle =\frac
где путь складывается из двух участков движения:
Причем по условию задачи:
\[s_1=v_1t_1=v_1\frac
Вычислим среднюю скорость пешехода:
\[\left\langle v\right\rangle =\frac<5+3><2>=4\ (\frac<м><с>).\]
\[v\left(t\right)=A+Bt+Ct^2\ \left(0\le t\le \tau \right)\left(2.1\right).\]
\[\left\langle v\right\rangle =\frac
Найдем путь материальной точки, учитывая уравнение скорости из данных задачи:
Подставим правую часть выражения (2.2) в (2.1), имеем: