Что такое стадия бластулы
Бластула
Бла́стула (зародышевый пузырь, бластосфера) — это многоклеточный зародыш, имеющий однослойное строение (один слой клеток), стадия в развитии зародыша, которую проходят яйца большинства животных — окончательный результат процесса дробления яйца. При своем дроблении (см. Дробление яйца) яйцо рядом последовательных делений распадается на комплекс клеток, именуемых шарами дробления, сегментационными шарами, или бластомерами, относительная величина и взаимное расположение которых бывают различны, смотря по способу дробления, зависящему, в свою очередь, от количества питательного желтка, находящегося в яйце. В наиболее правильной и типической форме бластула бывает выражена при полном и равномерном (правильном) дроблении яйца, какое наблюдается у мелких яиц, бедных питательным желтком. По окончании дробления бластомеры удаляются в радиальном направлении от центра яйца и располагаются в виде сферического слоя клеток, окружающих собой центральную полость. Б. имеет, так обр., форму полого шара; полость его, наполненная жидкостью, называется сегментационной полостью дробления, или бластоцёлем (Blastocoel). Стенка Б. состоит из одного слоя плотно прилегающих друг к другу вследствие взаимного давления полигональных, почти одинаковых по величине клеток, по гистологическому характеру представляющих из себя слой эпителия; этот эпителиальный слой называется бластодерма и при дальнейшем развитии дает начало зародышевым пластам (см. это сл. и Гаструла). У многих низших животных, живущих в воде, такие бластулы уже покидают желточную оболочку яйца и свободно плавают, вращаясь, при помощи мерцательных ресничек, появляющихся на цилиндрических клетках бластодермы. Такие зародыши называются бластосферами; но часто последнее название применяется и к стадии бластулы в яйце.
При полном неравномерном (неправильном) дроблении получается Б., клеточки которой отличаются весьма неравной величиной: на одном (анимальном) полюсе Б. лежат мелкие, на другом (вегетативном) крупные клетки, а в бластодерме уже различается эктодермическая и энтодермическая часть (некоторая разница между двумя полюсами яйца, но в гораздо меньшей степени, бывает заметна часто и в правильной Б.); сегментационная полость вследствие этого уменьшается и лежит эксцентрически. У позвоночных часто образуется при этом способе дробления бластодерма из нескольких слоев клеточек.
При частичном, так назыв. поверхностном, дроблении, как оно совершается напр. у насекомых, не происходит распадения желтка на бластомеры; дробление выражается в размножении одних ядер дробления, которые затем, окруженные участками плазмы, выходят на периферию яйца и производят распадение поверхностного слоя плазмы, окружающей яйцо, на отдельные клеточки, составляющие бластодерму. Яйцо окружается одним слоем бластодермических клеточек и таким образом как бы вступает в стадию бластулы; но эта Б. не имеет сегментационной полости, так как место полости сплошь заполнено питательным желтком, в котором при этом остаются отдельные ядра дробления, не вышедшие наружу.
Всего более уклоняется процесс дробления и образования бластодермы в яйцах с частичным дискоидальным дроблением, где стадия бластулы является в совершенно неузнаваемом виде. Дроблению подвергается только незначительное количество образовательного желтка (протоплазмы), лежащего на одном полюсе яйца и образующего зародышевую пластинку, тогда как огромная масса питательного желтка совсем не подвергается дроблению (яйца пресмыкающихся, костистых и хрящевых рыб, птиц). В результате дробления получается многослойная зародышевая пластинка, лежащая на одном полюсе яйца, по краям непосредственно лежащая на желтке, а в средней части своей отделенная от него узкой щелью, наполненной белковой жидкостью; эта щель представляет из себя сегментационную полость. Под этой щелью и по краям зародышевой пластинки в желтке лежат отдельные, так наз. «желточные ядра». Многослойная зародышевая пластинка с одной стороны и нераздробившийся желток с лежащими в нем ядрами с другой соответствуют мелким клеткам анимального и крупным вегетативного полюсов бластулы яиц с полным неравномерным дроблением.
У млекопитающих строение бластулы сходно со строением бластулы других амниот (птиц и рептилий), и упрощенно бластула млекопитающих может быть отнесена к дискобластуле. Исторически сложилось, что бластуляцию у амниот обозначают термином «первая фаза гаструляции», а образование гомологичное бластуле — термином «зародышевый диск». Однако ввиду отсутствия желтка в яйцах млекопитающих происходит полное равномерное дробление. Поэтому у млекопитающих формированию бластулы предшествует формирование шарообразной структуры, имитирующей зародыш яйцекладущих амниот. Это образование называется «бластоциста». Ввиду внешнего сходства с целобластулой бластоцисту часто ошибочно считают бластулой млекопитающих, что неверно. Несмотря на внешнее сходство, бластоциста не гомологична бластуле.
Стадия бластосферы многих морских животных, то есть свободно плавающей при помощи мерцательных ресничек правильной, типической бластулы, представляет высокий интерес с точки зрения филогенеза (истории происхождения) животного царства, именно многоклеточных животных (Metazoa). Такая бластула напоминает шаровидные колонии одноклеточных организмов вроде Pandorina или Volvox, относимых то к водорослям, то к жгутиковым инфузориям (Flagellata). Первоначальные Metazoa произошли, вероятно, от подобных шаровидных колоний одноклеточных организмов и на ранних стадиях эмбрионального развития многоклеточных животных проходят через стадию бластулы, как бы выражающей собою тип их родоначальника. См. Гаструла (ср. Balfour, «Handbuch der vergleichenden Embryologie» (1880, I Bd.); О. Гертвиг, «Учебник эмбриологии животных позвоночных и человека» (перевод Шульгина, Одесса, 1889 г. Вып. 1).
Эмбриональное развитие
От момента образования зиготы и до выхода зародыша из яйцевых оболочек длится эмбриональный период развития.
Дробление зиготы
Важная особенность дробления в том, что не происходит увеличение в размере зародыша: клетки дробятся (делятся) настолько быстро, что не успевают накопить цитоплазматическую массу. Дробление зиготы человека является полным неравномерным асинхронным.
Бластуляция
Гаструляция (греч. gaster — желудок, чрево)
Гаструляцией называют стадию эмбрионального развития, в ходе которой клетки, возникшие в результате дробления зиготы, формируют три зародышевых листка: эктодерму, мезодерму и энтодерму.
У первичноротых животных на месте первичного рта (бластопора) образуется ротовое отверстие. К первичноротым относятся: кишечнополостные, плоские, круглые и кольчатые черви, моллюски, членистоногие.
У вторичноротых на месте бластопора формируется анальное отверстие, а ротовое отверстие образуется на противоположном полюсе. К вторичноротым относят хордовых и иглокожих (морских звезд, морских ежей).
Нейрула
Эта стадия следует за гаструлой. Ранняя нейрула представляет собой трехслойный зародыш, состоящий из энто-, экто- и мезодермы. На этапе нейрулы происходит закладка отдельных органов.
Все три зародышевых листка требуют нашего особого внимания, а также понимания того, какие органы и структуры из них образуются.
Из зародышевых листков образуются ткани, органы и системы органов. Такой процесс называется органогенезом. В период закладки органов важное значение имеет воздержание матери от вредных привычек (алкоголь, курение), которые могут нарушить процесс дифференцировки клеток и привести к тяжелейшим аномалиям, уродствам плода.
Некоторые лекарства также могут оказывать на плод тератогенный эффект (греч. τέρας — чудовище, урод), приводя к развитию уродств. Периоды закладки органов и система органов вследствие их большой важности носят название критических периодов эмбриогенеза.
Анамнии и амниоты
К анамниям относятся рыбы, земноводные.
Зародышевый орган, аллантоис, является органом дыхания и выделения.
За счет особых оболочек, развивающихся в ходе эмбрионального развития, амниона и серозы, у амниот формируется амниотическая полость. В ней находится зародыш, окруженный околоплодными водами. Благодаря такому гениальному устройству, амниотам для размножения и развития более не нужно постоянное нахождение в водоеме, они «обрели независимость» от него.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Бластула
Из Википедии — свободной энциклопедии
При полном неравномерном (неправильном) дроблении получается бластула, клеточки которой отличаются весьма неравной величиной: на одном её (анимальном) полюсе лежат мелкие, на другом (вегетативном) крупные клетки, а в бластодерме уже различается эктодермическая и энтодермическая часть (некоторая разница между двумя полюсами яйца, но в гораздо меньшей степени, бывает заметна часто и в правильной бластуле); сегментационная полость вследствие этого уменьшается и лежит эксцентрически. У позвоночных часто образуется при этом способе дробления бластодерма из нескольких слоев клеточек.
При частичном, так называемом поверхностном, дроблении, как оно совершается например у насекомых, не происходит распадения желтка на бластомеры; дробление выражается в размножении одних ядер дробления, которые затем, окруженные участками плазмы, выходят на периферию яйца и производят распадение поверхностного слоя плазмы, окружающей яйцо, на отдельные клеточки, составляющие бластодерму. Яйцо окружается одним слоем бластодермических клеточек и таким образом как бы вступает в стадию бластулы; но эта бластула не имеет сегментационной полости, так как место полости сплошь заполнено питательным желтком, в котором при этом остаются отдельные ядра дробления, не вышедшие наружу.
Всего более уклоняется процесс дробления и образования бластодермы в яйцах с частичным дискоидальным дроблением, где стадия бластулы является в совершенно неузнаваемом виде. Дроблению подвергается только незначительное количество образовательного желтка (протоплазмы), лежащего на одном полюсе яйца и образующего зародышевую пластинку, тогда как огромная масса питательного желтка совсем не подвергается дроблению (яйца пресмыкающихся, костистых и хрящевых рыб, птиц). В результате дробления получается многослойная зародышевая пластинка, лежащая на одном полюсе яйца, по краям непосредственно лежащая на желтке, а в средней части своей отделенная от него узкой щелью, наполненной белковой жидкостью; эта щель представляет собой сегментационную полость. Под этой щелью и по краям зародышевой пластинки в желтке лежат отдельные, так называемые «желточные ядра». Многослойная зародышевая пластинка с одной стороны и нераздробившийся желток с лежащими в нём ядрами с другой соответствуют мелким клеткам анимального и крупным вегетативного полюсов бластулы яиц с полным неравномерным дроблением.
У млекопитающих строение бластулы сходно со строением бластулы других амниот (птиц и рептилий), и упрощенно бластула млекопитающих может быть отнесена к дискобластуле. Исторически сложилось, что бластуляцию у амниот обозначают термином «первая фаза гаструляции», а образование гомологичное бластуле — термином «зародышевый диск». Однако ввиду отсутствия желтка в яйцах млекопитающих происходит полное равномерное дробление. Поэтому у млекопитающих формированию бластулы предшествует формирование шарообразной структуры, имитирующей зародыш яйцекладущих амниот. Это образование называется «бластоциста». Ввиду внешнего сходства с целобластулой бластоцисту часто ошибочно считают бластулой млекопитающих, что неверно. Несмотря на внешнее сходство, бластоциста не гомологична бластуле.
Стадия бластосферы многих морских животных, то есть свободно плавающей при помощи мерцательных ресничек правильной, типической бластулы, представляет высокий интерес с точки зрения филогенеза (истории происхождения) животного царства, именно многоклеточных животных (Metazoa). Такая бластула напоминает шаровидные колонии одноклеточных организмов вроде Pandorina или Volvox, относимых то к водорослям, то к жгутиковым инфузориям (Flagellata). Первоначальные Metazoa произошли, вероятно, от подобных шаровидных колоний одноклеточных организмов и на ранних стадиях эмбрионального развития многоклеточных животных проходят через стадию бластулы, как бы выражающей собою тип их родоначальника. См. Гаструла (ср. Balfour, «Handbuch der vergleichenden Embryologie» (1880, I Bd.); О. Гертвиг, «Учебник эмбриологии животных позвоночных и человека» (перевод Шульгина, Одесса, 1889 г. Вып. 1).
Что такое бластула: определение,строение и классификация
Прежде чем определить, насколько велика роль и значение образования бластулы в период оплодотворения клетки, стоит рассмотреть само понятие оплодотворения. В этой статье мы дадим точное определение, что такое бластула и какое значение она имеет в процессе оплодотворения.
Оплодотворение представляет собой процесс слияния женской и мужской гаметы в результате которого образуется диплоидная клетка, называемая зиготой. Это, своего рода, первая фаза жизни эмбриона, обычно занимающая два или три дня.
Процесс оплодотворения
Вам будет интересно: Хлам – это накопление старья в доме и обид в душе
Процесс оплодотворения довольно сложный и загадочный механизм. Он состит из нескольких стадий:
Определение понятия “бластула”
Разумеется бластула занимает важное место в процессе оплодотворения, без которого дальнейшее развитие просто невозможно. Что же такое бластула? Дадим определение.
В процессе дробления образовавшиеся клетки не растут, а лишь быстро увеличивается их количество.
Бластомерами называют клетки эмбрионов, образующиеся при дроблении зиготы.
Взаимное расположение бластомеров и их размер различаются в зависимости от способа дробления и от массы питательного желтка в яйце. Вот, собственно, то, что такое бластула.
Процесс образования бластулы
Процесс дробления завершается по достижению соотношение объема ядра и цитоплазмы.
В процессе деления зиготы образуются два бластомера, затем каждый новый бластомер делится на два дочерних и так далее, до тех пор, пока количество бластомеров не достигнет 12-16 штук. Обычно этот процесс завершается по истечении третьих суток после оплодотворения, когда концептус в стадии морулы, покидая маточные трубы, выходит в матку.
При достижении бластомерами 64 штук, внутри образуется полость. Дальнейшее увеличение их количества приводит к тому, что полость увеличивается, а все клетки выстраиваются на поверхности зародыша в один ряд. Этот этап развития называться стадия бластулы.
Первые образующиеся бластомеры разные по цвету. Они более осветленные быстрее делятся, обволакивая поверхность зиготы, в то время как в затемненных бластомерах, этот процесс протекает медленнее, выстилая внутренний эмбриопласт.
При достижении 107 бластомеров, дробление зиготы человека считается завершенным.
Состав и строение бластулы
Разобравшись с тем, что такое бластула, перейдем к рассмотрению непосредственно вопроса строения клетки.
В зависимости от типа дробления бластулы различаются по своему строению. Зародыш в форме полого шара называют бластулой.
Если в результате дробления образуется безполостной шар, то такой зародыш уже не является бластулой, а называется морулой. Что именно выйдет в процессе дробления, морула или бластула, зависит основным образом от вязкости цитоплазмы. Когда цитоплазма имеет достаточно высокую вязкость, то образующиеся бластомеры округлой формы, лишь немного сплющенные в местах, где соприкасаются друг с другом. Свободное пространство, образующееся между бластоцистами по мере дробления увеличивается, и заполняясь жидкостью, превращается в бластоцель. А в случае когда цитоплазма имеет слабую вязкость, наоборот, бластомеры плотно прилегают, в результате чего запас жидкости не образуется, не приобретая округлой формы. От этого и зависит, какую в конечном счете форму будет иметь бластула.
По окончании дробления клетки бластула приобретает внешний вид и функции бластоцисты.
Классификация бластул
Непосредственно процесс, при котором образуется бластула, называется бластуляцией. Основное предназначение которого образование зародышевой полости. Это заключительный этап дробления зиготы, далее следует процесс гаструляции.
В зависимости от способа дробления выделяют следующие виды бластул:
Стадии развития эмбрионов
Однако наличие зигот еще недостаточно для решения вопроса о возможности переноса эмбрионов в полость матки. Сначала необходимо удостовериться в нормальном дроблении и развитии эмбрионов.
Об этом можно судить только исходя из количества и качества делящихся клеток эмбриона и не ранее, чем через сутки после оплодотворения, когда появляются первые признаки дробления.
Наиболее четко они проявляются только на второй день культивирования.
Каждый день эмбриологом проводится оценка эмбрионов с фиксацией всех параметров: количество и качество клеток эмбриона (бластомеров), скорость дробления, наличие отклонений и т.д.
Переносу подлежат только эмбрионы хорошего качества.
До недавнего времени эмбрионы культивировались в течение трех дней и затем переносились в матку и/или замораживались.
В настоящее время широко распространено так называемое продленное культивирование эмбрионов в течение пяти или шести дней, пока они не достигают стадии бластоцисты.
Бластоцисты имеют большую частоту успешной имплантации, позволяя нам переносить меньшее количество эмбрионов и снижать риск многоплодной беременности при увеличении частоты наступления беременности.
Вы можете получить ответ на все возникшие вопросы, воспользовавшись формой обратной связи или лично на консультации у врача репродуктолога.
ФОТО БУДУЩИХ ЭМБРИОНОВ
Начало
На рисунке справа: Комплекс ооцит-корона-кумулюс через 1 час после получения. Ооцит кажется нормальным. Клетки кумулюса диспергированы, однако клетки короны остаются плотными и полярное тельце не визуализируется, поэтому только удаление короны позволит точно определить степень зрелости ооцита.
На рисунке слева: Комплекс ооцит-корона-кумулюс через час после получения. Нормальный ооцит хорошей формы. Клетки кумулюса хорошо диспергированы. Полярное тельце на 11 часах.
День I (16-20 часов после инсеминации или ИКСИ).
На рисунке слева: Аномальная фертилизация. Через 18 часов после ИКСИ ооцит правильной формы с единственным пронуклеусом и тремя нуклеолями. Перивителлиновое пространство слегка расширено, содержит множество маленьких гранул. 5-6 цитоплазматических фрагментов, включая полярные тельца, видны на 11-12 часах
На рисунке справа: Триплоид
День 2: несостоявшееся первое деление. Единственный бластомер содержит пять маленьках ядер, множественная цитоплазматическая фрагментация. Дальнейшее развитие крайне мало вероятно.
День 2: асимметричное незавершенное первое деление. Дальнейшее развитие крайне мало вероятно.
Двухклеточный эмбрион, с легкой асимметрией и фрагментацией.
3-клеточный эмбрион с асинхронным делением, и легкой фрагментацией на 5 часах. Три ядра в большом бластомере и ни одного в остальных.
Морфологически ненормальный 4-клеточный эмбрион с выраженной фрагментацией, занимающей около половины объема эмбриона. Жизнеспособность таких эмбрионов резко снижена. Развитие обычно останавливается.
Морфологически нормальный 4-клеточный эмбрион. Все бластомеры одинаковой величины, с ядром и полярным тельцем на 8 часах.
Медленный 5 клеточный эмбрион: 4 одинаковых и один меньший бластомер Такие эмбрионы часто останавливаются в развитии.
Компактизация 4-клеточного эмбриона на день 3. Нередко наблюдается в среде G1.1. Биопсия эмбриона затруднена. Чтобы провести биопсию прибегают к декомпактизации, применяя среды без кальция и магния.
8-клеточный эмбрион неправильной вытянутой формы. Развитие таких эмбрионов сомнительно. Биопсия также затруднена.
День 3. 8-клеточные эмбрионы с несколькими цитоплазматическими фрагментами, которые не нарушают развитие и компактизацию эмбрионов
Рисунок 1. День 5. Ранняя бластоциста, 120 часов после инсеминации. Бластоцеле сформировано большими овальными клетками развивающегося трофобласта. Круглые клетки, сконцентри-рованные в нижнем полюсе, образуют внутреннюю клеточную массу.
Рисунок 2. День 5. Ранняя бластоциста, 120 часов после инсеминации. Бластоцеле занимает около половины зародыша. Клетки трофоэктодермы уплощены и растянуты, что аккомодирует экспансию. Клетки внутренней массы различимы внутри полости бластоцисты.
Рисунок 3. День 5, ранняя бластоциста через 120 часов после инсеминации. Клетки полигональны и тесно соединены. Ядра видны в большинстве клеток.
Рисунок 4. День 5, аномальная ранняя бластоциста через 120 часов после инсеминации состоит из небольшого бластоцеле, сформированного меньшим количеством больших плоских клеток. Все еще заметно первителлиновое пространство. Нормальное развитие такой бластоцисты мало вероятно.
Рисунок 5. День 6, аномальное развитие эмбриона.144 часа после инсеминации трофобласт состоит из большой полости, сформированной монослоем клеток трофоэктодермы. Клетки внутренней массы не идентифицируются Зона пеллюцида очень тонкая.
Рисунок 6. День 6, бластоциста в самом начале процесса хетчинга. Несколько клеток трофоэктодермы видны на 12 часах за пределами зоны пеллюцида, также как внутренняя клеточная масса.
Рисунок 7 и 8. Хэтчинг бластоцисты через 130 часов после инсеминации через V-образное отверстие, сделанное ранее в зоне пеллюцида для биопсии бластомера. Хетчинг эмбрионов при наличии отверстий происходит раньше, чем в интактных эмбрионах.
Полностью вылупившаяся морфологически нормальная бластоциста 130-l40 часов после инсеминации (a) и (b). V-образное отверстие было сделано ранее в зоне пеллюцида для биопсии бластомера. Внутренняя клеточная масса ясно видна в каждой бластоцисте.