Что такое старение оклейстеризованного крахмала
Физико-химические изменения крахмала: ретроградация, деструкция, модификация
Ретроградация – переход крахмальных полисахаридов из растворимого состояния в нерастворимое (выпадение в осадок в основном амилозы) вследствие агрегации молекул. Полисахариды в крахмальных студнях высокой концентрации (например, изделия из теста) быстро ретроградируют, что приводит к увеличению их жесткости – черствению. Старение крахмальных студней называют еще синерезисом. Объясняется это тем, что физически связанная с полисахаридами вода вытесняется из студня, вследствие чего изделия приобретают жесткую консистенцию. Ретроградация усиливается при замораживании изделий, неоднократные замораживания и оттаивания приводят к необратимой ретроградации и резкому ухудшению качества готового изделия. Кроме того, ретроградированный крахмал менее чувствителен к действию ферментов.
Для предотвращения черствения в изделиях целесообразно использовать в качестве добавок жиры, которые образуют комплексы с амилозой. Эффект черствения может быть частично реверсирован в хлебе прогревом и смачиванием водой, при этом в результате термического движения крахмальных молекул имеет место частичный возврат к более аморфной структуре.
Чем выше влажность блюда или кулинарного изделия, тем интенсивнее снижается в нем количество водорастворимых веществ. Наиболее быстро старение протекает в пшенной каше, медленнее – в манной и гречневой. Повышение температуры тормозит старение крахмала, поэтому блюда из круп и макаронных изделий, хранящиеся на мармите имеют хорошие органолептические показатели в течение 4 часов.
Деструкция крахмала – разрушение структуры крахмального зерна при температуре 120ºС с образованием растворимых декстринов и продуктов распада углеводов (углекислый газ, окись углерода). Деструкция протекает при нагреве крахмала в присутствии воды или при сухом нагреве при температуре выше 100ºС. Крахмал может быть подвержен деструкции под влиянием амилолитических ферментов. Изменения крахмала при сухом нагреве называют декстринизацией.
При деструкции способность крахмала к набуханию и клейстеризации снижается. Степень деструкции характеризуют коэффициентом деструкции, который рассчитывается по формуле
где Кv1 – степень набухания продукта до обработки, %;
Кv2 – степень набухания продукта после обработки, %.
Увеличение температуры нагрева крахмала до 150ºС вызывает более глубокую деструкцию полисахаридов, при этом амилоза деполимеризуется до такого состояния, что легко вымывается водой, появляется и растворимая фракция амилопектина.
Поэтому соусы на белой пассеровке (120ºС) значительно гуще, чем на красной (150ºС) при одном и том же расходе муки.
Консистенция рассыпчатых каш, изготовленных из сырой крупы, не всегда бывает удовлетворительной, поэтому гречневую крупу перед варкой обжаривают, а рисовую и манную подсушивают, тогда в результате деструкции снижается способность крахмала к набуханию, что обусловливает улучшение консистенции рассыпчатых каш.
В некоторых случаях деструкция крахмала протекает очень интенсивно и достаточно глубоко, что вызывает значительные изменения в структуре тканей продукта. Например, при изготовлении взорванных зерен кукурузы, сухих завтраков используют особые технологические режимы – обработку зерен в специальных аппаратах – «пушках» под давлением 1,2 МПа, температура внутри зерен достигает почти 200ºС, в связи с этим крахмал почти полностью теряет способность к набуханию и клейстеризации, взорванные зерна злаков легко растворяются в холодной воде.
Ферментативная деструкция протекает при изготовлении дрожжевого теста и выпечке изделий из него, варке картофеля и др. под действием амилолитических ферментов, содержащихся в дрожжах, муке. Ферменты, расщепляющие крахмал, называются амилазами. В пшеничной муке содержится β-амилаза, расщепляющая крахмал до мальтозы, которая, в свою очередь, является питательной средой для дрожжей. Активная α-амилаза содержится в муке из дефектного зерна (проросшего и т.д.). Степень деструкции увеличивается с повышением температуры замеса, а также с повышением тонкости помола (больше поврежденных крахмальных зерен).
Ферментативная деструкция продолжается и при выпечке изделий, особенно в начальной ее стадии до момента инактивации фермента. При выпечке этот процесс происходит наиболее интенсивно, чем при приготовлении теста, так как оклейстеризованный крахмал легче гидролизуется ферментами. Инактивация β-амилазы происходит при температурах 65ºС. При повышенной активности α-амилазы образуются продукты деструкции, которые ухудшают качество изделий из теста – мякиш получается липким, а изделия кажутся непропеченными. Это объясняется тем, что температура инактивации α-амилазы (80ºС) выше, чем β-амилазы, и действие ее продолжается при выпечке, в результате накапливаются низкомолекулярные полисахариды, снижается способность крахмала связывать влагу.
В картофеле также содержится β-амилаза и образующиеся мальтоза расходуется на дыхание клубней при температуре 0ºС дыхание замедляется, что приводит к накоплению мальтозы и сладковатому привкусу картофеля, поэтому при использовании подмороженный картофель рекомендуется некоторое время выдержать при комнатной температуре, чтобы дыхание восстановилось и сладковатость уменьшилась. β-амилаза инактивируется при температуре 65ºС, поэтому картофель необходимо заливать горячей водой, чтобы предотвратить распад крахмала до мальтозы, которая переходит в отвар и потери питательных веществ увеличиваются.
Кислотная деструкция – распад крахмала до глюкозы в присутствии кислот и воды, имеет место при варке красных соусов, киселей.
Модификация крахмала – это процесс изменения молекул крахмала, сопровождающийся изменениями его гидрофильности, способности к клейстеризации и студнеобразованию, а также механических характеристик студней. Одни виды модификации способствуют растворимости крахмала, а другие ограничивают набухание.
Виды модифицированных крахмалов:
1. Предварительно клейстеризованный крахмал получают путем клейстеризации крахмальной суспензии с последующим высушиванием распылением или в виде тонкой пленки с последующим высушиванием в порошок. Обладает быстрой регидратационной способностью, что позволяет использовать его в качестве загустителя в пищевых продуктах без нагревания.
2. Крахмал, модифицированный кислотой получают путем обработки крахмальной суспензии соляной или серной кислотой при температуре 25-55ºС, причем время обработки зависит от показателя вязкости, которую хотят получить и составляет 6-24 часа. Полученный крахмал нерастворим в холодной воде, но хорошо растворим в кипящей.
3. Этерифицированные крахмалы получают путем обработки зерен крахмала уксусной кислотой или, предпочтительнее, ацетангидридом в присутствии катализатора. Они обладают пониженной температурой клейстеризации, пониженной способностью к ретроградации, образуют прозрачные и стабильные клейстеры, применяют в замороженных продуктах, пекарских изделиях, инстант-порошках.
Монофосфатные крахмалы получают реакцией сухой смеси крахмала и кислых солей орто-пиро-или триполифосфата при повышенной температуре (50-60ºС, 1 час). Они набухают в холодной воде, имеет более низкую температуру клейстеризации, имеет пониженную способность к ретроградации, имеет исключительную стабильность при размораживании, поэтому его применяют при производстве замороженных продуктов.
Дифосфатные крахмалы получают реакцией крахмала с би- и полифункциональными агентами, такими как триметафосфат натрия, оксихлорид фосфора и др. При этом образуется химический мост между близлежащими цепями, и эти крахмалы относятся к поперечно-сшитым. Они обладают высокой стабильностью при повышенных температурах, механических воздействиях, стабильностью при размораживании, благодаря этому их используют в детском питании, фруктовых начинках, в кремах и др.
4. Окисленные крахмалы получают при действии окислителей (КMnO4, KBrO3) на водную суспензию крахмала при температуре более низкой, чем температура клейстеризации. Их используют в качестве низковязкостных наполнителях (в соусах типа «майонез»), они не проявляют склонности к ретроградации, не образуют непрозрачных гелей. Крахмал, модифицированный перманганатом калия, находит применение при производстве желейных конфет – вместо агара и пектина.
Старение крахмального клейстера
Факторы, влияющие на температуру клейстеризации
Добавление соли даже в очень небольших количествах повышает температуру клейстеризации и уменьшает набухаемость крахмальных зёрен.
Сахара и спирт также повышают температуру клейстеризации.
Белки оказывают стабилизирующее действие на процесс клейстеризации. Так, соусы с мукой более стабильны при хранении, замораживание и оттаивание, чем клейстеры на очищенном крахмале.
В охлаждённом состоянии клейстер высокой концентрации превращается в студень.
Где в кулинарной практике мы встречаемся с этим явлением?
При остывании и долгом хранении в остывшем состоянии кулинарных изделий содержащих оклейстеризованный крахмал. Так, если каши или кисель долго хранятся, то на поверхности появляется вода; при хранении булок, хлеба они черствеют. Вызывают эти процессы старение оклейстеризованного крахмала, что ухудшает качество кулинарных изделий. Явление носит название ретроградации.
От чего зависит скорость старения?
От времени— чем продолжительнее сроки хранения, тем сильнее старение. Так, в кашах, отварной вермишели старение обнаруживается уже через два часа после их варки и нарастает по мере хранения.
Ретроградация усиливается после охлаждения и особенно после замораживания. Если крахмальную суспензию подвергнуть несколько раз замораживанию и оттаиванию, то она полностью и необратимо ретроградирует.
Ретроградацию можно частично устранить нагреванием, но с растворами амилозы это сделать гораздо труднее, чем с ретроградированными растворами амилопектина. Поэтому, для предотвращения старения оклейстеризованного крахмала изделия до момента потребления необходимо хранить в горячем состоянии.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Изменение крахмала
Строение крахмального зерна и свойства крахмальных полисахаридов.
В значительных количествах крахмал содержится в крупе, бобовых, муке, макаронных изделиях, картофеле. Находится он в клетках растительных продуктов в виде крахмальных зерен разной величины и формы. Крахмальные зерна представляют собой сложные биологические образования, в состав которых входят полисахариды амилоза и амилопектин и небольшие количества сопутствующих им веществ (кислоты фосфорная, кремниевая и др., минеральные элементы и т.д.). Крахмальное зерно имеет слоистое строение. Слои состоят из радиально расположенных частиц крахмальных полисахаридов, образующих зачатки кристаллической структуры. Благодаря этому крахмальное зерно обладает анизотропностью (двойным лучепреломлением).
Образующие зерно слои неоднородны: устойчивые к нагреванию чередуются с менее устойчивыми, более плотные — с менее плотными. Наружный слой более плотный, чем внутренние, и образует оболочку зерна. Все зерно пронизано порами и благодаря этому способно поглощать влагу. Большинство видов крахмала содержат 15-20 % амилозы и 80-85 % амилопектина. Однако крахмал восковидных сортов кукурузы, риса и ячменя состоит в основном из амилопектина, а крахмал некоторых сортов кукурузы и гороха содержит 50-75 % амилозы.
Молекулы крахмальных полисахаридов состоят из остатков глюкозы, соединенных друг с другом в длинные цепи. В молекулы амилозы входит в среднем около 1 тыс. таких остатков. Чем длиннее цепи амилозы, тем она хуже растворяется. В молекулы амилопектина остатков глюкозы входит значительно больше. Кроме того, в молекулах амилозы цепи прямые, а у амилопектина они ветвятся.
Широкое использование крахмала в кулинарной практике обусловлено комплексом характерных для него технологических свойств: набуханием и клейстеризацией, гидролизом, декстри-низацией (термическая деструкция).
Набухание и клейстеризация крахмала.
Набухание — одно из важнейших свойств крахмала, которое влияет на консистенцию, форму, объем и выход готовых изделий.
При нагревании крахмала с водой (крахмальная суспензия) до температуры 50-55 °С крахмальные зерна медленно поглощают воду (до 50 % своей массы) и ограниченно набухают. При этом повышения вязкости суспензии не наблюдается. Набухание это обратимо: после охлаждения и сушки крахмал практически не изменяется.
При нагревании от 55 до 80 °С крахмальные зерна поглощают большое количество воды, увеличиваются в объеме в несколько раз, теряют кристаллическое строением, а следовательно, анизотропность. Крахмальная суспензия превращается в клейстер. Процесс его образования называется клейстеризацией. Таким образом, клейстеризация — это разрушение нативной структуры крахмального зерна, сопровождаемое набуханием.
Процесс клейстеризации крахмальных зерен идет поэтапно:
1) при 55-70 °С зерна увеличиваются в объеме в несколько раз, теряют оптическую анизотропность, но еще сохраняют слоистое строение; в центре крахмального зерна образуется полость («пузырек»); взвесь зерен в воде превращается в клейстер — малоконцентрированный золь амилозы, в котором распределены набухшие зерна (первая стадия клейстеризации);
2) при нагревании выше 70 «С в присутствии значительного количества воды крахмальные зерна увеличиваются в объеме в десятки раз, слоистая структура исчезает, значительно повышается вязкость системы (вторая стадия клейстеризации); на этой стадии увеличивается количество растворимой амилозы; раствор ее частично остается в зерне, а частично диффундирует в окружающую среду.
При длительном нагревании с избытком воды крахмальные пузырьки лопаются, и вязкость клейстера снижается. Примером этого в кулинарной практике является разжижение киселя в результате чрезмерного нагрева.
Крахмал клубневых растений (картофель, топинамбур) дает прозрачные клейстеры желеобразной консистенции, а зерновых (кукуруза, рис, пшеница и др.) — непрозрачные молочно-белые клейстеры пастообразной консистенции.
Консистенция клейстера зависит от количества крахмала: при содержании его от 2 до 5 % клейстер получается жидким (жидкие кисели, соусы, супы-пюре); при 6-8 % — густым (густые кисели). Еще более гутой клейстер образуется внутри клеток картофеля, в кашах, блюдах из макаронных изделий.
На вязкость клейстера влияет не только концентрация крахмала, но и присутствие различных пищевых веществ (сахаров, минеральных элементов, кислот, белков и др.). Так, сахароза повышает, а соль снижает вязкость системы, белки оказывают стабилизирующее действие на крахмальные клейстеры.
При охлаждении крахмалосодержащих продуктов количество растворимой амилозы в них снижается в результате ретроградации (выпадение в осадок). При этом происходит старение крахмальных студней (синерезис), и изделия черствеют. Скорость старения зависит от вида изделий, их влажности и температуры хранения. Чем выше влажность блюда, кулинарного изделия, тем интенсивнее снижается в нем количество водорастворимых веществ. Наиболее быстро старение протекает в пшенной каше, медленнее — в манной и гречневой. Повышение температуры тормозит процесс ретроградации, поэтому блюда из крупы и макаронных изделий, которые хранятся на мармитах с температурой 70-80 °С, имеют хорошие органолептические показатели в течение 4 ч.
Гидролиз крахмала. Крахмальные полисахариды способны распадаться до молекул составляющих их Сахаров. Процесс этот называется гидролизом, так как идет с присоединением воды. Различают ферментативный и кислотный гидролиз. Ферменты, расщепляющие крахмал, носят название амилаз.
Существуют два их вида а- и р-амилаза: а-амилаза вызывает частичный распад цепей крахмальных полисахаридов с образованием низкомолекулярных соединений — декстринов; при продолжительном гидролизе возможно образование мальтозы и глюкозы, р-амилаза расщепляет крахмал до мальтозы.
Ферментативный гидролиз крахмала происходит при изготовлении дрожжевого теста и выпечке изделий из него, варке картофеля и др. В пшеничной муке обычно содержится р-амилаза; мальтоза, образующаяся под ее влиянием, является питательной средой для дрожжей. В муке из проросшего зерна преобладает а-амилаза, образующиеся под ее воздействием декстрины придают изделиям липкость, неприятный вкус.
Степень гидролиза крахмала под действием В-амилазы увеличивается с повышением температуры теста при замесе и в начальный период выпечки, с увеличением продолжительности замеса. Кроме того, она зависит от размера (или величины) помола муки и степени повреждения крахмальных зерен. Чем больше поврежденных зерен (чем мельче помол муки), тем быстрее протекает гидролиз (или ферментативная деструкция) крахмала.
В картофеле также содержится В-амилаза, превращающая крахмал в мальтозу. Мальтоза расходуется на дыхание клубней. При температуре, близкой к О °С, дыхание замедляется, мальтоза накапливается, и картофель становится сладким (подмороженный картофель). При использовании подмороженного картофеля его рекомендуется выдержать некоторое время при комнатной температуре. В этом случае дыхание клубней усиливается и сладковатость уменьшается. Активность В-амилазы возрастает в интервале от 35 до 45 °С, при температуре 65 °С фермент разрушается. Поэтому если картофель перед варкой залить холодной водой, то пока клубни прогреются, значительная часть крахмала успеет превратиться в мальтозу, она перейдет в отвар и потери питательных веществ увеличатся. Если же картофель залить кипящей водой, то р-амилаза инактивируется и потери питательных веществ будут меньше.
Кислотный гидролиз крахмала может происходить при нагревании его в присутствии кислот и воды, при этом образуется глюкоза. Кислотный гидролиз имеет место при варке красных соусов, киселей и при длительном хранении их в горячем состоянии.
Декстринизация (термическая деструкция крахмала). Декст-ринизация — это разрушение структуры крахмального зерна при сухом нагреве его свыше 120 «С с образованием растворимых в воде декстринов и некоторого количества продуктов глубокого распада углеводов (оксида и диоксида углерода и др.). Декстрины имеют окраску от светло-желтой до темно-коричневой. Разные виды крахмала обладают различной устойчивостью к сухому нагреву.
Так, при нагревании до 180 °С разрушается до 90 % зерен картофельного крахмала, до 14 % — пшеничного, до 10 % — кукурузного. Чем выше температура, тем большее количество крахмальных полисахаридов превращается в декстрины. В результате декстринизации снижается способность крахмала к набуханию в горячей воде и клейстеризации. Этим объясняется более густая консистенция соусов на белой пассеровке (температура пассерования муки 120 °С) по сравнению с соусами на красной пассеровке (температура пассерования муки 150 °С) при одном и том же расходе муки.
В кулинарной практике декстринизация крахмала происходит не только при пассеровании муки для соусов, но также при обжаривании гречневой муки, подсушивании риса, вермишели, лапши перед варкой, в поверхностных слоях картофеля при жарке, в корочке изделий из теста и др.
Крахмалы, свойства которых изменяются в результате специальной обработки, называются модифицированными. Они подразделяются на две группы: расщепленные крахмалы, при обработке которых происходит расщепление полисахаридных цепей, изамещенные крахмалы, свойства которых изменяются в основном в результате присоединения химических радикалов или совместной полимеризации с другими высокомолекулярными соединениями.
Модифицированные крахмалы широко используются в пищевой промышленности и общественном питании.
Расщепленные крахмалы получают термическим, механическим воздействием, обработкой полисахарида кислотами, окислителями, некоторыми солями, действием электронов, ультразвука, облучением у-лучами, вызывающими расщепление полисахаридных цепей. Вследствие этих воздействий происходит направленное разрушение гликозидных и других валентных связей, появляются новые карбонильные группы, возникают внутри- и межмолекулярные связи. При этом зернистая форма крахмала либо остается неизменной, либо полностью разрушается с образованием вторичной структуры (например, при клейстеризации и высушивании крахмалов на вальцевых сушилках).
Клейстеры расщепленных крахмалов имеют, как правило, пониженную вязкость, более высокую прозрачность и повышенную стабильность при хранении. Расщепленные крахмалы на предприятиях общественного питания используют при производстве охлажденной и замороженной кулинарной продукции.
Крахмала от способа термической обработки
Повышение температуры предварительного нагрева крахмала до 150 °С вызывает более глубокую деструкцию полисахаридов, а амилоза деполимеризуется до такого состояния, что легко вымывается холодной водой. При этом появляется и растворимая фракция амилопектина. Нагревание водной суспензии такого крахмала при температуре 60 °С приводит к тому, что высота фиолетовой зоны амилозы уменьшается, а при 70 °С она практически отсутствует, так как молекулярная масса продуктов деполимеризации амилозы, по-видимому, настолько мала, что они не в состоянии образовывать с йодом окрашенные комплексы.
Особый интерес представляет деструкция крахмала в продуктах, подвергнутых предварительной термической обработке (пассерованная мука, обжаренная крупа), так как при последующей варке полученные из них изделия отличаются по консистенции от изделий из необработанных продуктов.
Например, для приготовления соусов используют пшеничную муку, предварительно прогретую в течение нескольких минут до 120 °С (так называемая белая пассеровка) или до 150 «С (красная пассеровка). В обоих случаях при нагревании муки происходит деструкция крахмала, на что указывают коэффициенты деструкции, приведенные в табл. 7.2.
Судя по этим коэффициентам, степень деструкции крахмала при нагревании муки до 150 °С значительно больше, чем при нагревании ее до 120 «С. Различия в степени деструкции крахмала обусловливают неодинаковую степень набухания крахмальных зерен в приготовленных на белой и красной пассеровке соусах и вязкость последних. На рис. 7.6 показано, что степень набухания крахмальных зерен белой пассеровки практически не отличается от степени набухания крахмальных зерен непрогретой муки и составляет более 700 %. Степень набухания крахмальных зерен красной пассеровки втрое меньше, чем белой.
Консистенция соусов на белой пассеровке более густая, чем на красной пассеровке, о чем свидетельствуют кривые изменения вязкости 4,5%-ных суспензий этих пассеровок при нагревании их в вискозиметре от 20 до 100 °С (рис. 7.7). В пределах температур, при которых происходит клейстеризация крахмала (55. 80 °С), вязкость суспензий белой пассеровки резко повышается, а суспензий красной пассеровки — снижается.
При сравнении вязкости соусов, приготовленных на красной и белой пассеровке, было установлено, что для получения соуса одинаковой консистенции красной пассеровки расходуется2 раза больше, чем белой. Отрицательное влияние высоких температур при сухом нагреве крахмала на вязкость суспензий следует учитывать при производстве соусов и строго соблюдать температурные режимы пассерования муки.
Рис. 7.6. Степень набухания нагретой муки в горячей (90 °С) воде:
1 — исходная мука; 2 — нагретая до 120 °С; 3 — нагретая до 150 °С
Консистенция рассыпчатых каш, приготовленных из сырой крупы, не всегда получается удовлетворительной, поэтому гречневую крупу перед варкой обжаривают, а рисовую и манную подсушивают. В результате протекающей при этом деструкции крахмала снижается его способность к набуханию и клейстеризации при дальнейшей варке крупы, что обусловливает улучшение конси стенции рассыпчатых каш. Вероятно, крахмал в обжаренной или подсушенной крупе меньше склеивает набухшие зерновки, чем в сырой, вследствие чего каши получаются более рассыпчатыми.
Рис. 7.7. Изменение вязкости 4,5%-ных
суспензий нагретой муки при нагревании от 20 до 100 «С:
1 — мука, нагретая до 150 °С; 2 — мука, нагретая до 120 °С
В некоторых случаях деструкция крахмала происходит очень интенсивно и достаточно глубоко, что вызывает резкие изменения в структуре тканей продуктов. Например, при изготовлении взорванных зерен кукурузы, риса, пшена и других, так называемых сухих завтраков используют особые технологические режимы — обработку этих зерен в специальных аппаратах — «пушках» под давлением 1,2 МПа. Температура внутри зерен при этом достигает 200 °С и более. Коэффициенты деструкции крахмала в этом случае примерно на порядок выше, чем при изготовлении других кулинарных изделий, и колеблются от 10 до 32. В связи с этим крахмал почти полностью теряет способность к набуханию и клейстеризации.
Взорванные зерна злаков легко растворяются в холодной воде, соках, сиропах, легче перевариваются ферментами.
Под действием термической обработки меняется структура крахмального зерна. Оно расширяется с образованием внутренней полости. В литературе это явление получило название кавитации (cavity— полость).
Развитие полости наблюдается как у крахмальных зерен, содержащих амилозу, так и у амилопектиновых разновидностей.
Исследование структуры крахмальных зерен непосредственно в пищевых продуктах с помощью сканирующего электронного микроскопа позволило особенно четко выявить образование внутренней полости по мере увеличения размеров крахмального зерна, а также ряд качественных различий в крахмалсодержащих продуктах, в том числе в хлебе разного качества и во взорванных зернах кукурузы (рис. 7.8 и 7.9). Коэффициент деструкции может служить критерием оценки качества готовой продукции.
Ферментативная деструкция. Ферментативная деструкция крахмала наблюдается при изготовлении дрожжевого теста и выпечке изделий из него, варке картофеля и др.
Амилолитические ферменты содержатся в муке, дрожжах, специальных препаратах, добавляемых в тесто для интенсификации процесса брожения. В муке присутствуют в основном два вида амилолитических ферментов — α- и β-амилаза.
α-Амилаза (α-1,4-глюкан-4-глюкангидролаза) воздействует на α-1,4 связи беспорядочно и вызывает частичную деполимеризацию крахмала с образованием низкомолекулярных полисахаридов, а продолжительный гидролиз приводит к образованию мальтозы и глюкозы.
Р-Амилаза (α-1,4-глюкан-мальтогидролаза) гидролизует амилозу и боковые цепи амилопектина по месту α-1,4 связей до мальтозы. Поскольку этот фермент не обладает способностью разрушать связи в точках ветвления амилопектина (α-1,6), то конечным продуктом являются высокомолекулярные остаточные декстрины.
В пшеничной муке обычно активна β-амилаза, активная α-амилаза встречается в муке из дефектного зерна (проросшего и др.).
Рис. 7.8. Ультраструктура крахмальных зерен по данным сканирующей электронной микроскопии в изделиях из теста и в сухих завтраках из кукурузы:
а — изделия из дрожжевого теста хорошего качества;
б — изделия из дрожжевого теста плохого качества (с заминающимся мякишем);
в — изделия из слоеного теста, выпеченного традиционным способом;
г — изделия из слоеного теста, выпеченного комбинированным способом (СВЧ-нагрев + традиционный);
д, е — в сухих завтраках из кукурузы до и после взрывания. Увеличение: а — х 2200; б — х 5500; в, г, д, е — х 1000
Рис. 7.9. Ультраструктура воздушных зерен по данным сканирующей электронной микроскопии:
а, б — кукуруза до и после взрывания;
в, г — рисовый крахмал до и после взрывания;
д — частично взорванный рис;
е — эндосперм хорошо взорванного риса.
Увеличение: а, б, г — х 1000; в — х 5000; д, е — х 200
Накопление мальтозы в тесте в результате действия β-амилазы интенсифицирует процесс брожения, так как этот сахар служит субстратом для жизнедеятельности дрожжей.
Степень деструкции крахмала под действием β-амилазы увеличивается с повышением температуры теста и продолжительности замеса. Кроме того, она зависит от крупности помола муки и степени повреждения крахмальных зерен. Чем больше поврежденных крахмальных зерен в муке, тем быстрее протекает ферментативная деструкция. Но обычно в муке содержится не более 5. 8% поврежденных крахмальных зерен.
Ферментативная деструкция крахмала продолжается и при выпечке изделий, особенно в начальной ее стадии до момента инактивации фермента. При выпечке этот процесс проходит более интенсивно, чем при приготовлении теста, так как оклейстеризованный крахмал легче гидролизуется ферментами.
Инактивация β-амилазы при выпечке происходит при температурах до 65 °С.
Повышенная активность α-амилазы приводит к образованию продуктов деструкции, ухудшающих качество изделий из теста, — мякиш получается липким, а изделия кажутся непропеченными. Это объясняется тем, что температура инактивации α-амилазы (80 °С) выше, чем β-амилазы, и действие ее продолжается при выпечке, в результате чего накапливается значительное количество низкомолекулярных водорастворимых полисахаридов, снижается способность крахмала связывать влагу.
Однако в некоторых случаях в тесто добавляют препараты α-амилазы, полученной из микроорганизмов Aspergillus oruzae и др., для усиления действия β-амилазы. В процессе выпечки действие грибной α-амилазы прекращается при более низких температурах (70. 75 °С), чем зерновой α-амилазы, поэтому низкомолекулярных полисахаридов накапливается меньше и качество изделий не ухудшается. Полученные низкомолекулярные полисахариды быстрее гидролизуются β-амилазой, вследствие чего процесс брожения интенсифицируется.
Модификация крахмала. Крахмальные полисахариды — весьма лабильные, реакционноспособные соединения, активно взаимодействующие с ионами металлов, кислотами, окислителями, поверхностно-активными веществами. Это позволяет модифицировать молекулы крахмала — изменять их гидрофильность, способность к клейстеризации и студнеобразованию, а
также механические характеристики студней. Одни виды модификации способствуют повышению растворимости крахмала в воде, другие ограничивают набухание.
Обширную группу продуктов получают из обычных или модифицированных крахмалов путем деструкции с помощью кислот, щелочей и др., а также в результате действия физических факторов: температуры, механической обработки и др.
Если реакция протекает в кислой среде, то наблюдаются процессы деструкции, которые приводят к получению ряда продуктов — жидкокипящего крахмала (с низкой вязкостью), патоки, глюкозы.
В качестве примера действия механической обработки можно привести сухое расщепление, крахмала вибрационным помолом, при котором наряду с механическим измельчением крахмальных зерен происходит процесс деструкции молекул.
В результате реакции гидроксильных групп крахмала с органическими и неорганическими веществами образуются простые и сложные эфиры, в том числе амилофосфорнокислые сложные эфиры, которые часто называют фосфатно-модифицированными крахмалами, а также продукты окисления крахмала.
В зависимости от назначения крахмала разработаны различные варианты проведения клейстеризации, введения добавок (соли, жиров, белков) или наполнителей как отдельно, так и в комбинации друг с другом.
Модифицированный крахмал применяют при изготовлении желейных изделий, мучных кондитерских изделий, отделочных полуфабрикатов типа кремов, в качестве загустителей и стабилизаторов для соусов, мороженого и др. Крахмалопродукты со структурой, подобной образующейся при выпечке хлеба, получают в результате нескольких циклов замораживания и оттаивания крахмальной дисперсии, при этом образуется пористый крахмал, нерастворимый в холодной воде. Его применяют после пропитывания сиропами в качестве начинки для конфет.
Контрольные вопросы и задания
1. В каких технологических процессах происходит гидролиз дисахаридов и как он влияет на качество продукции?
2. Какие технологические факторы влияют на скорость и глубину инверсии сахарозы?
3. Какие сахара участвуют в реакции Майяра?
4. В каких технологических процессах протекают реакции меланоидинообразования и как они влияют на качество продукции общественного питания?
5. Перечислите физико-химические свойства полисахаридов крахмала.
6. В чем состоит физическая сущность клейстеризации крахмала?
7. В чем заключается физическая сущность декстринизации крахмала при сухом нагреве?
8. Что такое «старение» оклейстеризованного крахмала и как этот процесс влияет на качество крахмалсодержащих кулинарных изделий и блюд?
Глава 8
ИЗМЕНЕНИЯ ЛИПИДОВ
В состав липидного компонента продукции общественного питания входят триглицериды (собственно жиры), липоидные вещества (фосфолипиды, стерины и др.), продукты их метаболизма, витамины А, Е, D, К, пигменты. Липиды участвуют в построении клеточных структур тканей человеческого организма, например клеточных мембран, выполняют различные биологические и физиологические функции в организме, а также обладают высокой энергетической ценностью.
Физико-химическим изменениям подвергаются как добавляемые к продукту жиры, так и жиры, входящие в его состав. Жиры, добавляемые к продукту для жарки, подвержены более глубоким изменениям, так как нагреваются до 160. 180 «С, тогда как максимальная температура продукта в поверхностном слое не превышает 130. 135 °С, во внутренних слоях — 80. 95 «С. В связи с этим в настоящей главе рассмотрены изменения жиров, добавляемых к продукту для жарки, а изменения липидов, содержащихся в продуктах, будут рассмотрены далее в главах, посвященных конкретным продуктам.
Добавляемый к продукту жир при тепловой обработке выполняет роль теплопередающей и антиадгезионной среды, способствует равномерному распределению температур на поверхности продукта, снижает вероятность местных перегревов. Жир участвует в формировании вкуса и аромата готового продукта, что предопределяет высокие требования к исходному качеству пищевых жиров, а также минимизации их физико-химических изменений в процессе тепловой кулинарной обработки продуктов. Так, для жарки продуктов рекомендуется использовать безводные жиры с высокой температурой дымообразования, рафинированные,
освобожденные от белковых веществ, гликозидов, пигментов и других примесей, которые подвергаются деструкции при высокотемпературном нагревании с образованием новых веществ, придающих жирам нежелательные вкусовые оттенки.
Наиболее быстро и глубоко изменяются пищевые жиры, содержащие ненасыщенные жирные кислоты, низкомолекулярные жирные кислоты и свободные жирные кислоты, не связанные в глицеридах. Первые два показателя обусловлены природными свойствами того или иного жира, третий показатель приобретается жиром в процессе его хранения под воздействием липолитических ферментов, перешедших в жир из сырья. В процессе тепловой кулинарной обработки в результате гидролиза количество свободных жирных кислот в жире возрастает, что вызывает более глубокие изменения жиров.
При свободном доступе воздуха происходит окисление липидов, которое ускоряется с повышением температуры. При температурах хранения (2. 25 °С) происходит автоокисление липидов, а при температурах жарки (140. 180 °С) — термическое окисление. Между автоокислением и термическим окислением есть много общего, в то же время состав образующихся продуктов может несколько различаться. Автоокисление нередко опережает термическое, поэтому эти два процесса необходимо рассматривать вместе.
Начальный период автоокисления характеризуется длительным индукционным периодом, в течение которого накапливаются свободные радикалы. Как только их концентрация достигнет определенного значения, индукционный период заканчивается и начинается автокаталитическая цепная реакция: процесс быстрого присоединения кислорода к радикалам. Первичные продукты этой реакции — гидропероксиды — распадаются с образованием двух новых радикалов, ускоряющих цепную реакцию. При соединении двух радикалов с образованием неактивной молекулы может произойти обрыв цепи автокаталитической цепной реакции.
При нагревании жира до 140. 180 «С со свободным доступом, кислорода воздуха индукционный период резко сокращается. Присоединение кислорода к углеводородным радикалам жирных кислот происходит более беспорядочно, минуя некоторые стадии, которые наблюдаются при автоокислении. Некоторые продукты окисления липидов (гидропероксиды, альдегиды и др.), относительно устойчивые при температурах автоокисления, не могут длительно существовать при температурах термического окисления и распадаются по мере образования. В результате их распада образуется многочисленная группа новых реакционноспособных веществ, увеличивающих возможность протекания вторичных химических реакций в нагретом жире и их многообразие.
Химические соединения, образующиеся при авто- и термическом окислении, условно можно подразделить на три группы: продукты окислительной деструкции жирных кислот, в результате которой образуются вещества с укороченной цепью; продукты изомеризации, а также окисленные триглицериды, которые содержат то же количество углеродных атомов, что и исходные триглицериды, но отличаются от последних присутствием в углеводородных, частях молекул жирных кислот новых функциональных групп, содержащих кислород; продукты окисления, содержащие полимеризованные или конденсированные жирные кислоты, в которых могут присутствовать функциональные группы, содержащие кислород.
Продукты окисления липидов принято подразделять на термостойкие и нетермостойкие.
Гидролиз жира под действием воды и высокой температуры протекает в три стадии. На первой стадии от молекулы триглицерида отщепляется одна молекула жирной кислоты с образованием диглицерида. Затем от диглицерида отщепляется вторая молекула жирной кислоты с образованием моноглицерида. И наконец, в результате отделения от моноглицерида последней молекулы жирной кислоты образуется свободный глицерин. Ди- и моноглицериды, образующиеся на промежуточных стадиях, способствуют ускорению гидролиза.