Что такое степень переохлаждения материаловедение

Материаловедение

Что такое степень переохлаждения материаловедение. Смотреть фото Что такое степень переохлаждения материаловедение. Смотреть картинку Что такое степень переохлаждения материаловедение. Картинка про Что такое степень переохлаждения материаловедение. Фото Что такое степень переохлаждения материаловедение

Кристаллизация металлов

Любое вещество может находиться в одном из четы­рех агрегатных состояний: твердом, жидком, газообразном и плазменном. Агрегатное состояние определяется энер­гией взаимодействия атомов. Стабильным (равновесным) при определенных внешних условиях является состояние вещества, при котором оно обладает минимумом свободной энергии. Свободная энергия — часть внутренней энергии вещества. Внутренняя энергия веще­ства — это сумма потенциаль­ной энергии (энергии взаи­модействия) и кинетической энергии частиц (тепловые колебания). Часть внутрен­ней энергии, высвобождающаяся при переходе вещества из одного состояния в другое,называется свободной энергией. Чем больше высвободится свободной энергии, тем меньшей энергией будет обладать вещество, тем более стабильно его состояние. Свободную энергию можно представить как аналог потенциальной энергии (рис. 1).

В положении 1 шарик имеет максимальную потенциальную энергию. Это положение не является устойчивым, шарик скатывается в положение 2, при котором его потенциальная энергия будет равна 0. Вещество может находиться в метастабильном состоянии (закаленная сталь). Такое состояние не обладает минимумом свободной энергии, но является достаточно устойчивым (стабильным). Вещество в метастабильном состоянии может находиться бесконечно долго при условии постоянства внешних факторов.
Первичная кристаллизация металлов и сплавов. Кри­сталлизация — это переход металла из жидкого состояния в твердое с образованием кристаллического строения. Это первичная кристаллизация (в отличие от вторичной, когда кристаллы металлических фаз выделяются из твердого вещества).
Рассмотрение кристаллизации для металлов и сплавов на их основе связано с тем, что эти материалы получают методом литья, тогда как многие неметаллические матери­алы производят другими способами. Ряд неметаллических материалов существует в природном виде (углерод), мно­гие химические соединения получают путем химических реакций: карбиды — карбидизацией, нитриды — азотирова­нием и т.п. Процесс кристаллизации (затвердевания) обусловлен стремлением системы к переходу в более устойчивое термодинамическое состояние. При изменении внешних условий, например темпе­ратуры, свободная энергия системы меняется различно для жидкого и твердого (кристаллического) состоя­ния (рис. 2). Выше темпе­ратуры Ts более стабильным
является жидкое состояние, так как металл в этом состоянии имеет меньший запас свободной энергии. Ниже температуры Ts меньшим запасом свободной энергии обладает металл в твердом состоянии. При темпера­туре величины свободных энергий твердого и жидкого состояний равны. Это озна­чает, что металл может нахо­диться в обоих состояниях бесконечно долго, так как пере­ход из одного состояния в другое не будет сопровождаться уменьшением свободной энергии. Температура Ts получила название теоретической температуры кристаллизации.

Для начала кристаллизации необходимо, чтобы свобод­ная энергия металла в твердом состоянии стала меньше свободной энергии жидкого состояния. Это становится воз­можным при охлаждении жидкости ниже Ts. Температура, при которой фактически начинается процесс кристаллиза­ции, называется фактической температурой кристаллиза­ции (Тк). Охлаждение жидкого металла ниже теоретической температуры кристаллизации называется переохлаждение, а разность между теоретической и фактической температу­рой кристаллизации — степенью переохлаждения (ΔТ):

Степень переохлаждения зависит от скорости охлажде­ния жидкого металла. С увеличением скорости охлаждения понижается фактическая температура кристаллизации и, следовательно, возрастает степень переохлаждения. Процесс кристаллизации можно описать с помощью кривых охлаждения, построенных в координатах «тем­пература — время» (рис. 3). Охлаждение в жидком состоянии сопровождается плавным понижением температуры (участок 1 кривой охлаждения), при достижении температуры кристаллизации на кри­вой охлаждения появля­ется горизонтальная пло­щадка (участок 2 кривой охлаждения), т.е. охлаж­дение (понижение темпе­ратуры) останавливается. Это вызвано тем, что отвод тепла компенсируется выделяющейся в процессе кристаллизации скрытой
теплотой кристаллиза­ции. После полного перехода металла из жидкого состояния в твердое температура вновь начинает плавно снижаться (участок 3 кривой охлаждения). Увеличение скорости охлаждения от V1 до V3 приводит к увеличению степени
переохлаждения (см. рис. 3).

Кристаллизация начинается с образования в жидком металле центров кристаллизации и продолжается за счет роста их числа и размеров (рис. 4). Процесс кристаллизации можно охарактеризовать двумя параметрами: числом центров кристаллизации (ЧЦК),

Что такое степень переохлаждения материаловедение. Смотреть фото Что такое степень переохлаждения материаловедение. Смотреть картинку Что такое степень переохлаждения материаловедение. Картинка про Что такое степень переохлаждения материаловедение. Фото Что такое степень переохлаждения материаловедение
Рисунок 4- Схема процесса кристаллизации

образующихся в единицу времени в единице объема (1 см 3 /с), и скоростью роста кристаллов (СК ) [мм /с]. Эти параметры зависят от степени переохлаждения, а следовательно, от скорости охлаждения при кристалли­зации металла. В соответ­ствии с законом Таммана для каждой степени пере­охлаждения указанные пара­метры могут иметь только одно значение (рис. 5).
При теоретической темпе­ратуре кристаллизации ( Ts) значения ЧЦК и СК равны 0 и кристаллизация происходить не может. При повышении степени переохлаждения значения ЧЦК и СК возрастают, процесс кристаллизации идет быстро. Это объясняется тем, что при высоких температурах, близких к Тs подвижность атомов велика. При определенных степенях переохлажде­ния значения ЧЦК и СК достигают максимума, после чего снижаются вследствие уменьшения подвижности атомов при низких температурах.

Источник

то такое переохлаждение, и как оно влияет на структуру кристаллизующегося металла

КОНТРОЛЬНАЯ РАБОТА

по дисциплине: Материаловедение

студент группы 09.03.01

Ширкунов Эльдар Сергеевич

учебный шифр: 1014034

Петрова Наталия Валериевна

ОГЛАВЛЕНИЕ

1. Что такое переохлаждение, и как оно влияет на структуру кристаллизующегося металла………..……………………………………………………………….….……..….3

2. Вычертите диаграмму состояния системы олово-цинк. Опишите взаимодействие компонентов в жидком и твердом состояниях, укажите структурные составляющие во всех областях диаграммы состояние и объясните характер изменения свойств сплавов в данной системе с помощью правил Купнакова ……. …. ….……….4

3. Какой термообработкой можно восстановить пластические свойства холоднодеформировнной стали 10………………………………….………………….…..5

4. Вычертите диаграмму состояния железо-карбид железа ……..………….……..…..6

5. Покажите графически режим отжига для получения перлитного ковкого чугуна. Опишите структурные превращения, происходящие в процессе отжига, и механические свойства чугуна после термической обработки………………………..….7

Список использованной литературы………………………………………………..…. …9

то такое переохлаждение, и как оно влияет на структуру кристаллизующегося металла

Охлаждение жидкого металла ниже теоретической температуры кристаллизации носит название явления переохлаждения. Разность между теоретической и фактической температурами кристаллизации называется степенью переохлаждения.

Термические кривые, характеризующие процесс кристаллизации чистых металлов при охлаждении с разной скоростью ϑ, показаны на рисунке 1.

Что такое степень переохлаждения материаловедение. Смотреть фото Что такое степень переохлаждения материаловедение. Смотреть картинку Что такое степень переохлаждения материаловедение. Картинка про Что такое степень переохлаждения материаловедение. Фото Что такое степень переохлаждения материаловедение

Рисунок 1 – Кривые охлаждения металла при кристаллизации (ϑ1

При небольшой скорости переохлаждения ΔТ (малой скорости охлаждения) число зародышей мало. В этих условиях будет получено крупное зерно. С увеличением степени переохлаждения скорость образования зародышей возрастает, количество их увеличивается и размер зерна в затвердевшем металле уменьшается.

Размер зерна металла сильно влияет на его механические свойства. Эти свойства, особенно вязкость и пластичность, выше, если металл имеет мелкое зерно.

2. Вычертите диаграмму состояния системы олово-цинк. Опишите взаимодействие компонентов в жидком и твердом состояниях, укажите структурные составляющие во всех областях диаграммы состояние и объясните характер изменения свойств сплавов в данной системе с помощью правил Купнакова

Что такое степень переохлаждения материаловедение. Смотреть фото Что такое степень переохлаждения материаловедение. Смотреть картинку Что такое степень переохлаждения материаловедение. Картинка про Что такое степень переохлаждения материаловедение. Фото Что такое степень переохлаждения материаловедение

Рисунок 2 – Диаграмма состояния системы олово-цинк

Согласно этой диаграммы линия АВС – линия ликвидус, а линия ДВЕ – солидус. Кроме того, линия ДВЕ соответствует температуре, при которой в процессе охлаждения сплавов в них протекает эвтектическая реакция с образованием эвтектики. При содержании

8% Zn и 92% Sn образуется эвтектический сплав. Температура его образования при кристаллизации соответствует 199 0 С.

Что такое степень переохлаждения материаловедение. Смотреть фото Что такое степень переохлаждения материаловедение. Смотреть картинку Что такое степень переохлаждения материаловедение. Картинка про Что такое степень переохлаждения материаловедение. Фото Что такое степень переохлаждения материаловедение

Система эвтектического типа без образования промежуточных фаз. Эвтектика образуется при температуре 198,5 °С и концентрации 85,1 % (ат.)Sn.

В качестве припоев применяют сплавы с содержанием олова 90,70,60 и 40% марок ПОЦ – 90, ПОЦ – 70, ПОЦ – 60 и ПОЦ – 40.

Эти сплавы имеют более высокую прочность, нежели оловянно свинцовистые сплавы.

При образовании смесей олово-цинк свойства сплава изменяются по линейному закону, следовательно, значения свойств сплава находятся в интервале между свойствами чистых компонентов.

Источник

Материаловедение

Сущность переохлаждения и его влияние на величину зерна кристаллизирующегося металла. Процессы, протекающие при нагреве деформированного металла выше температуры рекристаллизации. Понятие нормализации, температура нормализации стали 45 и стали У12.

РубрикаПроизводство и технологии
Видконтрольная работа
Языкрусский
Дата добавления19.11.2017
Размер файла253,6 K

Что такое степень переохлаждения материаловедение. Смотреть фото Что такое степень переохлаждения материаловедение. Смотреть картинку Что такое степень переохлаждения материаловедение. Картинка про Что такое степень переохлаждения материаловедение. Фото Что такое степень переохлаждения материаловедение

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

1. Что такое переохлаждение и как оно влияет на величину зерна кристаллизирующегося металла?

При достаточно высокой скорости охлаждения температура металла первоначально понижается ниже температуры затвердевания, т.е. имеет место так называемое переохлаждение. При достижении определенной величины переохлаждения начинается кристаллизация металла.

С увеличением скорости охлаждения степень переохлаждения возрастает и процесс кристаллизации протекает при температурах, лежащих значительно ниже равновесной температуры кристаллизации.

Чем больше скорость образования зародышей и меньше скорость роста их, тем меньше размер кристалла (зерна), выросшего из одного зародыша, и, следовательно, более мелкозернистой будет структура металла.

При небольшой скорости переохлаждения число зародышей будет мало. В этих условиях будет получено крупное зерно. С увеличением степени переохлаждения скорость образования зародышей возрастает, количество их увеличивается и размер зерна в затвердевшем металле уменьшается.

Размер зерна металла сильно влияет на его механические свойства. Эти свойства, особенно вязкость и пластичность, выше, если металл имеет мелкое зерно.

переохлаждение металл нагрев нормализация

2. Какие процессы протекают при нагреве деформированного металла выше температуры рекристаллизации? Как изменяется при этом структура и свойства?

Рекристаллизация является диффузионным процессом и протекает неравномерно, одни зерна зарождаются и растут раньше, другие позднее. После рекристаллизации металл состоит из новых равноосных зерен. Более высокий нагрев приводит к развитию собирательной рекристаллизации, т. е. к росту одних рекристаллизованных зерен за счет других, более мелких. Чем выше температура нагрева, тем интенсивнее идет собирательная рекристаллизация, так как с повышением температуры диффузионные процессы протекают быстрее и создаются условия для образования крупнозернистого металла. Собирательная рекристаллизация также протекает неравномерно и практически начинается значительно раньше, чем закончится рекристаллизация обработки.

Размер рекристаллизованного зерна оказывает большое влияние на свойства металла. Наилучшее сочетание прочности и пластичности наблюдается в мелкозернистых сталях. На величину рекристаллизованного зерна оказывает влияние температура рекристаллизационного отжига (рисунок 1, а), продолжительность процесса (рисунок 1, б), степень предварительной деформации и химический состав металла. Чем выше температура отжига и длительнее процесс, тем больше размер рекристаллизованного зерна.

При нагреве по достижении температуры начала рекристаллизации (tнр) предел прочности и особенно предел текучести резко снижаются, а пластичность увеличивается. В процессе собирательной рекристаллизации механические свойства практически не изменяются. Более высокий нагрев сопровождается дальнейшим ростом зерна и уменьшением пластичности вследствие перегрева.

Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).

При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в б-железе (д-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1% заканчивается по линии АН с образованием б (д)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в г-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67% углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. Bточке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3% образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3 Л[А2,146,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECFобразованием ледебурита.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении г-железа в б-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8 П[Ф0,036,67].

Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

В доэвтектических чугунах в интервале температур 1147-727єС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES). По достижении температуры 727єС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит + цементит).

Структура эвтектических чугунов при температурах ниже 727єС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727єС состоит из ледебурита превращенного и цементита первичного.

Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

Рисунок 6: а-диаграмма железо-цементит, б-кривая охлаждения для сплава, содержащего 0,6% углерода

4. Что такое нормализация? Используя диаграмму состояния железо-цементит, укажите температуру нормализации стали 45 и стали У12. Опишите превращения, происходящие в сталях при выбранном режиме обработки, получаемую структуру и свойства

Назначение нормализации различно в зависимости от состава стали.

Для среднеуглеродистой стали 45 нормализацию применяют вместо закалки и высокого отпуска (улучшения). Механические свойства при этом понижаются, но уменьшается деформация изделий по сравнению с получаемой при закалке. Критическая точка Ас3 стали 45 равна 770єС. Поэтому температура нагрева в соответствии с определением нормализации составляет 810-820єС. При этой температуре имеем структуру аустенита (100%). При снижении температуры до Аr3 начинают появляться первые зерна феррита. При дальнейшем снижении температуры до Аr1 из аустенита будут образовываться только зерна феррита, а содержание углерода в остающемся аустените будет увеличиваться и при температуре Аr1 достигнет 0,8%. При снижении температуры ниже Аr1 из аустенита будет образовываться перлит.

Сталь 45 после нормализации имеет структуру перлита и феррита. Механические свойства стали 45 после нормализации: уВ = 610 МПа; уТ = 360 МПа; д = 16%; ш = 40%; KCU = 0,5 МДж/м2.

В заэвтектоидной стали У12 нормализация устраняет грубую сетку вторичного цементита. Критическая точка Асm стали У12 равна 820єС. Поэтому температура нагрева в соответствии с определением нормализации составляет 850-860єС. При этой температуре имеем структуру аустенита (100%). При снижении температуры до Аrm начинают появляться первые зерна цементита. При дальнейшем снижении температуры до Аr1 из аустенита будут образовываться только зерна цементита, а содержание углерода в остающемся аустените будет уменьшаться и при температуре Аr1 достигнет 0,8%. Ускоренное охлаждение на воздухе способствует тому, что цементит не успевает образовать грубую сетку, понижающую свойства стали. При снижении температуры ниже Аr1 из аустенита будет образовываться перлит.

Сталь У12 после нормализации имеет структуру перлита и цементита. Твердость HB стали У12 после нормализации 2690-3410 МПа

Размещено на Allbest.ru

Подобные документы

Явление полиморфизма в приложении к олову. Температура разделения районов холодной и горячей пластической деформации. Технология поверхностного упрочнения изделий из стали. Определение температуры полного и неполного отжига и нормализации для стали 40.

контрольная работа [252,2 K], добавлен 26.03.2012

Повышение твердости стали за счет образования мартенситной структуры. Превращение перлита в аустенит. Нагрев заэвтектоидной стали до температуры выше критической точки. Основные фазовые превращения, протекающие в сталях при нагреве и охлаждении.

доклад [19,3 K], добавлен 17.06.2012

презентация [2,3 M], добавлен 05.10.2011

Конструкция сталеразливочных ковшей. Характеристика устройства для регулирования расхода металла и установок для продувки стали инертным газом. Вакуумирование металла в выносных вакуумных камерах. Продувка жидкого металла порошкообразными материалами.

реферат [987,2 K], добавлен 05.02.2016

Влияние холодной пластической деформации и рекристаллизации на микроструктуру и механические свойства низкоуглеродистой стали. Пластическая деформация и ее влияние на свойства металлических материалов. Влияние температуры нагрева на микроструктуру.

контрольная работа [370,2 K], добавлен 12.06.2012

Источник

Что такое степень переохлаждения материаловедение

В кристаллах металла ионы располагаются правильными рядами и имеют определенную амплитуду колебаний.
При повышении температуры амплитуда увеличивается настолько, что правильность рядов нарушается и в жидком металле сохраняется только у ближайших соседей на протяжении нескольких параметров решетки.
При охлаждении жидкого металла наблюдается обратная картина.
С понижением температуры подвижность ионов падает и вблизи температуры плавления образуются скопления атомов, в которых они расположены, как в кристаллах, правильными рядами.
Такие скопления являются центрами кристаллизации (зародышами).
По достижению температуры затвердевания, вновь образуется кристаллическая решетка и металл переходит в твердое состояние.
Переход металла при определенной температуре из жидкого состоя­ния в твердое называется кристаллизацией.

Энергетическое состояние любой системы характеризуется опреде­ленным запасом внутренней энергии, которая складывается из энергии движения молекул, атомов, электронов, энергии упругих искажений кри­сталлической решетки.
Та часть энергии, которая в изотермических условиях может быть превращена в работу называется свободной: E = U – TS,
где Е – свободная энергия, U – полная внутренняя энергия сис­темы, T – температура, S – энтропия.
Чем больше свободная энергия системы, тем система ме­нее устойчива.

Согласно второму закону термодинамики всякая система стремится к более устойчивому состоянию, т.е. к минимальному значению свобод­ной энергии.
Любой самопроизвольно текущий процесс идет только в том случае, если новое состояние более устойчиво.
Например, шарик, поднятый на высоту Н, стремиться скатиться вниз по наклонной плоскости, уменьшив при этом свою свободную энергию (рис. 1).

Кристаллизация металлов также подчиняется этому закону: если меньшей свободной энергией обладает твердое тело, то идет процесс кристаллизации и наоборот, при меньшей свободной энергии жидкого состояния – плавление.
Зависимость изменения свободной энергии металла в жидком и твердом состояниях от температуры приведена на рис. 2.
С увеличением температуры величина свободной энергии как жидкой, так и твердой фаз уменьшаются.

Что такое степень переохлаждения материаловедение. Смотреть фото Что такое степень переохлаждения материаловедение. Смотреть картинку Что такое степень переохлаждения материаловедение. Картинка про Что такое степень переохлаждения материаловедение. Фото Что такое степень переохлаждения материаловедение
Рис. 1. Изменение свободной энергии

Что такое степень переохлаждения материаловедение. Смотреть фото Что такое степень переохлаждения материаловедение. Смотреть картинку Что такое степень переохлаждения материаловедение. Картинка про Что такое степень переохлаждения материаловедение. Фото Что такое степень переохлаждения материаловедение
Рис. 2. Изменение свободной энергии (Е) жидкого (Ж) и твердого (Тв) металла в зависимости от температуры (Т °С)

Для исследования процесса кристаллизации пользуются кривыми охлаждения.
Металл помещается в тигель из огнеупорного материала и нагревается до жидкого состояния.
Потом печь выключается, металл помещается в необходимую охлаждающую среду и записываются кривые охлаждения.
В качестве датчика температуры используются термопары.
Сначала происходит охлаждение жидкого металла.
Затем в нем появляются первые кристаллы, после чего снижение температуры на некоторое время приостанавливается, несмотря на то, что тигель продолжает терять тепло в окружающую среду.
Это тепло компенсируется скрытой теплотой кристаллизации.
На кривой охлаждения это соответствует горизонтальной площадке.

Что такое степень переохлаждения материаловедение. Смотреть фото Что такое степень переохлаждения материаловедение. Смотреть картинку Что такое степень переохлаждения материаловедение. Картинка про Что такое степень переохлаждения материаловедение. Фото Что такое степень переохлаждения материаловедение
Рис. 3. Кривые охлаждения металла при различных степенях переохлаждения

Когда кристаллизация заканчивается, температура опять начинает снижаться, твердый металл остывает.
На рис. 3 приведены кривые охлаждения металла при различных степенях переохлаждения.
При незначительной степени переохлаждения (ΔТ3) скорость охлаждения (V3) сравнительно мала и кристаллизация протекает при температуре, близкой к равновесной.
При увеличении степени переохлаждения (кривые V2 и V1) скорости охлаждения увеличиваются.
Кристаллизация происходит при более низкой температуре и в течение более короткого времени.
Следует отметить, что чем чище металл, тем степень переохлаждения выше.

Впервые глубокие исследования процесса кристаллизации были проведены русским инженером – металлургом Д.К. Черновым в 1878 г. Он показал, что процесс кристаллизации складывается из двух этапов: образования центров и роста кристаллов из этих центров.

При снижении температуры жидкого металла до температуры кристаллизации группы атомов с упорядоченным расположением становятся устойчивыми и начинают обрастать новыми слоями, т.е. они становятся центрами кристаллизации.
Кристаллы свободно растут до тех пор, пока со всех сторон их окружает жидкий металл.
Когда кристаллов становится много, они мешают взаимному росту.
Поэтому кристаллы в металле имеют неправильную форму.
На рис. 4 показана схема роста зерен при кристаллизации.

Что такое степень переохлаждения материаловедение. Смотреть фото Что такое степень переохлаждения материаловедение. Смотреть картинку Что такое степень переохлаждения материаловедение. Картинка про Что такое степень переохлаждения материаловедение. Фото Что такое степень переохлаждения материаловедение
Рис. 4. Соотношение роста зерен кристаллов и времени кристаллизации

За первую секунду на площади квадрата возникли пять зародышей.
К концу второй секунды эти зародыши выросли и одновременно возникли еще пять, уже на четвертой секунде кристаллы начинают мешать взаимному росту.
На седьмой секунде процесс кристаллизации заканчивается.
Как видно из схемы, по мере развития процесса в нем участвует все большее число кристаллов.
Поэтому в начальный момент кристаллизация идет более интенсивно.
После того, как половина жидкой фазы перейдет в твердую взаимное препятствие росту кристаллов замедляет процесс кристаллизации.
Этому же способствует и небольшое количество оставшегося жидкого металла.

Скорость процесса кристаллизации количественно характеризуется скоростью зарождения центров и скоростью роста кристаллов.
Число зарождающихся в единицу времени центров кристаллизации (Ч.Ц.) имеет размерность 1/мм 3 с (число центров, возникающих в 1 мм 3 за секунду).
Скорость роста кристаллов (С.Р.) – это увеличение линейных размеров кристалла в единицу времени (м/ч).

Что такое степень переохлаждения материаловедение. Смотреть фото Что такое степень переохлаждения материаловедение. Смотреть картинку Что такое степень переохлаждения материаловедение. Картинка про Что такое степень переохлаждения материаловедение. Фото Что такое степень переохлаждения материаловедение
Рис. 5. Зависимость числа центров кристаллизации и скорости роста кристаллов от степени переохлаждения

Число центров кристаллизации и скорость роста кристаллов зависят от степени переохлаждения (рис. 5).
При равновесной температуре (ΔТ = 0) значения С.Р. и Ч.Ц. равны нулю.
Поэтому процесс кристаллизации идти не может.
При увеличении степени переохлаждения увеличивается разность свободных энергий твердой и жидкой фаз (рис. 3), что ведет к увеличению Ч.Ц. и С.Р.
Когда степень переохлаждения достигает больших значений (при низких температурах) подвижность атомов уменьшается, а это снижает Ч.Ц. и С.Р., т.е. способность системы к превращению уменьшается.
От соотношения величин С.Р. и Ч.Ц. при определенной степени переохлаждения зависят размеры кристаллов.
При большом значении С.Р. и малом Ч.Ц. (малая степень переохлаждения) образуются немногочисленные крупные кристаллы.
И, наоборот, при больших величинах ΔТ число центров велико, а скорость роста мала.
Поэтому образуется большое число мелких кристаллов.
При очень большой степени переохлаждения (при Ч.Ц. и С.Р. равным нулю) образуется аморфный металл.

Большую роль в количестве центров кристаллизации технических металлов и сплавов играют различные включения, попадающие при плавке или вводимые специально.
Такой метод является наиболее рациональным для регулирования размеров зерен, их формы, а, следовательно, и свойств.
Процесс искусственного регулирования размеров и форм зерен за счет введения дополнительных элементов называется модифицированием, а вводимые компоненты – модификаторами.
Наиболее часто в качестве модификаторов для стали используются алюминий, титан, ванадий; для чугунов – магний, церий.
По механизму воздействия модификаторы делятся на:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *