Что такое ступень паровой турбины
СТУПЕНИ ДАВЛЕНИЯ в паровых турбинах
— ряд подвижных изолированных один от другого специальными диафрагмами дисков с лопатками, в которых струя пара, получив за счет снижения давления в соплах, встроенных в диафрагмы, надлежащую скорость, производит работу на венце подвижных лопаток, затем путем дальнейшего снижения давления в соплах следующей диафрагмы восстанавливает величину скорости и производит работу на следующем подвижном венце (в следующей С. Д.) и т. д. до понижения давления пара до противодавления атмосферы или конденсатора. Турбины со С. Д. являются как бы соединением нескольких одноступенчатых турбин с общим валом. С. Д. применяются тогда, когда перепад давлений настолько велик, что не может быть экономично использован в одном диске. С. Д. служат для уменьшения рабочего числа оборотов машины, не понижая ее коэффициента полезного действия.
Смотреть что такое «СТУПЕНИ ДАВЛЕНИЯ в паровых турбинах» в других словарях:
Паровая тяга — Паровая машина тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу возвратно поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина любой… … Википедия
Паровой двигатель — Паровая машина тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу возвратно поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина любой… … Википедия
Паровая машина — тепловой двигатель внешнего сгорания, преобразующий энергию пара в механическую работу возвратно поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина любой двигатель внешнего сгорания … Википедия
Парораспределение — Парораспределение управление распределением пара в различных технических устройствах, а также системы для такого распределения. В паровых турбинах парораспределением называют системы подачи пара в турбину, которые регулируют расход и… … Википедия
Паровая турбина — Монтаж ротора паровой турбины, производства компании Siemens, Германия … Википедия
Лопатка (лопасть) — У этого термина существуют и другие значения, см. Лопатка (значения). Турбинная лопатка Лопатка (лопасть) деталь лопаточных ма … Википедия
Турбина — У этого термина существуют и другие значения, см. Турбина (значения). Монтаж паровой турбины, произведённой Siemens, Германия. Турбина ( … Википедия
ТУРБИНА — ТУРБИНА, вращающееся устройство, приводимое в движение потоком газа или жидкости. Турбины дают возможность преобразовать энергию ветра, воды, пара и других текучих сред в полезную работу. Простейший пример турбины ВОДЯНОЕ КОЛЕСО. В ранних… … Научно-технический энциклопедический словарь
Принцип действия активной и реактивной ступеней турбины. Преобразование энергии пара
Турбинной ступенью называется совокупность неподвижного ряда сопловых (направляющих) лопаток, в каналах которых происходит расширение и ускорение потока пара (преобразование потенциальной энергии пара в кинетическую энергию движущейся струи пара), и следующего за ним подвижного вращающегося ряда рабочих лопаток, в которых кинетическая энергия движущегося потока пара преобразуется в механическую энергию вращения ротора.
Простейшая одноступенчатая активная турбина (рис. 42.а) состоит из ряда неподвижных сопловых лопаток, образующих сужающиеся каналы – сопла в дозвуковых турбинах, и сужающе-расширяющиеся сопла – в сверхзвуковых турбинах. В каналах соплового аппарата потенциальная энергия пара преобразуется в кинетическую энергию движущейся струи, при этом происходит расширение пара и он с большой скоростью поступает в каналы, образованные рабочими лопатками. Так как каналы рабочих лопаток активной турбины имеют постоянное (по ходу движения пара) проходное сечение, то расширения пара в них не происходит. В каналах рабочих лопаток пар только изменяет направление движения, оказывая силовое воздействие на рабочие лопатки, закрепленные на диске. Усилие, развиваемое паром на рабочих лопатках, через диск передается на вал турбины, приводя его во вращение. Вал турбины вращается в подшипниках, установленных в корпусе. Корпус турбины образует замкнутое пространство, организуя движение пара и препятствуя его рассеянию в окружающую среду. Пройдя ряд сопловых и рабочих лопаток, отработавший пар покидает корпус турбины, и через выхлопной патрубок поступает в главный конденсатор (у конденсационных турбин) или в магистраль отработавшего пара (у противодавленческих турбин). Каналы рабочих и сопловых лопаток составляют проточную часть турбины.
Принцип действия реактивной турбины (рис. 42.б) несколько иной. На пустотелый вал насажены пустотелые спицы, заканчивающиеся в радиальных направлениях соплами. Пар поступает по валу и спицам к соплам, разгоняется в них до больших скоростей, и при истечении через сопла оказывает реактивное воздействие на спицы, приводя во вращение вал.
Описанная конструкция реактивной турбины из-за огромной частоты вращения на практике не применяется. Наибольшее распространение в судовых паротурбинных установках нашли реактивные турбины, использующие рассмотренный выше принцип работы, но схожие по своему устройству с активными турбинами. В таких реактивных турбинах расширение пара осуществляется как в направляющем аппарате, так и на рабочих лопатках.
Активная турбинная ступень
Реактивная турбинная ступень
Степенью реактивности турбинной ступени – p называется отношение величины изоэнтропийного теплоперепада на рабочих лопатках к сумме располагаемых изоэнтропийных теплоперепадов на направляющих и рабочих лопатках, которая примерно равна располагаемому теплоперепаду всей турбинной ступени:
Таким образом, чем больше степень расширения пара в каналах рабочих лопаток, тем больше степень реактивности турбинной ступени:
P = 0 – для чисто активных турбин (расширение пара происходит только в сопловом (направляющем) аппарате: haD = 0; ha = haI
P = 0,5 – для чисто реактивных степеней (расширение пара происходит в равной степени в направляющем аппарате и рабочих лопатках: haI = haD).
Литература
Судовые энергетические установки. Котлотурбинные энергетические установки. Болдырев О.Н. [2004]
Турбинная ступень
ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ В ОСЕВОЙ ТУРБИННОЙ СТУПЕНИ
радиально-осевые, диагональные и др. Однако в крупных энергетических паровых турбинах за редким исключением используются ступени осевые или с небольшим отклонением от строго осевого направления. Поэтому в дальнейшем, за исключением § 3.7, рассматриваются только осевые ступени.
В ступени турбины работа расширения пара преобразуется в кинетическую энергию потока, а последняя — в механическую энергию. Рассмотрим это преобразование применительно к одной из ступеней осевой турбины (рис. 3.1).
Поток пара, вышедший со скоростью с, из сопловЬй решетки, проходит зазор 5а, отделяющий неподвижные сопловые лопатки от рабочих, и вступает в каналы рабочей решетки (рис. 3.2).
При обтекании рабочей решетки пар в общем случае дополнительно расширяется от давления р 1 в зазоре между
сопловой и рабочей решеткой до давления р2 за рабочими лопатками. Одновременно поток пара в рабочей решетке меняет направление. При этом происходит передача кинетической энергии потока рабочим лопаткам ступени.
располагаемых теплоперепадов сопловой и рабочей решеток, или, что почти то же самое1, располагаемый теплоперепад ступени может быть взят по изоэнтропе между давлениями р0 и р2. В действительном процессе из-за потерь расширение в рабочей решетке происходит при возрастающей энтропии, так что состояние пара при выходе из рабочей решетки может быть представлено точкой 2 в /г, ^-диаграмме на рис. 3.3.
Отношение теплового перепада Н0р к теплоперепаду ступени от параметров торможения
называется степенью реактивности. Если степень реактивности ступени равна нулю и в каналах рабочих лопаток
не происходит дополнительного расширения пара, то такая ступень называется чисто активной. Когда степень реактивности невелика (до 0,2— 0,25), то ступень принято также называть активной, причем иногда указывают, что это активная ступень с небольшой степенью реактивности. Если степень реактивности значительна (0,4—0,6), то ступень называется реактивной.
В некоторых случаях давление р] может оказаться несколько меньшим, чем р2- При этом в каналах рабочей решетки происходит повышение давления, теплоперепад Н0р и степень реактивности р оказываются отрицательными. Отрицательная степень реактивности означает диффузорное
течение в рабочей решетке, что приводит к увеличению потерь энергии ^р. Поэтому следует ее избегать. Чаще всего отрицательная реактивность возникает в корневых сечениях рабочей решетки, а также при некоторых режимах, отличающихся от расчетного.
(где Ь—диаметр ступени).
проходя путь,
равный дуге гсобт. В большинстве случаев угол собт невелик, так что с достаточной степенью приближения можно им пренебречь.
Направление относительной скорости и>2 пара при выходе из лопаточного канала определяется углом выхода из рабочей решетки р2.
Относительная скорость и>2 может быть меньше или больше скорости н^. Под влиянием расширения пара в рабочей решетке происходит ускорение парового потока в его относительном движении. С другой стороны, потери при обтекании рабочей решетки вызываТот уменьшение скорости н2. В чисто активной ступени при р = 0 скорость и?2 всегда меньше и,, поскольку пар не приобретает ускорения, а потери имеют место.
Абсолютная скорость выхода пара из каналов рабочих лопаток определяется как сумма векторов относительной скорости уу2 и окружной скорости и2 и обозначается с2* Графически с2 находится из выходного треугольника скоростей, показанного на рис. 3.2.
Поворот и ускорение струи пара в криволинейных каналах рабочей решетки происходят под влиянием следующих усилий, действующих на паровую струю: во-первых, струя пара испытывает реактивное усилие стенок канала, образованного рабочими лопатками; во-вторых, пар, заполняющий канал, испытывает разность давлений р1—р2 при входе в канал и выходе из него. Если обозначить через Кг равнодействующую тех усилий, с которыми лопатки действуют на паровую струю, то струя пара развивает на лопатках усилие Л, равное, но прямо противоположное усилию Я (рис. 3.2).
При расчетах турбины обычно определяют проекции этого усилия на направление окружной скорости Ки и на перпендикулярное к ней осевое направление Ка.
Для того чтобы найти окружное усилие 7?ц, развиваемое потоком пара на лопатках ступени в направлении их движения, определим сначала равное, но противоположно направленное усилие Ки, с которым лопатки действую! на струю протекающего пара.
Это усилие может быть найдено на основании уравнения количества движения, записанного для оси и при массовом расходе пара, равном С, кг/с:
Общее уравнение сохранения энергии (2.9), которое было использовано при выводе формулы (2.12), может быть применено также и к потоку пара в рабочей решетке. Однако в этом случае входящая в выражение (2.9) работа /,=#„, развиваемая потоком пара, не должна приниматься равной нулю, так как при протекании пара в рабочей решетке часть энергии пара преобразуется в механическую работу.
Применяя обозначения рис. 3.2 и 3.4 и предполагая, что в рабочей решетке пар расширяется от давления р^ до давления р2, напишем уравнение сохранения энергии при отсутствии теплообмена:
Отметим, что выражение (3.11) и другие, записанные на его основе, относятся к рассматриваемому частному случаю их=и2 = и. Если и^фиг, то вместо (3.11) следует написать
Из равенства (3.11) находим относительную скорость выхода пара:
Формулу (3.12) можно получить и другим путем, если ввести условные параметры торможения в относительном движении (см. /?1оти и Л1отн на рис. 3.3):
Если бы течение пара в рабочей решетке происходило без потерь, то расширение пара шло бы по изоэнтропе. Обозначая в этом случае относительную скорость выхода пара через и>2|, напишем для этого теоретического случая
В действительности из-за потерь в рабочей решетке относительная скорость выхода пара и>2 меньше, чем и>2г а к2 выше, чем к21. Вычитая из уравнения (3.14), записанного для изоэнтропийного течения, уравнение (3.11), находим разность
ранее выражение для работы, развиваемой потоком пара в рабочей решетке [см. формулы (3.7) и (3.8)], было выведено на основании закона количества движения, позволившего определить усилие, создаваемое паром на рабочих лопатках,
С другой стороны, работу парового потока можно подсчитать, вычитая из располагаемой энергии ступени потери, возникающие при протекании пара в отдельных элементах ступени. Располагаемой энергией ступени для С= 1 кг/с является ее располагаемый теплоперепад от параметров торможения (рис. 3.3)
а потерями — потери при обтекании сопловой Д#с и рабочей А Яр решеток, а также потери с выходной скоростью
Так как пар покидает ступень со скоростью с2 (рис. 3.2 и 3.4), которая в данной ступени не используется. Тогда
Следует подчеркнуть, что учитывались только те потери энергии в ступени, которые непосредственно связаны с течением пара в ее проточной части. Найденная ранее согласно (3.9) мощность ступени Nи, кВт, равная также
(где С—в кг/с, аЯ„ — в кДж/кг), называется мощностью на лопатках турбинной ступени (окружной мощностью). Кинетическая энергия, потерянная при обтекании паром сопловой и рабочей решеток, а также с выходной скоростью, древращается в теплоту и может быть учтена при построении процесса в Л, ^-диаграмме. На рис. 3.5, а детально изображен весь тепловой процесс в турбинной ступени в Л, ^—диаграмме.
Принцип работы паровой турбины
Критическое давление и критическая скорость
Первые попытки изобретателей еще не изучивших процесса расширения пара, построить промышленно пригодную паровую турбину натолкнулись на следующее затруднение: оказывается, что если сосуд, в котором находится пар под давлением, снабдить нерасширяющейся трубкой (соплом) цилиндрической или иной формы (рис. 4), через которую будет происходить истечение пара в пространство с меньшим давлением, то пар в этой трубке будет терять давление и приобретать скорость, но только до определенного предела; в случае сухого насыщенного пара у выхода из трубки давление его не может быть меньше 0,58 начального давления. Это давление называется критическим давлением. Соответственно этому давлению мы получим и некоторую предельную скорость истечения, которая называется критической скоростью. Для перегретого пара критическое давление равно 0,546 от начального давления.
Таким образом, если в нашем сосуде находится сухой насыщенный пар при давлении р0=10 ата, а выпускаем мы его в атмосферу, то в конце сопла мы получим давление
то есть мы используем для превращения в скоростной напор перепад давлений, равный только
Дальше, выйдя из устья сопла, пар, расширяясь уже в атмосфере, будет клубиться и увеличения скорости движения его в направлении оси сопла почти не произойдет. Следовательно, пользоваться цилиндрическим (нерасширяющимся)соплом целесообразно только тогда, когда начальное давление пара не превышает примерно двойного давления в пространстве, куда он вытекает; например, при выпуске пара в атмосферу рабочее давление перед соплом не должно превышать 1,8 ата.
Если отношение давлений перед и за трубкой больше 1,8, то для полного преобразования энергии давления в скоростную энергию нужно, чтобы трубка (сопло) имела после узкого сечения расширяющуюся часть (рис. 5).
Отличительная особенность расширяющегося сопла заключается в том, что давление пара у выхода из сопла может быть доведено до давления среды, в которую он вытекает. При этих условиях пар вытекает из сопла с сверхкритической скоростью и идет ровной струей, вся энергия которой может быть использована на лопатках турбины. Расширяющееся сопло дает возможность использовать любые перепады давлений, полностью преобразовываю в пределах данного перепада давлений потенциальную энергию пара в кинетическую.
Два принципа работы пара в турбине
Из сказанного выше вытекает, что, используя расширение пара в турбине, мы можем получить механическую работу, эквивалентную располагаемому перепаду тепла за вычетом потерь. Процесс преобразования тепловой энергии в механическую работу может происходить различным образом в зависимости от типа турбины.
Турбины, у которых расширение пара происходит только в неподвижных соплах до вступления его на рабочие лопатки, называется активными турбинами.
Турбины, у которых расширение пара совершается не только до вступления его на рабочие (подвижные) лопатки, но и во время прохождения между ними, называются турбинами, работающими с реакцией. Если теплопадение в соплах составляет примерно половину общего теплопадения (или меньше), турбину принято называть реактивной.
Струя жидкости, направленная на лопатку, оказывает на нее давление, которое зависит от расхода жидкости, скорости ее при входе на поверхность и при выходе с нее, формы поверхности лопатки, угла направления струи относительно этой поверхности и разности давлений жидкости перед и за лопаткой. При этом вовсе не требуется, чтобы струя ударяла о лопатку; наоборот, этого нужно всегда избегать и стремиться к тому, чтобы поток не ударял о лопатку, а плавно ее обтекал.
Дело в том, что при обтекании паром лопаток, так же как при обтекании воздухом крыла самолета, с обеих сторон поверхности лопатки образуется разное давление: с вогнутой стороны давление всегда выше, чем с выпуклой. Вследствие этого получается сила, действующая на лопатку с вогнутой стороны; она заставляет лопатки перемещаться и совершать работу. Отцом русской авиации» профессором Н. Е. Жуковским установлены основные законы для определения «подъемной силы» крыла самолета, обтекаемого воздухом; применение этих законов помогает конструкторам современных турбин создавать наилучшие профили лопаток, обеспечивающие малые потери.
Однако при элементарном изучении преобразования энергии в турбине и конструкций турбин удобнее и нагляднее разделять и рассматривать особо активные и реактивные ступени и происходящие в них процессы. При этом часто вводятся еще некоторые упрощения; в частности, поток пара в соплах и между лопатками рассматривается в ряде случаев как некоторая сплошная струя несжимаемой жидкости, имеющая одинаковые скорости и давления в любой точке входного или выходного сечения.
Ниже рассмотрим подробнее, как работают активная и реактивная ступени турбины.
Активный принцип
Так как кинетическая энергия тела пропорциональна квадрату скорости его движения, то даже тела с очень малой массой, но движущиеся с большими скоростями могут обладать большой кинетической энергией. С другой стороны, кинетическая энергия чрезвычайно быстро уменьшается при уменьшении скорости движения тела. По закону сохранения энергии всякое тело, движущееся с некоторой скоростью и задержанное в своем движении должно отдать при этом всю ту энергию, которую нужно было затратить, чтобы сообщить ему скорость, с которой оно двигалось.
При ударе струи о плоскую поверхность, перпендикулярную направлению движения струи, можно предположить два возможных случая:
а) Поверхность закреплена неподвижно; тогда кинетическая энергия задержанной в своем движении струи частично превратится в тепловую энергию, а частично будет расходоваться на отбрасывание частиц жидкости в стороны и в обратном направлении, на образование вихрей в струе и на разрушение поверхности. Никакой полезной работы при этом не будет совершено вследствие неподвижности поверхности.
б) Поверхность может перемещаться (рис 6,а); тогда кинетическая энергия частично превратится в работу перемещения поверхности, которую можно полезно использовать, а частично будет затрачена бесполезно (как и при неподвижной поверхности).
Очевидно, что в паровой турбине потеря энергии, то есть та часть энергии, которая не превращается в полезную работу, должна быть минимальной; кроме того, струя пара не должна повреждать поверхностей лопаток, на которые она направлена. Достигнуть этого при ударном действии струи нельзя; фурма лопаток турбины должна быть выбрана такой, чтобы струя пара, выходящая из сопла, плавно вступала на лопатки и передавала им наибольшую возможную часть своей энергии.
Путем расчета и опытов было найдено, что поверхности тела, на которую направлена струя, следует придать такую форму, чтобы направленная на него струя совершала поворот и меняла направление своего движения на прямо противоположное (рис. 6,б).
Законы механики так объясняют взаимодействие между струей и предметом. На предмет (лопатку) действует со стороны движущейся криволинейно струи центробежная сила; она распределена по поверхности лопатки, оказывает на нее давление и заставляет перемещаться и совершать работу.
На (рис. 7) изображена полукруглая лопатка. Предположим, что на нее направлена струя пара. Каждая частица пара действует на лопатку с силой, равной центробежной силе и направленной по нормали к поверхности лопатки, то есть по линии, соединяющей центр А полуокружности лопатки с центром тяжести частицы. Рассмотрим три такие частицы а, b, и с. Центробежные силы Р, возникающие от частиц а и с, по законам механики можно разложить на силы Р1, напралвенные вертикально, и на силы Р2, направленные горизонтально. Вертикальные силы Р1 направлены во взаимно противоположные стороны и, будучи равными по величине, взаимно уничтожаются, то есть не оказывают влияния на движение лопатки.
Горизонтальные силы Р2 становятся тем больше, чем ближе частица расположена к точке В, в которой Р2=Р1, а Р1=0. Сумма сил Р2 представляет собой ту силу, которая заставляет перемещаться лопатку вправо; помножив эту силу на путь, пройденный лопаткой, мы получим полезную работу, совершенную струей пара. При каких условиях эта работа будет максимально малой, мы рассмотрим ниже
На практике струя обычно направлена под некоторым углом к направлению движения лопаток (рис. 8). Профили лопаток не представляют собой полуокружностей; они образуются отрезками кривых и прямых линий так, чтобы было обеспечено безударное вступление струи пара и высокое использование ее скорости.
Рабочий процесс активной турбины
Свежий пар с давлением р0 и скоростью с0 поступает в сопло 4 и расширяется в нем до давления р1; при этом скорость струи пара возрастает до величины с1. С этой скоростью струя подходит к рабочим лопаткам 3 и, воздействуя на лопатки, заставляет диск 2 и вал 1 вращаться, производя механическую работу.
По выходе из рабочих лопаток струя имеет скорость с2 (выходную скорость) меньшую, чем с1, так как кинетическая энергия преобразуется в механическую работу. Хотя давление в различных местах криволинейного канала, образованного рабочими лопатками, неодинаково, но при входе в канал и при выходе из него оно одинаково, так как каналы между лопатками имеют одинаковое сечение по длине и в них не происходит добавочного расширения пара.
Практически, как мы увидим ниже, сечения каналов между лопатками активных турбин приходится выполнять несколько возрастающими по направлению течения пара; это вызывается тем обстоятельством, что вследствие трения и ударов при протекании паровой струи между лопатками теплосодержание пара несколько возрастает; следовательно, для того чтобы давление его оставалось неизменным, необходимо постепенное увеличение сечений каналов. |
Отработавший пар с давлением р2=р1 уходит из турбины через выпускной патрубок 6.
Таким образом, мы видим, что активная турбина имеет следующую характерную особенность: Падение давления пара происходит только в сопле (или в соплах, если их несколько); давление пара при входе на лопатки и при выходе с них одинаково.
Необходимая скорость на окружности турбинного диска
Нетрудно сообразить, что если лопатка (рис. 7) движется под действием какой-либо внешней силы с той же самой скоростью, что и направленная на нее струя пара, то она не оказывает струе какого-либо сопротивления и не заимствует у нее хотя бы части ее скоростной энергии. Такое же явление получится, если скорость лопатки будет больше скорости струи; в этом случае лопатка просто уйдет вперед, обгоняя струю.
Вообразим теперь, что лопатка закреплена в неподвижном состоянии; тогда струя пара, направленная на изогнутую поверхность лопатки, не совершит работы ее передвижения, а переменит направление своего движения на обратное и уйдет с лопатки с той скоростью, с какой она на нее вступила, если не считать небольших потерь на трение о поверхность лопатки; следовательно, кинетическая энергия струи останется неиспользованной.
Рассмотрим теперь такой пример: допустим, что скорость подтекания струи пара равна 500 м/сек, м скорость лопатки равна 250 м/сек; в этом случае струя вступит на лопатку с относительной скоростью в 250 м/сек и, изменив направление своего движения на обратное, уйдет с лопатки со скоростью также 250 м/сек относительно лопатки.
Но так как лопатка движется вперед со скоростью 250 м/сек, то скорость обратного движения струи равна и противоположна по направлению скорости лопатки и по отношению к какой-либо неподвижной точке пространства будет равна нулю.
Из сказанного можно сделать тот вывод, что для полного использования кинетической энергии пара скорость движения лопатки активной турбины должна быть в 2 раза меньше скорости истечения струи пара из сопла.
Скорость истечения пара из сопла, как мы уже говорили, зависит от разности его начальной и конечной энтальпии. Чем больше перепад тепла при расширении пара, тем больше скорость его истечения. Современные котельные установки строятся для давлений 35-90 ата и выше (до 300 ата), выпускают же отработавший в турбине пар обычно в конденсатор, где давление держат возможно более низким. Если бы соответствующий теплоперепад был использован сразу для получения скорости, ее значения превосходили бы 1000 м/сек; например, при расширении насыщенного пара от сравнительно невысокого давления 10 ата до давления, равного 0,1 ата (в конденсаторе), скорость истечения достигает 1167 м/сек, то есть будет значительно больше скорости полета пули, выпущенной из винтовки. При применении перегретого пара скорости истечения получаются еще большими, так как возрастают располагаемые перепады тепла.
Для наивыгоднейшего использования кинетической энергии пара скорость u на средней окружности лопаточного венца должна быть, как мы показали, только в 2 раза меньше скорости с1 истечения пара из сопла. Так, для скорости истечения пара с1=1200 м/сек скорость u на средней окружности лопаточного венца должна равняться 600 м/сек. Такую высокую окружную скорость осуществить в турбине пока невозможно, так как еще не существует материалов, могущих выдержать колоссальные напряжения от центробежной силы, развивающиеся при окружных скоростях, значительно превышающих 400 м/сек. Отступление же от наивыгоднейшего отношения u/с1 вызывает сильное снижение к.п.д. турбины.
Таким образом, в одноступенчатой турбине можно использовать с хорошим к.п.д. лишь сравнительно небольшие теплопадения.
В турбинах с небольшими расходами и высокими скоростями пара приходится применять диски небольшого диаметра для того, чтобы не получить слишком низкими рабочие лопатки. К тому же диски малого диаметра легче изготовить лучшего качества. Но при малых диаметрах диска и высоких окружных скоростях получается высоким число оборотов.
Большинство же приводимых турбинами машин (генераторы, насосы и т.п.) требует числа оборотов порядка 3000 об/мин и ниже, а следовательно, высокооборотной турбиной и вращаемой ею машиной приходится вводить понизительную зубчатую передачу (редуктор); при этом размеры передачи не редко превышают размеры самой турбины, а к.п.д. установки понижается за счет механических потерь в редукторе.
На электростанциях зубчатые редукторы почти не применяются, но они нашли широкое применение на кораблях, так как для гребных винтов необходимо очень низкое число оборотов (от 100 до 500 об/мин), а турбина с таким числом оборотов получилась бы громадных размеров.
Невысокий к.п.д. и некоторые конструктивные трудности ограничивают мощность одноступенчатых турбин величиной 500-800 квт.
Одноступенчатые турбины, однако весьма просты и надежны в работе, и они часто применяются для привода вспомогательных механизмов, экономичность которых не имеет существенного значения.
Повышения экономичности турбины, работающей при большом теплопадении с умеренными окружными скоростями, можно достигнуть путем:
1) применения ступеней давления;
2) применения ступеней скорости.
Ступени давления
Идея ступеней давления заключается в следующем: вместо того чтобы вести расширение пара от давления в котле до противодавления в один прием, можно разделить этот процесс на части или ступени, используя в каждой ступени небольшие перепады давлений. Подобного рода устройства примененное для водяной турбины, изображено на (рис. 10), рассмотрим его подробно.
Как видно из чертежа, уровень воды в баке на 500 м выше сопла 1; при этом скорость истечения воды из сопла будет равна примерно 100 м/сек, и наивыгоднейшая скорость на окружности колеса турбины должна равняться 100/2=50 м/сек, для чего нужно 2000 об/мин при диаметре колеса 0,5 м.
Если же мы напор воды разделим на четыре части так, чтобы сопла 2,3,4 и 5 питались каждое из бака, в котором уровень воды стоит на высоте, в 4 раза меньшей, то есть 125 м, то скорость истечения из этих сопел будет уже не 100 м/сек, а только 50 м/сек, и колеса, насаженные на общий вал, должны будут вращаться с окружной скоростью 50/2=25 м/сек, то есть делать только 1000 об/мин при том же диаметре. Количество работы, которое мы при этом получаем, будет тем же самым, если не считать несколько большие потери на трение во втором случае.
Подобным же образом паровую турбину с несколькими ступенями давления можно рассматривать как состоящую из нескольких одноступенчатых турбин, соединенных последовательно, причем все диски сидят на общем валу, а пар, сработав в первой турбине часть располагаемого перепада давлений, переходит во вторую, затем в третью и т.д. до тех пор, пока давление его не сравняется с противодавлением атмосферы или конденсатора.
Турбина с числом ступеней равно 9 будет иметь наивыгоднейшую окружную скорость в 3 раза, а турбина с 16 ступенями в 4 раза меньшую, чем одноступенчатая турбина, использующая тот же перепад тепла.
Весь этот процесс легко проследить по нанесенным в верхней части (рис. 11) кривым, определяющим давления и скорости пара перед и за соплами и за рабочими лопатками. Сравнив эти кривые с имеющимися на (рис. 8), мы увидим, что рабочий процесс одноступенчатой турбины здесь повторяется 3 раза, по числу ступеней давления; при этом давление в каждой следующей ступени понижается, а скорости истечения примерно одинаковы. Последнее достигается выбором соответствующих размеров сопле.
При значительном числе ступеней перепады давлений в каждой ступени получаются небольшими и скорости истечения пара ниже критической; поэтому применение расширяющихся сопел в многоступенчатых турбинах стало уже необязательным; в современных турбинах, как правило, применяют лишь суживающиеся сопла. Этому способствует рассмотренная ниже возможность расширения пара в косом срезе суживающихся сопел до давления ниже критического.
Перепад тепла между ступенями турбины распределяют иногда поровну, чаще же принимают более высокие перепады в первой и последних ступенях; это дает возможность, с одной стороны, понизить давление и температуру в корпусе турбины за счет срабатывания большого перепада давлений в первой ступени, а с другой,- получить меньшую высоту лопаток в последних ступенях за счет больших скоростей протекания пара.
Падения давления по ступеням всегда получаются неодинаковыми: в первых ступенях давление падает резко, в последних же незначительно.
В качестве примера ниже приведена таблица распределения давлений по ступеням активной турбины с 13 ступенями давления, работающей свежим паром давлением 28 ата, температура пара= 400 о С и с противодавлением в конденсаторе= 0,05 ата
При этом перепады тепла составляют от 16,2 ккал/кг в первых ступенях до 32 ккал/кг в последней ступени.