Что такое субклеточная структура

Физиология субклеточных структур.

Что такое субклеточная структура. Смотреть фото Что такое субклеточная структура. Смотреть картинку Что такое субклеточная структура. Картинка про Что такое субклеточная структура. Фото Что такое субклеточная структура Что такое субклеточная структура. Смотреть фото Что такое субклеточная структура. Смотреть картинку Что такое субклеточная структура. Картинка про Что такое субклеточная структура. Фото Что такое субклеточная структура Что такое субклеточная структура. Смотреть фото Что такое субклеточная структура. Смотреть картинку Что такое субклеточная структура. Картинка про Что такое субклеточная структура. Фото Что такое субклеточная структура Что такое субклеточная структура. Смотреть фото Что такое субклеточная структура. Смотреть картинку Что такое субклеточная структура. Картинка про Что такое субклеточная структура. Фото Что такое субклеточная структура

Что такое субклеточная структура. Смотреть фото Что такое субклеточная структура. Смотреть картинку Что такое субклеточная структура. Картинка про Что такое субклеточная структура. Фото Что такое субклеточная структура

Что такое субклеточная структура. Смотреть фото Что такое субклеточная структура. Смотреть картинку Что такое субклеточная структура. Картинка про Что такое субклеточная структура. Фото Что такое субклеточная структура

На X Международном ботаническом конгрессе в Эдинбурге (1964) особое внимание привлекла работа двух не существовавших на предыдущих конгрессах секций – физиологии растительной клетки и ее тонкой структуры и функции. Необходимость создания этих секций была вызвана значительными успехами и перспективностью исследований на клеточном и субклеточном уровнях, позволяющими проникать в тончайшие механизмы фотосинтеза, дыхания, поглощения веществ и других процессов. Эти успехи стали возможны благодаря существенному прогрессу методов исследования клетки и ее физиологии (см. главы 10 и 11). Следует особо отметить приемы К. Мюлеталера и его сотрудников (1964), которые во избежание артефактных изменений тонкой структуры клеток заменили химическую фиксацию материала его быстрым замораживанием. Этот прием позволил обнаружить ряд деталей в структуре цитоплазматической мембраны, ядерной оболочки, квантосомы в ламмелах хлоропластов, оксиомы в митохондриях и другие органеллы, ускользавшие от наблюдения при обычных методах фиксации.

Получение чистых фракций неповрежденных клеточных органелл позволило уже в начале 40‑х годов приступить к более детальному изучению не только структуры, но и функции растительных митохондрий. Согласно многолетним исследованиям американского биохимика Д.Э. Грина (1963), именно с этими клеточными органеллами связаны три важнейших процесса: окисление в цикле трикарбоновых кислот, а вне его – аминокислот, жирных кислот и других соединений; перенос электронов и оксислительное фосфорилирование (см. главу 6). Сравнение митохондрий растительных и животных клеток и характера протекающих в них процессов обнаружило почти полную аналогию их функций.

В 50‑х годах в протоплазме растительных клеток были обнаружены рибосомы – рибонуклеопротеидные частицы, впервые наиболее подробно описанные П. Тсо с сотрудниками (1956–1958). Тогда же было установлено, что с деятельностью этих частиц, как в животной, так и в растительной клетке связан синтез белка.

В настоящее время ведутся интенсивные исследования механизмов на отдельных этапах белкового синтеза и участия рибосом в этих процессах (см. главу 23).

Важные данные получены в 60‑х годах о структуре и функции хлоропластов. Электронно‑микроскопические наблюдения и исследования биохимического состава и ферментативной активности этих органелл позволили установить наличие у них ламеллярной (пластинчатой) структуры. Ламеллы состоят из тонких чередующихся друг с другом слоев белка и липоидов. Через определенные промежутки несколько ламелл соединяются между собой, образуя в местах соединения уплотненные плоские участки – граны. Каждый слой ламелл в свою очередь состоит из плотно прилегающих частиц, внешне напоминающих зернистую поверхность. Впервые эти частицы были обнаружены на электронных микрофотографиях Э. Штейнмана (1955). М. Кальвин (1962) назвал их квантосомами.

В хлоропластах уже к началу 50‑х годов были найдены почти все ферменты, участвующие в метаболизме растений, что позволило H.М. Сисакяну (1954) характеризовать эти пластиды как «депо энзимов». Наибольшее внимание было уделено изучению пиридиннуклеотидредуктазы, трансгидрогеназы и ферментам фосфорного обмена – АТФазы, фосфатаз и др.

Важнейшим событием было обнаружение в конце 50‑х – начале 60‑х годов в хлоропластах рибосом, что окончательно утвердило мнение о возможности синтеза белка в хлоропластах (П. Тсо, 1958; В. Литлтон, 1962; Г. Брауерман, 1963; и др.).

До начала 40‑х годов считалось общепризнанным, что процессы дыхания, фотосинтеза и ряд других биохимических реакций неразрывно связаны с растительной клеткой как целостной структурной единицей. Опыты Р. Хилла (1939), а затем А.Е. Бойченко (1949), Д.И. Арнона (1954, 1962) и других опровергли это мнение и в отношении хлоропластов. Исследования фрагментов этих структур привели к выводу, что даже их мельчайшие частицы содержат все фотосинтетические пигменты в таком же соотношении, как и неповрежденные клетки; передача энергии в таких фрагментах идет так же, как и в целых клетках, хотя с меньшей интенсивностью.

Что такое субклеточная структура. Смотреть фото Что такое субклеточная структура. Смотреть картинку Что такое субклеточная структура. Картинка про Что такое субклеточная структура. Фото Что такое субклеточная структура

В изучении тончайших структур и функций клеточных органелл заметную роль начинают играть работы, в которых структура и функция рассматриваются в развитии. Современные цитологические исследования ведут к расшифровке физиологических процессов, протекающих во вновь открываемых субклеточных элементах. Именно эта область исследований служит наиболее ярким примером того, как все более стираются границы между биохимией, цитологией и физиологией растений и как постепенно обрисовываются контуры синтеза этих наук на более высоком уровне.

Источник

Субклеточные структуры растительных клеток

ФИЗИОЛОГИЯ РАСТЕНИЙ

1. Строение-растительной клетки

Растительная клетка как клетка эукариотического организма содержит ядро с одним или несколькими ядрышками, митохондрии, аппарат Гольджи, эндоплазматический ретикулум, микротела, рибосомы и полирибосомы, компоненты цитоскелета — микротрубочки и микрофиламенты. В отличие от других эукариотических организмов для растительных клеток характерны:

1) пластидная система, возникающая в связи с фототрофным способом питания,

2) полисахаридная клеточная стенка, окружающая клетку,

3) центральная вакуоль в зрелых клетках, играющая важную роль в поддержании тургора.

Кроме того, у делящейся растительной клетки нет центриолей. Электронно-микроскопические снимки свидетельствуют о том, что клеточная, или плазматическая, мембрана (плазмалемма) и внутриклеточные мембраны составляют основу ультраструктуры клеток эукариот.

Строение биологических мембран. Основу биологической мембраны составляет двойной слой фосфолипидов с некоторым количеством других липидов (галактолипидов, стеринов, жирных кислот и др.), причем липиды повернуты друг к другу своими гидрофобными концами. Ненасыщенные жирные кислоты полярных липидов обеспечивают не­сколько разрыхленное (жидкое) состояние бислоя при физиологических температурах.

Толщина биомембран не превышает 6—10 нм.

В состав мембран входят белки, выполняющие функции ферментов, насосов, переносчиков, ионных каналов, а также белки-регуляторы и структурные белки.

Лабильная структура мембран позволяет выполнять им различные функции: «барьерные, транспортные, осмотические, электрические, структурные, энергетические, биосинтетические, секреторные, пищеварительные, рецепторно-регуляторные и некоторые другие.

Субклеточные структуры растительных клеток

Ядрышкоотчетливо видно в ядре под световым и электронным микроскопами. Оно формируется на определенных участках ДНК, называемых ядрышковым организато­ром. В хроматине ядрышка находятся участки ДНК, ответственные за синтез рибосомальных РНК (рРНК).

В целом ядро является местом хранения генетической информации клетки и репликации ДНК. В нем происходит процесс транскрипции ДНК в РНК различных типов. В тесном взаимодействии с цитоплазмой ядро участвует в обеспечении экспрессии генетической информации и контролирует процессы жизнедеятельности клетки.

Рибосомы.Рибосомы осуществляют синтез белков — трансляцию матричной, или информационной, РНК (мРНК). Каждая рибосома состоит из двух нуклеопротеиновых субъединиц. В цитоплазме растительных клеток находятся 80 S рибосомы, состоящие из 40 и 60 S субъединиц, в хлоропластах — 70 S рибосомы, а в митохондриях — 78 — 80 S рибосомы, отличные от цитоплазматических и хлоропластных. Субъединицы рибосом, образованные в ядрышке, поступают в цитоплазму, где происходит сборка рибосом на молекуле мРНК.

Рибосомы в цитоплазме могут быть свободными, прикрепленными к мембранам эндоплазматического ретикулума, к наружной мембране ядерной оболочки либо образуют полирибосомные (полисомные) комплексы. Полирибосомы возникают потому, что одну молекулу мРНК могут одновременно транслировать несколько рибосом. Полирибосомы разрушаются при воздействии на растения неблагоприятных факторов внешней среды (например, засухи, недостатка кислорода). В процессе синтеза белка, осуществляемого рибосомами, участвуют компоненты, образованные в ядре, ядрышке, в цитоплазме, митохондриях и хлоропластах.

Пластиды. Для клеток растений типична система органоидов, называемая пластидной. Пластиды — это ограниченные двойной мембраной округлые или овальные органоиды, содержащие внутреннюю систему мембран. Пластиды могут быть бесцветными (пропластиды, лейкопласты, этнопласты) или окрашенными (хлоропласты, хромопласты).

В лейкопластах откладываются запасные вещества и названия они получают в зависимости от этих соединений. Этнопласты формируются при выращивании зеленых растений в темноте. При освещении они превращаются в хлоропласты, при этом внутренняя система мембран подвергается сложным перестройкам.

Важнейший для всего живого процесс преобразования энергии поглощенного света в химическую энергию органических веществ, синтезируемых из СО2 и Н2О (фотосинтез), осуществляется в зеленых пластидах — хлоропластах. Это овальные тела 5—10 мкм длиной и 2 — 3 мкм в диаметре. В одной клетке листа могут находиться 15 — 20 и более хлоропластов, а у некоторых водорослей — лишь 1—2 гигантских хлоропласта различной формы. В мембранах тилакоидов локализованы зеленые (хлорофиллы), желтые и красные (каротиноиды) пигменты, компоненты запасания энергии, участвующие в поглощении и использовании энергии света. Биохимические системы синтеза и превращения углеводов функционируют в строме хлоропластов. В ней же может откладываться крахмал.

Хромопласты содержат в везикулах (пузырьках) стромы каротиноиды. Их присутствием объясняется окраска плодов томатов, рябины и др. В строме всех пластид обнаружены кольцевые молекулы ДНК.

При росте клетки количество хлоропластов увеличивается путем деления.

Митохондрии. В растительных клетках митохондрии представлены округлыми или гантелевидными телами диаметром 0,4 — 0,5 мкм и длиной 1 — 5 мкм. Количество митохондрий варьирует от десятков до 2000 на клетку, меняясь в онтогенезе клетки и в зависимости от ее функционального состояния. Органоиды ограничены наружной и внутренней мембранами толщиной 5 — 6 нм каждая. Внутренняя мембрана образует складки различной формы, называемые кристами (гребнями). Мембраны отделяют от цитоплазмы внутреннее содержимое митохондрий — матрикс. В матриксе содержатся рибосомы и митохондриальная ДНК, ответственные за синтез части белков митохондрий. ДНК в митохондриях имеет кольцевое строение.

Продолжительность жизни (оборот) митохондрий определяется скоорди­нированной деятельностью ядра, цитоплазмы и самих митохондрий. Полупериод жизни этих органоидов у различных растений составляет 5—10 дней, причем наружная мембрана обновляется быстрее внутренней.

В митохондриях функционируют системы аэробного дыхания и окислительного фосфорилирования, обеспечивающие энергетические потребности клеток. В матриксе располагаются ферментные системы окисления ди- и трикарбоновых кислот, а также ряд систем синтеза липидов, аминокислот и др.

Пероксисомы и глиоксисомы.В растениях присутствуют округлые органоиды диаметром 0,2—1,5 мкм, ограниченные элементарной мембраной и содержащие гранулярный матрикс умеренной электронной плотности. Они получили название микротел. В некоторых микротелах обнаруживается белковый кристаллоид, состоящий из трубочек диаметром около 6 нм. Количество микротел в клетке близко к числу митохондрий. В клетках растений обнаружены два типа микротел, выполняющих различные физиологические функции: пероксисомы и глиоксисомы.

Пероксисомы многочисленны в клетках листьев, где они тесно связаны с хлоропластами. В них окисляется синтезируемая в хлоропластах в ходе фотосинтеза гликолевая кислота и образуется аминокислота глицин, которая в митохондриях превращается в серии. В листьях высших растений пероксисомы участвуют в фотодыхании.

Глиоксисомы появляются при прорастании семян, в которых запасаются жиры, и содержат ферменты, необходимые для превращения жирных кислот в сахара. При работе ферментных систем пероксисом и глиоксисом образуется пероксид водорода, который разрушается содержащейся в этих органоидах каталазой.

Сферосомы. Это сферические, сильно преломляющие свет образования диаметром 0,5 мкм. Они содержат липиды и поэтому их называют также липидными каплями (олеосомами). В сферосомах обнаружены такие ферменты, как липаза и эстераза. В них хранятся запасы липидов клетки. При прорастании семян, запасающих жиры, сферосомы функционируют в комплексе с глиоксисомами в процессах глюконеогенеза.

Эндоплазматический ретикулум. Эндоплазматический ретикулум (ЭР), или эндоплазматическая сеть (ЭС), представляет собой систему каналов, пузырьков и цистерн, ограниченную мембраной толщиной 5 — 6 нм. ЭР может содержать на своей поверхности рибосомы (гранулярный, или шероховатый, ЭР) или не содержать их (агранулярный, или гладкий, ЭР). Поверхность мембран ЭР в клетке больше других мембран­ных образований, а объем полостей может достигать 16% объема клетки. Эндоплазматическая сеть — очень лабильная структура. Неблагоприятные внешние воздействия (недостаток кислорода и др.) вызывают концентрические закручивания мембран ретикулума.

В гладком ЭР образуются углеводы, липиды, терпеноиды. В гранулярном ретикулуме синтезируются мембранные белки, ферменты, необходимые для синтеза полисахаридов клеточных стенок, структурный белок и ферменты клеточных стенок, другие секретируемые белки. По системе ЭР переносятся вещества внутри клетки. Он участвует также в межклеточных взаимодействиях у растений через плазмодесмы.

Аппарат Гольджи. В растительных клетках аппарат Гольджи (АГ) представлен диктиосомами, везикулами и межцистерными образованиями. Уплощенные цистерны — диктиосомы расположены пачками по несколько штук. Они ограничены мембраной толщиной 7 — 8 нм. На регенерационном полюсе АГ происходит новообразование диктиосом из мембран гладкого ЭР. На секреторном полюсе формируются секреторные пузырьки (везикулы), содержащие предназначенные для секреции вещества. В клетке растений содержатся от нескольких до сотен АГ.

В диктиосомах АГ образуются гликопротеины и гликолипиды и осуществляется накопление и мембранная «упаковка» соединений, необходимых для синтеза полимеров клеточной стенки и различных растительных слизей. С помощью везикул Гольджи углеводные компоненты доставляются к плазмалемме. Мембрана пузырьков встраивается в плазмалемму, способствуя ее росту и обновлению. Секретируемые вещества оказываются в клеточной стенке. Мембраны АГ являются связующим звеном между мембранами ЭР и плазмалеммой.

Вакуолярная система. Вакуоль — типичный органоид растительной клетки. В меристематических клетках вакуоли представлены мелкими пузырьками; для зрелых клеток характерна большая центральная вакуоль. Вакуолярная система растений формируется несколькими путями. Из расширенных цистерн ЭР образуются провакуоли, слияние которых приводит к возникновению более крупных вакуолей и созданию вакуолярной мембраны — тонопласта, который таким образом, является производным ЭР. Тонопласт может образовывать инвагинации, что приводит к включению в вакуоль участков цитоплазмы. Гидролитические ферменты, содержащиеся в возникшей вакуоли, расщепляют полимеры до низкомолекулярных веществ.

Вакуолярный сок имеет сложный состав и включает органические вещества и минеральные соли. Помимо органических кислот, углеводов, аминокислот и белков, которые могут быть вторично использованы в обмене веществ, клеточный сок содержит фенолы, таннины, алкалоиды, анто-цианы, которые выводятся из обмена веществ клетки в вакуоль и таким путем изолируются от цитоплазмы. Большинство ферментов вакуолей — гидролазы.

Важно отметить, что вакуоль может служить местом отложения запасных белков (алейроновые зерна). Процесс вакуолизации — необходимое условие роста клеток растяжением.

Микротрубочки и микрофиламенты (цитоскелет). В наружном кортикальном слое цитоплазмы неделящихся растительных клеток локализованы микротрубочки. Их наружный диаметр 30 нм, внутренний — около 14 нм. Они ориентированы параллельно друг другу и перпендикулярно продольной оси клетки. При делении клетки микротрубочки составляют основу структуры веретена, пучки трубочек прикрепляются к хромосомам. Все микротрубочки имеют единый план строения и состоят из глобулярного кислого белка тубулина.

В цитоплазме растительных клеток обнаружены также филаментные структуры, состоящие из немышечного актина. Микрофиламенты актина взаимодействуют с микротрубочками кортикального слоя и плазмалеммой. Они участвуют в пространственной организации метаболических процессов, протекающих в растворимой фазе цитоплазмы, и служат основой ее двигательной активности.

Клеточная стенка. Клетки растений окружены плотной полисахаридной оболочкой, выстланной изнутри плазмалеммой. В состав клеточной стенки входят структурные компоненты (целлюлоза у растений, хитин у грибов), компоненты матрикса стенки (гемицеллюлозы, пектин, белки), инкрустирующие компоненты (лигнин, суберин) и вещества, откладывающиеся на поверхности стенки (кутин и воска). Клеточные стенки могут содержать также силикаты и карбонаты кальция.

Одной из наиболее важных функций клеточной стенки является катионообменная способность. В регуляции водного и теплового режима растений участвуют ткани, стенки клеток которых пропитаны суберином. Кутикула так же участвует в регуляции водного режима тканей и защищает клетки от повреждений и проникновения инфекции.

Клеточные стенки растений пронизаны отверстиями — порами диаметром до 1 мкм. Через них проходят тяжи — плазмодесмы, благодаря которым осуществляются межклеточные контакты. Каждая плазмодесма представляет собой канал, выстланный плазмалеммой, непрерывно переходящей из клетки в клетку. Центральную часть поры занимает десмотрубка, состоящая из спирально расположенных белковых субъединиц. Десмотрубка сообщается с мембранами ЭР соседних клеток. Вокруг десмотрубки имеется слой цитоплазмы, которая может соединяться с цитоплазмой соседних клеток. Таким образом, связи между клетками могут осуществлять­ся через цитоплазму, плазмалемму, ЭР и клеточные стенки. Единая система цитоплазмы клеток тканей и органов называется симпластом.

Будучи продуктом метаболической активности протопласта, клеточная стенка выполняет функцию защиты содержимого клетки от повреждений и избыточной потери воды, поддерживает форму (за счет тургора) и определяет размер клетки, служит важным компонентом ионного обмена клетки (как ионообменник) и местом транспорта веществ из клетки в клетку внеклеточным путем (апопластный транспорт).

Источник

Реферат: Строение и функции субклеточных структур растительной клетки: клеточная стенка и цитоскелет (микротрубочки и микрофиламенты)

Институт естественных и социально-экономических наук

«Строение и функции субклеточных структур растительной клетки: клеточная стенка и цитоскелет (микротрубочки и микрофиламенты)»

Выполнила: студентка IVкурса

ОЗО ИЕСЭН Биология гр. 1А

Кайзер Светлана Владимировна

Проверила: Захарова Любовь

2.1. Клеточная стенка

2.1.1. Химический состав клеточной стенки

2.1.2. Одревеснение, опробковение и кутинизация клеточной стенки

2.1.3. Ослизнение и минерализация клеточной стенки

2.1.4. Формирование и рост клеточной стенки

2.1.5. Функции клеточной стенки

2.1.6. Эволюция клеточной стенки

2.2.1. Микротрубочки, строение и функции

2.2.2. Химический состав микротрубочек

2.2.3. Микрофиламенты, строение и функции

2.2.4. Химический состав микрофиламентов

Растительная клетка – сложная структура. Она имеет много общего в строении с клеткой животной. В тоже время у растительной клетки имеются специфичные присущие только для нее органоиды, обеспечивающие осуществление различных физиологических процессов клетки.

Чтобы понять, как происходят те или иные процессы в растительном организме необходимо знать особенности строения растительной клетки.

Цель данной работы рассмотреть, изучить, строение и функции субклеточных структур растительной клетки. Зная строение этих структур можно объяснить многие процессы, происходящие в растительной клетке.

К субклеточным структурам растительной клетки относится клеточная стенка, и немембранные макромолекулярные структуры – микротрубочки и микрофиламенты.

Клеточная стенка или оболочка расположена кнаружи от плазматической мембраны. Особенно хорошо выраженная у растений и прокариотических организмов, у животных клеток она или отсутствует, или выражена очень слабо. У низших растений голыми являются лишь репродуктивные клетки, а вегетативное тело состоит из клеток имеющих клеточные стенки. У высших растений клеточной стенкой обладают абсолютно все клетки.

Клеточная стенка окружает клетку со всех сторон и служит связующим звеном между ней и соседними клетками, обеспечивая единство и целостность растительного организма. В жестких оболочках растительных клеток образуются каналы, в которых располагаются тонкие нити цитоплазмы – плазмодесмы. Благодаря этому осуществляются межклеточные контакты. В ходе эволюции у растений возникли разнообразные по структуре и химическому составу типы клеточных стенок. Во многом растительные клетки классифицируют именно по форме и природе клеточных стенок.

Оболочка, как правило бесцветна и прозрачна. Она легко пропускает солнечный свет. Оболочки соседних клеток как бы сцементированы межклеточными веществами, образующими срединную пластинку. Вследствие этого соседние клетки отделяются друг от друга стенкой, образованной двумя оболочками и срединой пластинкой.

Химический состав Клеточная стенка растительных клеток состоит, главным образом, из полисахаридов. Все компоненты, входящие в состав клеточной стенки, можно разделить на 4 группы:

Структурные компоненты, представленные целлюлозой у большинства автотрофных растений.

— Компоненты матрикса, т. е. основного вещества, наполнителя оболочки – гемицеллюлозы, белки, липиды.

— Компоненты, инкрустирующие клеточную стенку, (т.е. откладывающиеся и выстилающие ее изнутри) – лигнин и суберин.

Микрофибриллы оболочки погружены в аморфный пластичный гель – матрикс. Матрикс является наполнителем оболочки. В состав матрикса оболочек растений входят гетерогенные группы полисахаридов, называемые гемицеллюлозами и пектиновыми веществами.

Гемицеллюлозы представляют собой ветвящиеся полимерные цепи, состоящие из различных остатков гексоз (D-глюкоза, D-галактоза, манноза),

пентоз (L-ксилоза, L-арабиноза) и уриновых кислот (глюкуроновая и галактуроновая). Эти компоненты гемицеллюлоз сочетаются между собой в разных количественных отношениях и образуют разнообразные комбинации.

Цепочки гемицеллюлоз состоят из 150-300 молекул мономеров. Они значительно короче. Кроме этого цепи не кристаллизуются и не образуют элементарных фибрилл.

Именно поэтому гемицеллюлозы нередко называют полуклетчатками. На их долю приходится около 30-40 % сухого веса клеточных стенок.

По отношению к химическим реагентам гемицеллюлозы гораздо менее стойки, чем целлюлоза: они растворяются в слабых щелочах без подогревания; гидролизуются с образованием сахаров в слабых растворах кислот; растворяются полуклетчатки и в глицерине при температуре 300 о С.

Гемицеллюлозы в теле растений играют:

— Механическую роль, участвуя наряду с целлюлозой и другими веществами в построении клеточных стенок.

— Роль запасных веществ, отлагающихся, а затем расходующихся. При этом функцию запасного материала несут преимущественно гексозы; а гемицеллюлозы с механической функцией обычно состоят из пентоз. В качестве запасных питательных веществ гемицеллюлозы отлагаются также в семенах многих растений.

Пектиновые вещества имеют довольно сложный химический состав и строение. Это гетерогенная группа, в которую входят разветвленные полимеры, несущие отрицательные заряды из-за множества остатков галактуроновой кислоты. Характерная особенность: пектиновые вещества сильно набухают в воде, а некоторые в ней растворяются. Легко они разрушаются и под действием щелочей и кислот.

Все клеточные стенки на ранней стадии развития почти целиком состоят из пектиновых веществ. Межклеточное вещество срединной пластинки, как бы цементирующее оболочки соседних стенок, состоит также из этих веществ, главным образом из пектата кальция. Пектиновые вещества, хотя и в небольших количествах, имеются в основной толщине и взрослых клеток.

В состав матрикса клеточных стенок помимо углеводных компонентов входит также структурный белок, называемый экстенсином. Он является гликопротеином, углеводная часть которого представлена остатками сахара арабинозы.

Одревеснение, опробковение и кутинизация клеточных оболочек.

Сильному метаморфозу состава и структуры подвергается оболочка при одревеснении, опробковении и кутинизации. Одревеснение состоит в том, что часть целлюлозной толщи стенки пропитывается лигнином. Ароматическое вещество лигнин является основным инкрустирующим веществом клеточной стенки. Это полимер с неразветвленной молекулой, состоящей из ароматических компонентов. Мономерами лигнина могут быть конифериловый, синаповый и другие спирты.

Интенсивная лигнификация клеточных стенок начинается после прекращения роста клетки. Отношение между целлюлозой и лигнином в одревесневших слоях оболочки было признано аналогичным конструкции железобетонных сооружений. Лигнин, подобно бетонной массе, заполняет промежутки ячеек сетки; при этом арматура и заполнение образуют монолитное целое. Одревеснение понижает пластичность клеточных стенок, закрепляет их форму.

Однако клетки с одревесневшими стенками могут оставаться живыми десятки лет. Лигнин обладает и консервирующими свойствами и поэтому действуют как антисептик, придавая тканям повышенную стойкость по отношению к разрушительному действию грибов и бактерий.

Весьма распространено в растительном мире наличие в толще клеточных оболочек, либо на поверхности веществ, называемых кутинами, суберинами и спорополленинами.

Суберины. Клеточные оболочки, содержащие суберины, называют опробковевшими. Суберин отлагается внутри клеточной оболочки и поэтому относится к инкрустирующим веществам. Обычно суберин составляет пластинку, находящуюся в так называемом вторичном слое клеточной стенки.

Кутины – это адкрустирующие гидрофобные вещества, покрывающие поверхность эпидермальных клеток растений в виде пленки – кутикулы.

Спорополленины имеются в наружных оболочках спор, в том числе пыльцевых зерен голосеменных и покрытосеменных растений.

.Общими для них являются следующие черты.

Все они высокополимерные вещества, обязательным компонентом которых являются насыщенные и ненасыщенные жирные кислоты и жиры.

От жиров, встречающихся в полости клетки, в протопласте, они отличаются нерастворимостью в ряде реактивов.

Эти вещества стойки даже по отношению к концентрированной серной кислоте.

Суберины, кутины и спорополленины почти непроницаемы для воды, воздуха. Эти вещества находятся в оболочках периферических тканей и защищают органы растений от излишней потери воды.

Ослизнение и минерализация клеточных оболочек.

При ослизнении клеточных оболочек образуются слизи и камеди. Те и другие представляют собой высокомолекулярные углеводы, состоящие большей частью из пентоз и их производных. Они нерастворимы в спирте, эфире, а в воде сильно набухают.

Резкой границы между ними не установлено. Обычно их различают по консистенции в набухшем состоянии: камеди клейки и могут вытягиваться в нити, слизи же сильно расплываются и в нити не тянутся. В сухом состоянии камеди и слизи очень тверды и хрупки, и лишь при смачивании водой переходят в тягучее желеобразное состояние.

Значение ослизнения клеточных стенок во многих случаях очевидно. Например, ослизненные наружные слои клеток кожицы семян, набухая весной, входят в соприкосновение с почвой.

Слизь, благодаря клейкости, закрепляет семена на влажном месте и, поглощая воду из почвы, улучшает водный режим проростка, передавая ему воду и защищая от высыхания. Также слизь может использоваться как запасное, питательное вещество.

В более поздней стадии развития оболочки содержат минеральные вещества, причем в некоторых случаях в весьма значительных количествах. Эти вещества могут отлагаться и в толще оболочки и на ее внутренней и наружной поверхности, или же в особых выростах клеточных стенок.

По структуре эти отложения могут быть аморфными и кристаллическими.

Наиболее распространены отложения кремнезема и солей извести. Кальций встречается в клеточных оболочках в виде углекислой, щавелевокислой и пектиновокислой извести.

Широко распространено наличие кальция в срединной пластинке клеточных стенок.

Формирование и рост клеточной стенки

После образования срединной пластинки протопласт соседних клеток откладывает на нее первичную оболочку. Слой целлюлозы, который откладывается во время роста клетки, называется первичной клеточной оболочкой. Помимо целлюлозы, гемицеллюлозы и пектина, первичные оболочки содержат также и структурный белок – гликопротеин. Первичные оболочки могут и лигнифицироваться, хотя, как правило, лигнин им не свойственен. Однако наиболее характерную часть первичной оболочки составляет пектиновый компонент. Он придает оболочке пластичность, позволяет ей растягиваться, по мере удлинения органов: корня, стебля, листа. Пектиновые вещества способны сильно набухать, поэтому первичные оболочки содержат много воды (60-90%). На долю гемицеллюлоз и пектиновых веществ, приходится 50-60% сухого веса первичной оболочки, содержание целлюлозы не превышает 30%, структурный белок занимает до 10%. Продолжающийся процесс выделения веществ матрикса осуществляется за счет подхода к плазматической мембране пузырьков аппарата Гольджи, слияния их с мембраной и высвобождение их содержимого за пределы цитоплазмы. Здесь же, вне клетки, на ее плазматической мембране идет синтез и полимеризация целлюлозных фибрилл. Так постепенно образуется вторичная клеточная оболочка. С достаточной точностью определить и суметь отличить первичную оболочку от вторичной трудно, так как они соединены между собой несколькими промежуточными слоями.

Основную массу закончившей свое формирование клеточной стенки составляет вторичная оболочка. Она придает клетке ее окончательную форму. После разделения клетки на две дочерние происходит рост новых клеток, увеличение их объема и изменение формы; клетки часто вытягиваются в длину. Одновременно с этим идут наращивание толщины клеточной оболочки и перестройка ее внутренней структуры.

В период растяжения фибриллы начинают размещаться под прямым углом друг к другу и в конечном счете оказываются вытянутыми более или менее параллельно продольной оси клетки. Постоянно идет процесс: в старых слоях (ближе к центру оболочки) фибриллы подвергаются пассивным сдвигам, а отложение новых фибрилл во внутренних слоях (ближайших к мембранам клетки) продолжается в соответствии с исходным планом конструкции оболочки. Этот процесс создает возможность скольжения фибрилл относительно друг друга, а перестройка арматуры клеточной оболочки возможна из-за студенистого состояния компонентов ее матрикса. В дальнейшем при замещении в матриксе гемицеллюлозы на лигнин подвижность фибрилл резко снижается, оболочка становится плотной, происходит одревеснение. Содержание различных веществ примерно таково: воды очень мало, целлюлозы 40-50%, лигнина 25-30%, гемицеллюлозы 20-30% и практически нет пектиновых веществ.

Часто под вторичной оболочкой обнаруживают третичную оболочку, которую можно рассматривать как засохший остаток дегенерировавшего слоя собственно цитоплазмы.

Функции клеточной стенки.

Являясь продуктом метаболической деятельности протопласта клеточная стенка выполняет ряд функций:

— Она защищает клеточное содержимое от повреждений и инфекций (Защитная функция);

— Клеточная стенка поддерживает форму и определяет размер клетки;

— Стенка играет скелетную (опорную) роль, которая особенно возрастает у наземных растений;

— Она имеет большое значение в росте и дифференцировании клетки;

— Стенка участвует в ионном обмене и поглощении клеткой веществ;

— Единый апопласт способствует перемещению веществ из клетки в клетку внеклеточным путем (проводящая функция);

— Структура клеточных стенок предохраняет клетки от избыточной потери воды ( покровная функция).

Эволюция клеточной стенки.

Примитивные клетки были окружены слизистым чехлом, состоящим из пектиновых веществ, как и фрагмопласт, возникающий при митотическом делении в клетках современных растений. Совершенствование защитной функции клеточной оболочки привела к появлению в ее составе гемицеллюлозных компонентов. Форма клетки могла поддерживаться кремниевым и карбонатным наружным чехлом, сохранившимся у некоторых современных водорослей. По предположению Фрей-Висслинга первичный слизистый углеводный чехол мог быть предшественником матрикса клеточной стенки.

С возникновением автотрофного способа питания в оболочках клеток в качестве структурного компонента появилась целлюлоза. Выход растений на сушу поставил клеточную стенку перед необходимостью выполнять функцию опоры тела в воздухе. Именно целлюлоза оказалась наиболее оптимальным материалом (в меру прочным и в то же время эластичным) в динамичной и переменчивой среде, где подземным органам растений пришлось испытывать более сильные нагрузки.

Выход на сушу, и увеличение размеров растительных организмов привели также к необходимости снабжения клеток водой. Именно с развитием у наземных растений сосудов, проводящих воду, связывают появление в клеточных стенках лигнина. Лигнин не обнаружен у ископаемых океанских и современных водных растений.

Понятие о цитоскелете или скелетных компонентах цитоплазмы разных клеток было высказано Н.К.Кольцовым, выдающимся русским цитологом ещё в начале ХХ века. К сожалению, они были забыты, и только в конце 1950 годов с помощью электронного микроскопа эта скелетная система была переоткрыта.

Цитоскелетные компоненты представлены нитевидными, неветвящимися белковыми комплексами, или филаментами (тонкими нитями). Существуют три системы филаментов, различающихся по химическому составу, ультраструктуре и функциональным свойствам. Самые тонкие нити – это микрофиламенты. К другой группе нитчатых структур относятся микротрубочки, третья группа представлена промежуточными филаментами.

Все эти фибриллярные структуры могут участвовать в качестве составных частей в процессе физического перемещения клеточных компонентов или даже целых клеток, кроме того, в ряде случаев они выполняют сугубо каркасную скелетную роль. Элементы цитоскелета встречаются во всех без исключения эукариотических клетках. Степень выраженности их в разных клетках может быть различной.

Общим для элементов цитоскелета является то, что все они представляют собой белковые, неветвящиеся фибриллярные полимеры, нестабильные, способные к полимеризации и деполимеризации. Такая нестабильность может приводить к некоторым вариантам клеточной подвижности, например к изменению формы клетки. Некоторые компоненты цитоскелета при участии специальных дополнительных белков могут стабилизироваться или образовывать сложные фибриллярные ансамбли и играть только каркасную роль.

Строение и функции микротрубочек.

Одним из обязательных компонентов цитоплазмы растительной клетки являются микротрубочки. В морфологическом отношении микротрубочки представляют собой длинные полые цилиндры с внешним диаметром 25 нм. Стенка микротрубочек состоит из полимеризованных молекул белка тубулина. При полимеризации молекулы тубулина образуют 13 продольных протофиламентов, которые скручиваются в полую трубку. Размен мономера тубулина составляет около 5 нм, равного толщине стенки микротрубочки, в поперечном сечении которой видны 13 глобулярных молекул.

Микротрубочка является полярной структурой, имеющей быстро растущий плюс-конец и медленно растущий минус-конец.

Микротрубочки являются очень динамичными структурами, которые могут достаточно быстро возникать и разбираться. При использовании электронных систем усиления сигнала в световом микроскопе можно видеть, что в живой клетке микротрубочки растут, укорачиваются, исчезают, т.е. постоянно находятся в динамической нестабильности. Оказалось, что среднее время полужизни цитоплазматических микротрубочек составляет всего лишь 5 минут. Так за 15 мин около 80% всей популяции микротрубочек обновляется. В составе веретена деления микротрубоски имеют время жизни около 15-20 с. Однако 10-20% микротрубочек остаются относительно стабильными достаточно долгое время (до нескольких часов).

Сами микротрубочки не способны к сокращению, однако они являются обязательными компонентами многих движущихся клеточных структур, таких как веретено клетки во время митоза как микротрубочки цитоплазмы, которые обязательны для целого ряда внутриклеточных транспортов, таких как экзоцитоз, движение митохондрий и др.

В целом роль цитоплазматических микротрубочек может быть сведена к двум функциям: скелетной и двигательной. Скелетная, каркасная, роль заключается в том, что расположение микротрубочек в цитоплазме стабилизирует форму клетки. Двигательная роль микротрубочек заключается не только в том, что они создают упорядоченную, векторную систему движения. Микротрубочки цитоплазмы а ассоциации со специфичными ассоциированными моторными белками образуют АТФазные комплексы, способные приводить в движение клеточные компоненты. Кроме того, микротрубочки участвуют в процессах роста клеток. У растений, в процессе растяжения клеток, когда за счет увеличения центральной вакуоли происходит значительный рост объема клеток, большие количества микротрубочек появляются в периферических слоях цитоплазмы. В этом случае микротрубочки, так же как и растущая в это время клеточная

стенка, как бы армируют, механически укрепляют цитоплазму.

Химический состав микротрубочек

Микротрубочки состоят из белков-тубулинов и ассоциированных с ними белков. Молекула тубулина представляет собой гетеродимер, состоящий из двух разных субъедениц: из Что такое субклеточная структура. Смотреть фото Что такое субклеточная структура. Смотреть картинку Что такое субклеточная структура. Картинка про Что такое субклеточная структура. Фото Что такое субклеточная структураи Что такое субклеточная структура. Смотреть фото Что такое субклеточная структура. Смотреть картинку Что такое субклеточная структура. Картинка про Что такое субклеточная структура. Фото Что такое субклеточная структуракоторые при ассоциации образуют собственно белок тубулин, изначально поляризованный. При полимеризации молекулы тубулина объединяются таким образом, что с Что такое субклеточная структура. Смотреть фото Что такое субклеточная структура. Смотреть картинку Что такое субклеточная структура. Картинка про Что такое субклеточная структура. Фото Что такое субклеточная структураодного белка ассоциируется Что такое субклеточная структура. Смотреть фото Что такое субклеточная структура. Смотреть картинку Что такое субклеточная структура. Картинка про Что такое субклеточная структура. Фото Что такое субклеточная структура-субъеденица следующего белка и т.д. Следовательно, отдельные протофибриллы возникают как полярные нити, и соответственно вся микротрубочка тоже является полярной структурой, имеющей быстро растущий плюс-конец и медленно растущий минус-конец.

Стабилизирующим действием на микротрубочки обладает таксол, который способствует полимеризации тубулина даже при его низких концентрациях.

Также в составе микротрубочек обнаруживаются ассоциированные с ними дополнительные белки, так называемые МАР-белки. Эти белки, стабилизируя микротрубочки, ускоряют процесс полимеризации тубулина.

Строение и функции микрофиламентов

Микрофиламенты представляют собой очень тонкие и длинные нитевидные белковые структуры, встречающиеся во всей цитоплазме. Под плазматической мембраной микрофиламенты образуют сплошное сплетение, формируя цитосклет. Вся эта структура очень лабильна. Под влиянием различных воздействий (большое значение имеет концентрация кальция) микрофиламенты распадаются на отдельные фрагменты и вновь собираются. Так как микрофиламенты являются сократимыми элементами цитоскелета, то участвуют в изменении формы клетки, во внутриклеточных перемещениях органелл, расхождении хромосом при делении клетки. Кроме этого микрофиламиенты выполняют исследующие функции:

-ответственны за перемещение: хлоропластов, которые могут изменять свое положение в зависимости от освещения;

-участвуют: в фагоцитозе (но, не в пино- или экзоцитозе); в образовании перетяжки при клеточном делении (здесь действует кольцо из пучков микрофиламентов, опоясывающих клетку); в движении хроматид и хромосом при делении ядра.

Внутриклеточное движение возникает при взаимодействии микрофиламентов из актина (актиновых нитей) с миозином.

Химический состав микрофиламентов

В состав микрофиламентов входит в основном белок актин. Но кроме него входят миозин, актинин и др.

Миозин в эукариотических клетках содержится в меньшем количестве (0,3-1,5 % клеточного белка), чем актин. Нитевидная молекула миозина (молекулярная масса более 450 000, длина 150 нм) состоит из двух больших и нескольких малых субъединиц, образующих длинную двойную спираль. Один конец этой спирали несет две головки. Конец с головками катализирует расщепление АТФ (миозиновая АТФаза) и может специфически связываться с актином. Актин активирует АТФазу. При расщеплении АТФ освобождается энергия, необходимая для внутриклеточных движений.

Клеточная стенка растений выполняет ряд важных функций. Окружая растительную клетку со всех сторон, она служит связующим звеном между ней и соседними клетками. Соединяясь между собой тонкими нитями цитоплазмы – плазмодесмами, через которые осуществляется перемещение веществ из клетки в клетку.

Цитоскелет представляет собой белковые, неветвящиеся полимеры, участвующие в процессе перемещения клеточных компонентов, а также выполняют каркасную скелетную роль. Также эти компоненты участвуют в процессе деления клетки, формируя нити веретена деления.

Из выше перечисленного видно, что данные компоненты клетки играют важную

1. Андреева Т.Ф. Маевская С.Н. Воеводская С.Ю. «Физиология растений»

2.Головко Т.К. Добрых Е.В. «Физиология растений» 1993г.

3. Фрей-Виссменг А. Мюлеталер К. «Ультраструктура растительной

4. Ченцов Ю.С. «Введение в клеточную биологию», М. Академкнига,

5. Якушкина Н.И. Бахтенко Е.Ю. «Физиология растений», М. Владос

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Название: Строение и функции субклеточных структур растительной клетки: клеточная стенка и цитоскелет (микротрубочки и микрофиламенты)
Раздел: Рефераты по биологии
Тип: реферат Добавлен 03:24:39 11 января 2009 Похожие работы
Просмотров: 3277 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать