Что такое свч диапазон
Что будет, если сунуть голову в микроволновку, как она влияет на Wi-Fi и другие факты об СВЧ
Диапазон сверхвысоких частот
Расшифровка СВЧ – сверхвысокие частоты электромагнитного излучения, которые расположены в спектре между частотой инфракрасной дальней области и ультравысокими частотами. Длина волн данного диапазона составляет от тридцати сантиметров до одного миллиметра. Именно поэтому СВЧ иногда называют сантиметровыми и дециметровыми волнами. В зарубежной технической литературе расшифровка СВЧ – микроволновый диапазон. Имеется в виду, что длина волн очень мала в сравнении с волнами радиовещания, которые имеют порядок в несколько сотен метров.
Почему еда взрывается в микроволновке
Кто застал этот процесс, знает, что еда не просто взрывается, а делает это с характерным громким хлопком.
Связано это опять же с принципом действия. Чем больше внутри продуктов воды, тем больше вероятность взрыва. Именно поэтому вареная курица разлетается намного сильнее.
Такое было не у всех, но у многих.
Доказательством сказанного является то, что если положить в микроволновку сухарь, то он почти не нагреется, а если поместить внутрь мандарин или помидор, то за тряпкой можно идти еще до того, как включишь прибор — разлетится как надо!
Свойства СВЧ-диапазона
По своей длине данный тип волн – промежуточный между излучением света и радиосигналами, поэтому он и обладает свойствами обоих видов. Например, как и свет, эти волны распространяются по прямой траектории и перекрываются практически всеми более-менее твердыми объектами. Аналогично световому излучению, СВЧ может фокусироваться, отражаться, распространятся в виде лучей. Несмотря на то что расшифровка СВЧ акцентирует внимание на «сверх»-высоком диапазоне, многие антенны и радиолокационные устройства являют собой несколько увеличенный вариант зеркал, линз и других оптических элементов.
Почему плохо работает Wi-Fi на кухне
Задумывались над этим? Тогда бегом покупать новую микроволновку! Как я уже сказал вначале, СВЧ работает на электромагнитных волнах с частотой 2,45 ГГц. Она почти полностью совпадает с частотой домашнего Wi-Fi роутера. У некоторых пользователей есть 5 ГГц сети, но подавляющее большинство выбирает первый вариант.
Wi-Fi и микроволновка — плохие соседи.
Когда сигнал идет от роутера, он может ”засоряться”. Это будут соседские сети и другое излучение. Но зная, что излучение СВЧ-печи в сотни раз мощнее того, что выдает роутер, можно понять, насколько оно мешает передаче сигнала.
Правда, производители микроволновок позаботились о том, чтобы излучение оставалось внутри и исправные приборы с этим справляются. Примером такой защиты служит сеточка на стекле дверцы. Это специальный металлизированный экранирующий слой. Он не просто защищает людей, но и позволяет печке работать более эффективно (с меньшими потерями). Естественно, подобным образом экранирован весь корпус.
Та самая защита стекла микроволновки.
Если прибор старый или некачественный, защитные свойства могут снижаться, что приводит к ”утечке” излучения. Это влияет не только на домашний Wi-Fi, но и на людей. Хотя по этому поводу до сих пор ведутся споры.
Генерация
Так как излучение сверхвысоких частот схоже с радиоволнами, то и генерируется оно схожими методами. Расшифровка СВЧ предполагает применение к ней классической теории радиоволн, однако благодаря повышенному диапазону существует возможность повысить эффективность его использования. К примеру, один только луч может «нести» сразу до тысячи телефонных разговоров одновременно. Сходства СВЧ-волн и света, выражающихся в повышенной плотности переносимой информации, оказались полезными для радиолокационной техники.
Как снизить вредное воздействие микроволнового излучения
Но раз уж существует проблема, то есть и пути ее решения. И защита от микроволнового излучения поможет сохранить здоровье. Есть несложные правила, которые помогут снизить вред, но и не скажутся негативно на вашем комфорте.
Чтобы снизить вред от использования микроволновки следует:
Нас окружают различные источники микроволнового излучения, и мы не можем точно проверить какое у них излучение. И именно поэтому следует внимательно относиться к таким приборам и правилам безопасности. Нужно помнить о том, что чем дольше прибор работает и чем дольше вы им пользуетесь, тем выше вероятность появления серьезных отклонений. Они могут появиться не сразу, а спустя долгие годы, поэтому не стоит игнорировать эту опасность. Лучше всего реже использовать такие приборы или заменить их на более безопасные.
Если вы заботитесь о своей безопасности и безопасности семьи, то лучше всего исключить все опасные источники влияния в вашем доме. И для этого стоит обратиться к специалистам лаборатории «ЭкоТестЭкспресс», где на протяжении 14 лет проводятся качественные исследования. Таким образом можно как устранить существующие проблемы, так и предупредить появление новых.
Применение сверхвысоких частот в области связи
Как мы уже говорили, расшифровка СВЧ – сверхвысокие частоты. Инженеры и техники решили применить эти радиоволны в связи. Во всех странах активно используют коммерческие линии связи, основанные на передаче волн высоких диапазонов. Такие радиосигналы идут не по кривой земной поверхности, а по прямой, через ретрансляционные станции связи, расположенные на высотах с интервалами около пятидесяти километров.
Для передачи не нужны большие затраты электроэнергии, так как СВЧ-волны допускают узконаправленные прием и передачу, а также на станциях усиливаются электронными усилителями перед ретрансляцией. Система антенн, башен, передатчиков и приемников кажется дорогой, но все это окупается информационной емкостью подобных каналов связи.
Можно ли пользоваться микроволновкой
Пользоваться микроволновкой можно. Иногда даже нужно, просто не стоит считать ее идеальным прибором и стоит время от времени следить за ее состоянием. В том числе за чистотой, так как ошметки пищи — это рассадник бактерий. Вот только чистить ее надо аккуратно и в соответствии с инструкцией, чтобы не повредить защитное покрытие и на испортить прибор.
Почему при высоком уровне радиации можно увидеть странные вспышки света?
Лично я лишний раз стараюсь пользоваться духовкой или плитой, но это не всегда получается. Я так делаю не из-за страха СВЧ, а только из-за того, что мне больше нравится принцип такого разогрева. В микроволновке все быстро, просто, но как-то не по-домашнему.
Применение сверхвысоких частот в области спутниковой связи
Система радиобашен для ретрансляции СВЧ-сигналов на большие расстояния может существовать только на суше. Для межконтинентальных переговоров используют искусственные спутники, которые находятся на геостационарной орбите Земли и выполняют функции ретрансляторов. Каждый спутник предоставляет несколько тысяч каналов связи высокого качества своим клиентам для передачи телевизионных и телефонных сигналов одновременно.
Распространение СВЧ-печей
Несмотря на подозрения и опасения ученых, техника успешно набирала обороты продаж, ведь это была удобная и практичная вещь в быту. Сам изобретатель не сомневался в успехе своего продукта, так как считал его незаменимым. Рассмотрим этапы развития микроволновки:
Микроволновые печи, оснащенные микропроцессором
Термообработка продуктов
Первые попытки применения сверхвысоких частот для обработки пищевых продуктов получили положительные, и даже восторженные отзывы. СВЧ-печи на сегодняшний день применяют как в домашних условиях, так и в крупной пищевой промышленности. Генерируемая электронными высокомощными лампами энергия концентрируется в незначительном объеме, что позволяет термически обработать продукцию чисто, компактно и бесшумно.
Встраиваемая СВЧ-печь получила наибольшее распространение в домашнем хозяйстве, и ее можно найти на многих кухнях. Также подобные устройства бытового назначения применяются во всех местах, где необходим быстрый подогрев и подготовка блюд. Печь СВЧ с грилем, например, является абсолютно необходимым элементом для любого уважающего себя ресторана.
Вредна ли еда из микроволновки
Тут мнений тоже очень много. С одной стороны, в ней нет ничего страшного. Максимум, что может случиться, это денатурация белка, которая происходит при обычной варке или жарке. Процесс изменения молекулярного состава, который происходит в микроволновке, является обычным делом при нагреве еды. Поэтому переживать из-за этого не стоит. Максимум, еда может потерять ”товарный вид”.
Мифы о радиации. Что правда, а что нет
Еда в СВЧ-печи будет безопасной, только если внутри чисто.
В остальном микроволновка не должна портить еду. Снова возвращаемся в начало статьи и видим, что это просто физический нагрев, только немного другой природы.
Основные источники излучения
Прогресс в использовании СВЧ-волн связан с такими электровакуумными приборами, как клистрон и магнетрон, которые способны генерировать огромное количество энергии высокой частоты. Использование магнетрона базируется на принципе объемного резонатора, стенки которого являются индуктивностью, а пространство между стенами – емкостью резонансной цепи. Размеры данного элемента выбирают по необходимой резонансной сверхвысокой частоте, которая бы соответствовала нужным соотношениям между емкостью и индуктивностью.
Итак, расшифровка СВЧ — сверхвысокие частоты. Размер генератора напрямую влияет на мощность подобных излучений. Магнетроны малого размера для высоких частот являются такими маленькими, что их мощности не могут достичь нужных величин. Проблема также стоит и с использованием тяжелых магнитов. В клистроне она частично решена, так как в этом электровакуумном приборе не нужно внешнее поле.
Опасны ли микроволновки для людей
Вот постепенно мы и пришли к этому вопросу. Если не вдаваться в подробности, то есть несколько основных мнений о том, как микроволновка влияет на людей. Одни говорят, что она влияет на весь организм, другие уверены, что все ограничивается только мозгом, а третьи считают, что страхи преувеличены.
Получена первая карта наблюдаемой Вселенной в рентгеновском излучении
Как обычно, истина далека от каждой из этих теорий. СВЧ-излучение не является ионизирующей радиацией. Оно не выбивает из атомов электроны и не делит ядра. Оно просто заставляет быстрее двигаться молекулы в поле своего действия. Если засунуть голову в микроволновку, то это действительно будет опасно и мозг закипит. Вот только с открытой дверью, к счастью, ни одна микроволновка работать не будет. Но надо понимать, что как при нагревании взрывается вареная курица или помидор, так же может пострадать и мозг, если оказать на него то воздействие, которое есть при работе СВЧ-прибора.
А еще микроволновка может работать без СВЧ. Иногда в них встраивают гриль.
Выходит, работа микроволновки полностью безопасна? Не совсем так. Влияние СВЧ только считается относительно безопасным, но говорить о том, какое влияние оно окажет в долгосрочной перспективе, нельзя. Именно поэтому выше я и посоветовал поменять микроволновку, если поймете, что ее защита нарушена. А заодно, стойте от нее подальше, когда она работает. На всякий случай.
Обзор лучших моделей микроволновок ведущих производителей
Всем известны микроволновки с грилем, позволяющие получить блюда с аппетитной румяной корочкой. А вот компания LG пошла дальше, разработав линейку печей Black Solar Dom, использующих галогеновый нагреватель. Нагреватель излучает свет, который по своим характеристикам близок к солнечному излучению. За счет удачного тандема микроволн и света блюда готовятся намного быстрее: всего за 300 секунд такая печь может разогреться до температуры 320 °C! Все это позволяет готовить блюда в считаные секунды.
LG Black Solar Dom
Всем известно, что яйца варить в микроволновке запрещено. Но что делать, если очень хочется? Использовать модель Wavedom MC-8483NL, предложенную тем же южнокорейским производителем. В комплектации к этой модели идет особая тарелка с куполом. За счет специального купола волны не проникают под скорлупу. Конечно, яичница – не единственное блюдо, которое можно приготовить в этой печи. В помощь владельцам бытовой техники производители создали специальную программу «русский повар», в которую заложено 16 блюд русской кухни.
Микроволновая печь Daewoo
А любителям пиццы и домашних блинчиков стоит присмотреться к продукции компании Daewoo. Для разогрева замороженной пиццы или приготовления домашней выпечки конструкторы предусмотрели специальный отсек внизу. А еще в этих микроволновках можно одновременно готовить 2 блюда, что позволит сэкономить время. Еще одна особенность – поворотный стол вращается как вокруг своей оси, так и в горизонтальной плоскости, что обеспечивает более равномерный прогрев. В моделях с системой 3D Power в изделии используется не 2, а три нагревательных элемента. Они расположены сверху, снизу и в боковой части.
СВЧ-печь Шарп
Любители русской кухни часто делают выбор в пользу СВЧ-печи Sharp. В ней можно печь блины, варить и жарить картофель, окорочка. Для этого есть 2 гриля: вверху – кварцевый, внизу – инфракрасный. Количество программ зависит от конкретной модели, в некоторых устройствах их может быть целых 27.
Микроволновая печь компании Самсунг
Очень интересны и печи Самсунг с функцией «любимый рецепт». Эта программа понравится тем, кто готовит пищу по уникальному рецепту. Даже если рецептура приготовления предусматривает неоднократное изменение мощности, вы сможете заранее сделать нужные настройки и заниматься другими делами, не отвлекаясь и не контролируя процесс, что очень удобно.
Печь Hyundai
Не менее широкие возможности открывают перед кулинарами микроволновки Hyundai. Здесь можно встретить все современные функции: возможность использовать одновременно режим гриля и микроволны, усовершенствованная функция разморозки и т. д.
Радиоизлучение и микроволны
микроволны: миллиметровые (мм), сантиметровые (см), дециметровые (дм)
энергия E — до 0,001 эВ
температура Т — до 2 К
частота ν (ню) — до 200 ГГц = 2 ·10 11 Гц
длина волны λ (лямбда) — от 1 мм
ультракороткие волны (УКВ): дециметровые, метровые
E — до 4 ·10 –6 эВ
Т — до 0,01 К
ν — до 1 ГГц = 10 9 Гц
λ — от 30 см
короткие (КВ), средние (СВ), длинные (ДВ) волны
E — до 1,2 ·10 –8 эВ
Т — до 0,0003 К
ν — до 30 МГц = 3 ·10 7 Гц
λ — от 10 м
сверхдлинные волны (СДВ)
E — до 4 ·10 –10 эВ
Т — до 10 –6 К
ν — до 100 КГц
λ — от 3 км
Диапазон радиоизлучения противоположен гамма-излучению и тоже неограничен с одной стороны — со стороны длинных волн и низких частот.
Инженеры делят его на множество участков. Самые короткие радиоволны используют для беспроводной передачи данных (интернет, сотовая и спутниковая телефония); метровые, дециметровые и ультракороткие волны (УКВ) занимают местные теле- и радиостанции; короткие волны (КВ) служат для глобальной радиосвязи — они отражаются от ионосферы и могут огибать Землю; средние и длинные волны используют для регионального радиовещания. Сверхдлинные волны (СДВ) — от 1 км до тысяч километров — проникают сквозь соленую воду и применяются для связи с подводными лодками, а также для поиска полезных ископаемых.
Энергия радиоволн крайне низка, но они возбуждают слабые колебания электронов в металлической антенне. Эти колебания затем усиливаются и регистрируются.
Атмосфера пропускает радиоволны длиной от 1 мм до 30 м. Они позволяют наблюдать ядра галактик, нейтронные звезды, другие планетные системы, но самое впечатляющее достижение радиоастрономии — рекордно детальные изображения космических источников, разрешение которых превосходит десятитысячную долю угловой секунды.
Микроволны
Микроволны — это поддиапазон радиоизлучения, примыкающий к инфракрасному. Его также называют сверхвысокочастотным (СВЧ) излучением, так как у него самая большая частота в радиодиапазоне.
Микроволновый диапазон интересен астрономам, поскольку в нем регистрируется оставшееся со времен Большого взрыва реликтовое излучение (другое название — микроволновый космический фон). Оно было испущено 13,7 млрд лет назад, когда горячее вещество Вселенной стало прозрачным для собственного теплового излучения. По мере расширения Вселенной реликтовое излучение остыло и сегодня его температура составляет 2,7 К.
Реликтовое излучение приходит на Землю со всех направлений. Сегодня астрофизиков интересуют неоднородности свечения неба в микроволновом диапазоне. По ним определяют, как в ранней Вселенной начинали формироваться скопления галактик, чтобы проверить правильность космологических теорий.
А на Земле микроволны используются для таких прозаических задач, как разогрев завтрака и разговоры по мобильному телефону.
Атмосфера прозрачна для микроволн. Их можно использовать для связи со спутниками. Есть также проекты передачи энергии на расстояние с помощью СВЧ-пучков.
Источники
Крабовидная туманность в радиодиапазоне
Крабовидная туманность — наиболее изученный остаток взрыва сверхновой. На данном изображении показано, как она выглядит в радиодиапазоне.
Радиоизлучение генерируется быстрыми электронами при движении в магнитном поле. Поле заставляет электроны поворачивать, то есть двигаться ускоренно, а при ускоренном движении заряды испускают электромагнитные волны. По этому изображению, которое построено по данным наблюдений американской Национальной радиоастрономической обсерватории (NRAO), можно судить о характере магнитных полей в Крабовидной туманности.
Компьютерная модель распределения вещества во Вселенной
Изначально распределение вещества во Вселенной было почти идеально равномерным. Но все же небольшие (возможно даже квантовые) флуктуации плотности за многие миллионы и миллиарды лет привели к тому, что вещество фрагментировалось.
На рисунке представлен результат компьютерного моделирования эволюции Вселенной. Рассчитывалось движение 10 млрд частиц под действием взаимного тяготения на протяжении 15 млрд лет. В результате сформировалась пористая структура, отдаленно напоминающая губку. Скопления-галактики концентрируются в ее узлах и ребрах, а между ними находятся обширные пустыни, где почти нет объектов, — астрономы называют их войдами (от англ. void — пустота).
Похожие результаты дают наблюдательные обзоры распределения галактик в пространстве. Для сотен тысяч галактик определяются координаты на небе и красные смещения, по которым вычисляются расстояния до галактик.
Правда, достичь хорошего согласия расчетов и наблюдений удается, только если предположить, что видимое (светящееся в электромагнитном спектре) вещество составляет всего около 5% всей массы Вселенной. Остальное приходится на так называемые темную материю и темную энергию, которые проявляют себя только своим тяготением и природа которых пока не установлена. Их изучение — одна из наиболее актуальных задач современной астрофизики.
Квазар: активное ядро галактики
Когда на сверхмассивную черную дыру в центре галактики аккрецирует слишком много вещества, выделяется огромное количество энергии.
Эта энергия разгоняет часть вещества до околосветовых скоростей и выбрасывает его релятивистскими плазменными джетами в двух противоположных направлениях перпендикулярно оси аккреционного диска. Когда эти джеты сталкиваются с межгалактической средой и тормозятся, входящие в них частицы испускают радиоволны.
На радиоизображении квазара красным цветом показаны области высокой интенсивности радиоизлучения: в центре активное ядро галактики, а по бокам от него — два джета. Сама галактика в радиодиапазоне практически не излучает.
Радиогалактика: карта изолиний радиояркости
Для изображения космических объектов в диапазонах излучения, отличных от видимого, используются различные приемы. Чаще всего это искусственные цвета и карты изолиний.
С помощью искусственных цветов можно показать, как выглядел бы объект, если бы светочувствительные рецепторы человеческого глаза были чувствительны не к определенным цветам в видимом диапазоне, а к другим частотам электромагнитного спектра.
Карты изолиний обычно используются для представления изображений, полученных на одной длине волны, что особенно характерно для радиодиапазона. По принципу построения они подобны горизонталям на топографической карте, только вместо точек с фиксированной высотой над горизонтом ими соединяют точки с одинаковой радиояркостью источника на небе.
Приемники
Микроволновый орбитальный зонд WMAP
Космический фон микроволнового излучения, называемый также реликтовым излучением, создает радиошум, который почти одинаков во всех направлениях на небе. И всё же в нем есть очень небольшие вариации интенсивности — около тысячной доли процента. Это следы неоднородностей плотности вещества в молодой Вселенной, которые послужили зародышами для будущих скоплений галактик.
Изучение микроволнового фона было начато наземными радиотелескопами, продолжено советским прибором «Реликт-1» на борту спутника «Прогноз-9» в 1983 г. и американским спутником COBE (Cosmic Background Explorer) в 1989 г., но самую подробную карту распределения микроволнового фона по небесной сфере построил в 2003 г. зонд WMAP (Wilkinson Microwave Anisotropy Probe).
Полученные данные накладывают существенные ограничения на модели образования галактик и эволюции Вселенной.
Система радиотелескопов ALMA (строится)
У радиотелескопа, как и у оптического, разрешение пропорционально диаметру, а чувствительность — площади антенны. Строить подвижные антенны крупнее 100 метров невозможно из-за ограничений по прочности конструкции. Но можно совместно обрабатывать излучение, собранное несколькими небольшими радиотелескопами, как бы синтезируя большое зеркало из маленьких кусочков.
Такая система называется радиоинтерферометром. Строящийся в Чили радиоинтерферометр ALMA будет состоять из 64 12-метровых антенн, размещенных на территории поперечником 15 км. Система будет работать в сантиметровом, миллиметровом и субмиллиметровом диапазонах. Последний доступен благодаря тому, что строительство ведется на высоте более 5 тысяч метров в условиях очень сухого климата.
В радиоастрономии уже давно применяются интерферометры с антеннами, размещенными на разных континентах. В последнее время принцип интерферометра стали использовать и в оптическом диапазоне, например, в системе из четырех 8-метровых телескопов VLT Европейской Южной обсерватории.
Схема радиотелескопа
Радиотелескоп устроен отчасти подобно оптическому телескопу. Он тоже имеет параболическое зеркало, которое собирает радиоволны. Однако из-за большой длины радиоволн в фокусе нельзя получить изображение объекта, поскольку размер пиксела должен быть не меньше длины волны.
Поэтому в фокусе радиотелескопа вместо камеры (как в оптических инструментах) устанавливается единственный радиометр, измеряющий интенсивность собранного излучения. А для получения изображения радиотелескопу приходится линия за линией сканировать выбранный участок неба. Результат обычно представляют картой изолиний радиояркости, хотя может быть построено и обычное полутоновое изображение.
Обзоры неба
Небо в микроволновом диапазоне 1,9 мм (WMAP)
Космический микроволновый фон, называемый также реликтовым излучением, представляет собой остывшее свечение горячей Вселенной. Впервые оно было обнаружено А. Пензиасом и Р. Вильсоном в 1965 году (Нобелевская премия 1978 г.) Первые измерения показали, что излучение совершенно однородно по всему небу.
В 1992 году было объявлено об открытии анизотропии (неоднородности) реликтового излучения. Этот результат был получен советским спутником «Реликт-1» и подтвержден американским спутником COBE (см. Небо в инфракрасном диапазоне). COBE также определил, что спектр реликтового излучения очень близок к чернотельному. За этот результат присуждена Нобелевская премия 2006 года.
Вариации яркости реликтового излучения по небу не превышают одной сотой доли процента, но их наличие указывает на едва заметные неоднородности в распределении вещества, которые существовали на ранней стадии эволюции Вселенной и послужили зародышами галактик и их скоплений.
Однако точности данных COBE и «Реликта» было недостаточно для проверки космологических моделей, и поэтому в 2001 году был запущен новый более точный аппарат WMAP (Wilkinson Microwave Anisotropy Probe), который к 2003 году построил детальную карту распределения интенсивности реликтового излучения по небесной сфере. На основе этих данных сейчас ведется уточнение космологических моделей и представлений об эволюции галактик.
Спектр реликтового излучения
Реликтовое излучение возникло, когда возраст Вселенной составлял около 400 тысяч лет и она вследствие расширения и остывания стала прозрачна для собственного теплового излучения. Первоначально излучение имело планковский (чернотельный) спектр с температурой около 3000 K и приходилось на ближний инфракрасный и видимый диапазоны спектра.
По мере расширения Вселенной реликтовое излучение испытывало красное смещение, что приводило к снижению его температуры. На сегодня температура реликтового излучения составляет 2,7 К и оно приходится на микроволновый и дальний инфракрасный (субмиллиметровый) диапазоны спектра. На графике показан приближенный вид планковского спектра для этой температуры. Впервые спектр реликтового излучения был измерен спутником COBE (см. Небо в инфракрасном диапазоне), за что в 2006 году была присуждена Нобелевская премия.
Радионебо на волне 21 см, 1420 МГц (Dickey & Lockman)
Знаменитая спектральная линия с длиной волны 21,1 см — это еще один способ наблюдения нейтрального атомарного водорода в космосе. Линия возникает благодаря так называемому сверхтонкому расщеплению основного энергетического уровня атома водорода.
Энергия невозбужденного атома водорода зависит от взаимной ориентации спинов протона и электрона. Если они параллельны, энергия чуть выше. Такие атомы могут спонтанно переходить в состояние с антипараллельными спинами, испуская квант радиоизлучения, уносящий крохотный избыток энергии. С отдельным атомом такое случается в среднем раз в 11 млн лет. Но огромное распространение водорода во Вселенной делает возможным наблюдение газовых облаков на этой частоте.
Радионебо на волне 73,5 см, 408 МГц (Бонн)
Это самый длинноволновый из всех обзоров неба. Он был выполнен на волне, на которой в Галактике наблюдается значительное число источников. Кроме того, выбор длины волны определялся техническими причинами. Для построения обзора использовался один из крупнейших в мире полноповоротных радиотелескопов — 100-метровый боннский радиотелескоп.
Земное применение
Микроволновая печь
Главное преимущество микроволновой печи — прогрев со временем продуктов по всему объему, а не только с поверхности.
Микроволновое излучение, имея большую длину волны, глубже инфракрасного проникает под поверхность продуктов. Внутри продуктов электромагнитные колебания возбуждают вращательные уровни молекул воды, движение которых в основном и вызывает нагрев пищи. Таким образом происходит микроволновая (СВЧ) сушка продуктов, размораживание, приготовление и разогрев. Также переменные электрические токи возбуждают токи высокой частоты. Эти токи могут возникать в веществах, где присутствуют подвижные заряженные частицы.
А вот острые и тонкие металлические предметы в микроволновую печь помещать нельзя (это особенно касается посуды с напыленными металлическими украшениями под серебро и золото). Даже тонкое колечко позолоты по краю тарелки может вызвать мощный электрический разряд, который повредит устройство, создающее электромагнитную волну в печи (магнетрон, клистрон).
Сотовый телефон
Принцип действия сотовой телефонии основан на использовании радиоканала (в микроволновом диапазоне) для связи между абонентом и одной из базовых станций. Между базовыми станциями информация передается, как правило, по цифровым кабельным сетям.
Радиус действия базовой станции — размер соты — от нескольких десятков до нескольких тысяч метров. Он зависит от ландшафта и от мощности сигнала, которую подбирают так, чтобы в одной соте было не слишком много активных абонентов.
В стандарте GSM одна базовая станция может обеспечивать не более 8 телефонных разговоров одновременно. На массовых мероприятиях и при стихийных бедствиях количество звонящих абонентов резко увеличивается, это перегружает базовые станции и приводит к перебоям с сотовой связью. На такие случаи у сотовых операторов есть мобильные базовые станции, которые могут быть оперативно доставлены в район большого скопления народа.
Много споров вызывает вопрос о возможном вреде микроволнового излучения сотовых телефонов. Во время разговора передатчик находится в непосредственной близости от головы человека. Многократно проводившиеся исследования пока не смогли достоверно зарегистрировать негативного воздействия радиоизлучения сотовых телефонов на здоровье. Хотя полностью исключить воздействие слабого микроволнового излучения на ткани организма нельзя, оснований для серьезного беспокойства нет.
Телевизор
Передача телевизионного изображения ведется на метровых и дециметровых волнах. Каждый кадр разбивается на строки, вдоль которых определенным образом меняется яркость.
Передатчик телевизионной станции постоянно выдает в эфир радиосигнал строго фиксированной частоты, она называется несущей частотой. Под нее подстраивается приемный контур телевизора — в нем на нужной частоте возникает резонанс, позволяющий уловить слабые электромагнитные колебания. Информация об изображении передается амплитудой колебаний: большая амплитуда — высокая яркость, низкая амплитуда — темный участок изображения. Этот принцип называется амплитудной модуляцией. Аналогичным образом передается звук радиостанциями (кроме FM-станций).
С переходом к цифровому телевидению правила кодирования изображения меняются, но сам принцип несущей частоты и ее модуляции сохраняется.
Спутниковая тарелка
Параболическая антенна для приема сигнала с геостационарного спутника в микроволновом и УКВ-диапазонах. Принцип действия такой же, как у радиотелескопа, но тарелку не требуется делать подвижной. В момент монтажа ее направляют на спутник, который всегда остается на одном месте относительно земных сооружений.
Это достигается за счет вывода спутника на геостационарную орбиту высотой около 36 тыс. км над экватором Земли. Период обращения по этой орбите в точности равен периоду вращения Земли вокруг своей оси относительно звезд — 23 часа 56 минут 4 секунды. Размер тарелки зависит от мощности спутникового передатчика и его диаграммы направленности. У каждого спутника есть основной район обслуживания, где его сигналы принимаются тарелкой диаметром 50–100 см, и периферийная зона, где сигнал быстро слабеет и для его приема может потребоваться антенна до 2–3 м.