Что такое свечение черенкова
Свечение Черенкова: эффект «сверхсветовых» частиц
Свечение Черенкова связано с интересным физическим явлением, когда скорость заряженных частиц превышает фазовую скорость света в веществе. Снижение последней величины происходит из-за преломления лучей. Этот эффект впервые был открыт при изучении люминесценции жидкостей. В последующем он приобрел большое практическое значение в ядерной физике и астрономии.
Что это такое?
Свечение Черенкова представляет собой излучение фотонов, возникающее при движении заряженных частиц с постоянной скоростью, превышающей фазовую скорость света в данной среде.
Вам будет интересно: Окружность, вписанная в треугольник. Теоремы и их рассмотрение
Это явление имеет универсальный характер, то есть под воздействием облучения, имеющего достаточную энергию, будут «светиться» все типы прозрачных сред, а не только жидкости, как это было выявлено первооткрывателями.
История открытия
Вам будет интересно: Казахская академия спорта и туризма. Факультеты, структура вуза
В ходе опытов были выявлены следующие отличия обнаруженного Черенковым свечения:
На основе этих фактов Черенков сделал заключение, что данное явление – это не люминесценция, а излучение фотонов электронами, которые появляются в результате влияния гамма-лучей.
Определенную сложность в проведении экспериментов представляло то, что для регистрации радиоактивного свечения у Черенкова не существовало специальной аппаратуры. Ученому приходилось в течение нескольких часов адаптировать глаза к полной темноте, чтобы заметить очень слабое излучение. Коллегами по науке обнаруженное явление было воспринято скептически. Такое излучение заметили ранее французский физик Малле и Мария Кюри, но детальное изучение его свойств – это заслуга Черенкова.
В 1958 г. трем ученым-основоположникам, которые предложили теоретическое обоснование этого эффекта – Черенкову, Тамму и Франку – была вручена Нобелевская премия.
Объяснение физического явления
В традиционной интерпретации выделяют несколько факторов, объясняющих, что такое эффект Черенкова:
Другими словами, данное явление возникает вследствие взаимодействия среды с заряженными частицами.
Теоретическое обоснование свечения Черенкова было дано позже на основе трех научных подходов:
Последняя интерпретация отличается от классической. Согласно этому подходу, данное явление связано с электромагнитным вакуумом, которое изменяется веществом, а не с самой средой.
Когда можно наблюдать свечение?
Свечение Черенкова в чистом виде можно наблюдать лишь в идеальных условиях, когда заряженная частица перемещается с неизменной скоростью в радиаторе бесконечной длины. Во всех остальных случаях это явление сопровождается так называемым переходным излучением, которое вызвано изменением электромагнитных свойств среды по траектории движения электрона.
В непрозрачных средах последний тип свечения преобладает, а интенсивность излучения Черенкова снижается из-за его поглощения. Для регистрации отдельной частицы используют суммарный поток фотонов.
Практическое применение
Свечение Черенкова используется для экспериментальных методов в целях регистрации элементарных частиц и исследования их свойств. При известном направлении света и показателе преломления среды можно определить скорость движения частицы. Полученное излучение преобразуется современным фотоэлектронным умножителем в электрический сигнал, фиксируемый черенковским счетчиком.
Такие устройства находят широкое применение в ядерной физике. Теоретическая основа явления связана также с волнами Маха в акустике и некоторыми проблемами ускорителей частиц. Дифференциальный тип счетчиков позволяет идентифицировать вид частицы в ускорителях.
Другой областью применения свечения Черенкова является гамма-астрономия. Черенковские счетчики с большими детекторами фиксируют гамма-кванты, попадающие в атмосферу Земли от далеких звезд из космоса. Это позволяет лучше изучить процессы, происходящие во Вселенной.
Интересные факты
После признания работ, посвященных свечению Черенкова, в экспериментальной и теоретической физике начался активный рост исследований в данной области. С этим явлением связаны следующие интересные факты:
Интенсивное свечение Черенкова наблюдают также при выгрузке отработанного ядерного топлива электростанций в бассейн выдержки, после чего кассеты отправляют на утилизацию.
Излучение Черенкова
При прохождении частицы через материальную среду со скоростью, превышающей скорость распространения света в этой среде, наблюдается характерное излучение.
При прохождении света через прозрачный материал, например стекло, свет распространяется медленнее, чем в вакууме. Как при перелете через континент с промежуточными посадками пассажир неизбежно теряет во времени по сравнению с беспосадочным перелетом, так и световые лучи затормаживаются, взаимодействуя с атомами среды, и не могут двигаться так же быстро, как в вакууме. Теория относительности гласит: ни одно материальное тело, включая быстрые элементарные частицы высоких энергий, не может двигаться со скоростью, равной скорости света в вакууме. Но к скорости движения в прозрачных средах это ограничение не относится. В стекле или в воде, например, свет распространяется со скоростью, составляющей 60-70% от скорости света в вакууме, и ничто не мешает быстрой частице (например, протону или электрону) двигаться быстрее света в такой среде.
Излучение расходится конусом вокруг траектории движения частицы. Угол при вершине конуса зависит от скорости частицы и от скорости света в среде. Это как раз и делает излучение Черенкова столь полезным с точки зрения физики элементарных частиц, поскольку, определив угол при вершине конуса, физики могут рассчитать по нему скорость частицы. В сочетании с результатами других замеров это позволяет обнаруживать элементарные частицы на своем оборудовании. В современных лабораториях детекторы Черенкова установлены в комплексе с другими измерительными приборами на огромных многоэтажных стеллажах. В качестве примера можно привести детектор «Супер-Камиоканде» в лаборатории г. Камиока в Японии, который вмещает 50 000 тонн воды и оснащен 11 000 светочувствительных элементов. Излучение Черенкова можно наблюдать и невооруженным взглядом на небольших исследовательских ядерных реакторах, которые часто устанавливают на дне бассейна для обеспечения радиационной защиты. Сердечник реактора в этом случае окружен эффектным голубым свечением — это и есть излучение Черенкова под воздействием быстрых частиц, излучаемых в результате ядерной реакции.
Поскольку анализ этого излучения сыграл важнейшую роль в зарождающейся экспериментальной ядерной физике, в 1958 году Черенков, совместно с Игорем Таммом (1895–1971) и Ильей Франком (1908–90), был удостоен Нобелевской премии по физике. Тамм и Франк в 1937 году окончательно установили механизм возникновения свечения под воздействием электронов, движущихся быстрее скорости света в среде (например, в воде), а вслед за тем предсказали вскоре обнаруженное излучение Черенкова в твердых телах и газах.
* Более точное название излучения Черенкова, принятое в российской научной традиции, — «излучение Черенкова—Вавилова» или «эффект Черенкова—Вавилова». Павел Черенков проводил свои исследования под руководством Сергея Ивановича Вавилова, который умер в 1951 г. и потому, согласно правилам присуждения Нобелевских премий, не был включен в число лауреатов. — Прим. переводчика.
Советский физик. Родился в селе Новая Чигла Воронежской губернии в крестьянской семье. В 1928 году окончил Воронежский университет, два года работал учителем. С 1930 года и до конца своих дней работал в Физическом институте им. Лебедева Академии наук СССР (ФИАН). После работы, приведшей к открытию излучения Черенкова, занимался изучением космических лучей и разработкой ускорителей тяжелых частиц.
Что такое излучение Вавилова-Черенкова и как оно возникает
В 1958 году трое советских физиков разделили между собой Нобелевскую премию с формулировкой «за открытие и истолкование эффекта Черенкова». Благодаря этому эффекту в бассейне ядерного реактора можно видеть красивое синее свечение. Также черенковское излучение сегодня помогает исследователям находить следы высокоэнергетичных нейтрино на эксперименте IceCube.
Такое свечение создается, когда какая-либо заряженная частица, например, электрон, на высокой скорости входит в прозрачную среду. Частица продолжает испускать свечение, пока ее скорость не станет меньше фазовой скорости света в среде. Дело в том, что изначально скорость частицы выше фазовой скорости света в среде, в которую она попадает.
Как такое может быть, спросите вы. Все дело в том, что скорость света во всех средах разная. И чем плотнее среда, тем ниже эта величина. Поэтому то значение скорости света, которое мы знаем, характерно только для глубокого вакуума, в воде же свет движется гораздо медленнее. Поэтому некоторые высокоэнергетичные частицы могут превышать эту скорость, входя в плотную среду.
Возникновение черенковского излучения похоже на возникновение ударной волны — конуса Маха — при преодолении самолетов звукового барьера. Только в данном случае фронт волны состоит не из молекул воздуха, а из квантов света.
Излучение Вавилова-Черенкова ученые ранее использовали для визуализации онкологических патологий. Также оно применяется для детектирования нейтрино. Эти частицы, хоть и не имеют заряда, но могут выбивать заряженные отрицательно электроны с оболочек атомов в прозрачной среде. А эти выбитые электроны, вылетающие с орбит на высокой скорости, создают черенковское излучение.
Эффект Вавилова — Черенкова
Эффект Вавилова — Черенкова
Электромагнитное излучение |
---|
Синхротронное |
Циклотронное |
Тормозное |
Тепловое |
Монохроматическое |
Черенковское |
Переходное |
Радиоизлучение |
Микроволновое |
Терагерцевое |
Инфракрасное |
Видимое |
Ультрафиолетовое |
Рентгеновское |
Гамма-излучение |
Ионизирующее |
Реликтовое |
Магнито-дрейфовое |
Двухфотонное |
Спонтанное |
Вынужденное |
Эффект Вавилова — Черенко́ва (излучение Вавилова — Черенкова) — свечение, вызываемое в прозрачной среде заряженной частицей, которая движется со скоростью, превышающей фазовую скорость распространения света в этой среде. Черенковское излучение широко используется в физике высоких энергий для регистрации релятивистских частиц и определения их скоростей.
Содержание
История открытия
В 1934 году Павел Черенков проводил в лаборатории Сергея Вавилова исследования люминесценции жидкостей под воздействием гамма-излучения и обнаружил слабое голубое свечение, вызванное быстрыми электронами, выбитыми из атомов среды гамма-излучением. Позже выяснилось, что эти электроны двигались со скоростью выше скорости света в среде.
Уже первые эксперименты Черенкова, предпринятые по инициативе С. И. Вавилова, выявили ряд характерных особенностей излучения: свечение наблюдается у всех чистых прозрачных жидкостей, причем яркость мало зависит от их химического состава, излучение имеет поляризацию с преимущественной ориентацией электрического вектора вдоль направления первичного пучка, при этом в отличие от люминесценции не наблюдается ни температурного, ни примесного тушения. На основании этих данных Вавиловым было сделано основополагающее утверждение, что обнаруженное явление — не люминесценция жидкости, а свет излучают движущиеся в ней быстрые электроны.
Теоретическое объяснение явления было дано И. Таммом и И. Франком в 1937 году.
В 1958 году Черенков, Тамм и Франк были награждены Нобелевской премией по физике «за открытие и истолкование эффекта Черенкова». Манне Сигбан из Шведской королевской академии наук в своей речи отметил, что «открытие явления, ныне известного как эффект Черенкова, представляет собой интересный пример того, как относительно простое физическое наблюдение при правильном подходе может привести к важным открытиям и проложить новые пути для дальнейших исследований».
Механизм и геометрия излучения
Теория относительности гласит: ни одно материальное тело, включая быстрые элементарные частицы высоких энергий, не может двигаться со скоростью, равной скорости света в вакууме. Но к скорости движения в прозрачных средах это ограничение не относится. В стекле или в воде, например, свет распространяется со скоростью, составляющей 60-70% от скорости света в вакууме, и ничто не мешает быстрой частице (например, протону или электрону) двигаться быстрее света в такой среде.
В 1934 году Павел Черенков проводил исследования люминесценции жидкостей под воздействием гамма-излучения и обнаружил слабое голубое свечение (которое теперь названо его именем), вызванное быстрыми электронами, выбитыми из атомов среды гамма-излучением. Чуть позже выяснилось, что эти электроны двигались со скоростью выше скорости света в среде. Это был как бы оптический эквивалент ударной волны, которую вызывает в атмосфере сверхзвуковой самолет, преодолевая звуковой барьер. Представить это явление можно по аналогии с волнами Гюйгенса, расходящимися вовне концентрическими кругами со скоростью света, причем каждая новая волна испускается из следующей точки на пути движения частицы. Если частица летит быстрее скорости распространения света в среде, она обгоняет волны. Пики амплитуды этих волн и образуют волновой фронт излучения Черенкова.
Излучение расходится конусом вокруг траектории движения частицы. Угол при вершине конуса зависит от скорости частицы и от скорости света в среде. Это как раз и делает излучение Черенкова столь полезным с точки зрения физики элементарных частиц, поскольку, определив угол при вершине конуса, можно рассчитать по нему скорость частицы.
Применение
Несмотря на чрезвычайную слабость свечения, приемники света достаточно чувствительны, чтобы зарегистрировать излучение, порожденное единственной заряженной частицей. Созданы приборы, которые позволяют по излучению Вавилова-Черенкова определить заряд, скорость и направление движения частицы, ее полную энергию. Практически важно применение этого излучения для контроля работы ядерных реакторов.
Эффект Вавилова-Черенкова: что нужно знать? в закладки
В научно-фантастических фильмах ядерные реакторы и ядерные материалы всегда светятся синим светом. Xарактерное голубое свечение, исходящее от реактора – явление под названием эффект Вавилова-Черенкова. Именно из-за него вода, окружающая ядерные реакторы, действительно светится ярко-синим. Впервые это свечение заметили физик Сергей Вавилов и его аспирант Павел Черенков в лаборатории Физико-математического института в 1933 году, когда увидели, что бутылка с водой, подвергшаяся воздействию радиации, засветилась синим светом. В 1958 году за это открытие Черенков получил Нобелевскую премию по физике, разделив ее с Ильей Франком и Игорем Таммом, которые экспериментально подтвердили существование эффекта. Хотя объяснить излучение Вавилова-Черенкова удалось только после публикации Альбертом Эйнштейном специальной теории относительности, его существование было предсказано английским эрудитом Оливером Хевисайдом еще в 1888 году.
Что такое излучение Вавилова-Черенкова?
Превысить скорость света в вакууме невозможно. Но когда элементарная частица находится в плотной среде, то может превысить это ограничение. Так, частица, разогнанная в вакууме, может влететь в воду со скоростью, например, 299 799 километров в секунду: так как законы физики запрещают мгновенное изменение скорости, частица, находясь в среде, пролетает какое-то расстояние быстрее местного ограничения. Во время полета частица тормозит теряя энергию, которой нужно куда-то деваться.
Как пишет Tass в статье, посвященной Нобелевской премии по физике 1958 года, при торможении машины кинетическая энергия переходит в нагрев тормозов, а сверхсветовые частицы отдают избыток в виде квантов излучения, то есть света. Одна из особенностей черенковского излучения заключается в том, что оно в основном находится в непрерывном ультрафиолетовом спектре, а не в ярко-синем.
То, как именно появляется излучение, детально проверяли Вавилов, Черенков, Тамм и Франк. Так как в 1951 году Вавилова не стало, трое физиков получили Нобелевскую премию семь лет спустя. Благодаря их работе, сегодня можно наблюдать излучение Вавилова-Черенкова практически где угодно. При. условии, конечно, что вы знаете, куда смотреть.
Жуткий синий свет
Когда черенковское излучение проходит через воду, заряженные частицы движутся быстрее света через эту среду. Таким образом, свет, который вы видите, имеет более высокую частоту (или более короткую длину волны), чем обычная длина волны. Поскольку в черенковском излучении преобладает свет с короткой длиной волны, свечение кажется синим. Это происходит потому, что быстро движущаяся заряженная частица возбуждает электроны молекул воды, которые поглощают энергию и высвобождают ее в виде фотонов света, возвращаясь к равновесию. Обычно некоторые из этих фотонов нейтрализуют друг друга (разрушительная интерференция), так что свечения не видно. Но когда частица движется быстрее, чем свет может пройти через воду, ударная волна создает конструктивную интерференцию, которую мы и видим как свечение.
Спектр излучения Черенкова непрерывен, и его интенсивность увеличивается с частотой; именно это и придает ему жуткий синий цвет, который вы видите на фотографиях реакторов «плавательного бассейна».
К счастью, излучение Вавилова-Черенкова можно использовать не только для того, чтобы вода в ядерной лаборатории светилась синим. Так, в реакторе бассейнового типа количество синего свечения может быть использовано для измерения радиоактивности отработавших топливных стержней. Излучение используется в экспериментах по физике элементарных частиц – физики надеются, что оно поможет им определить природу исследуемых частиц.
Более того, черенковское излучение возникает, когда космические лучи и заряженные частицы взаимодействуют с атмосферой Земли, поэтому для измерения этих явлений, обнаружения нейтрино и изучения излучающих гамма-лучи астрономических объектов, например остатки сверхновых, используются детекторы.
Интересно, что если релятивистские заряженные частицы ударяют в стекловидное тело человеческого глаза, то можно увидеть вспышки черенковского излучения, например, от воздействия космических лучей или в результате ядерной аварии, так что лучше, пожалуй, воздержаться от этого яркого зрелища.