Что такое вектор электрического смещения
Вектор электрической индукции
Вектором электрической индукции (электрического смещения) D → называют физическую величину, определяемую по системе С И :
Вектор электрического смещения в СНС определяется как:
Вектор индукции
Значение вектора D → не является только полевым, потому как он учитывает поляризованность среды. Имеется связь с объемной плотностью заряда, выражаемая соотношением:
Связь вектора напряженности и вектора электрического смещения
При наличии изотропной среды запись связи вектора напряженности и вектора электрического смещения запишется как:
Где ε – диэлектическая проницаемость среды.
Наличие D → способствует облегчению анализа поля при наличии диэлектрика. Используя теорему Остроградского-Гаусса в интегральном виде с диэлектриком, фиксируется как:
Проходя через границу разделов двух диэлектриков для нормальной составляющей, вектор D → может быть записан:
Формула тангенциальной составляющей:
Поле вектора D → изображается при помощи линий электрического смещения.
Определение направления и густоты идет аналогично линиям вектора напряженности. Но линии вектора электрической индукции начинаются и заканчиваются только на свободных зарядах.
Необходимо заполнить пространство между пластинами конденсатора однородным и изотропным диэлектриком. При наличии поля в конденсаторе диэлектрик поляризуется. Тогда начинают появляться связанные заряды с плотностью σ s υ на его поверхности. Создается дополнительное поле с напряженностью:
Векторы полей E → ‘ и E 1 → имеют противоположные направления, причем:
Запись результирующего поля с диэлектриком примет вид:
Формула плотности связанных зарядов:
Отсюда следует, что значение вектора электрической индукции в диэлектрике равняется:
Ответ: вектор электрической индукции не изменяется.
Была внесена пластина из диэлектрика с диэлектрической проницаемостью ε без свободных зарядов в зазор между разноименными заряженными пластинами. На рисунке 1 показана при помощи штриховой линии замкнутая поверхность. Определить поток электрической индукции Φ D через эту поверхность.
Рисунок 1 . Замкнутая поверхность
Формула записи потока вектора электрического смещения Φ D через замкнутую поверхность S :
Используя теорему Остроградского-Гаусса, можно сказать, что Φ D равняется суммарному свободному заряду, находящемуся внутри заданной поверхности. Из условия видно отсутствие свободных зарядов в диэлектрике и в имеющемся пространстве между пластинами конденсатора, а поток вектора индукции равняется нулю.
Рисунок 2 . Замкнутая поверхность с захватом части пластины изотропного диэлектрика
Из условия имеем, что поток вектора электрического смещения Φ D через замкнутую поверхность равняется нулю, то есть:
Если использовать теорему Остроградского-Гаусса, то значение Φ D – это суммарный свободный заряд, находящийся внутри заданной поверхности. Следует, что внутри такой поверхности отсутствуют свободные заряды:
Имеем, что поток вектора напряженности не равен нулю, но он считается как сумма свободных и связанных зарядов. Отсюда вывод – диэлектрик содержит связанный заряды.
Ответ: свободные заряды отсутствуют, а связанные есть, причем с положительной их суммой.
Вектор электрической индукции
Вы будете перенаправлены на Автор24
Что такое вектор электрической индукции
Вектором электрической индукции (или вектором электрического смещения) ($\overrightarrow
В СГС вектор электрического смещения определен как:
\[\overrightarrow \ \left(2\right).\] Связь вектора напряженности и вектора электрического смещения, если среда изотропна, еще можно записать как: \[\overrightarrow Для тангенциальной составляющей: Пусть поле в конденсаторе в первом случае характеризуется вектором смещения ($<\varepsilon >_ Заполним пространство между пластинами конденсатора однородным и изотропным диэлектриком. Под действием поля в конденсаторе диэлектрик поляризуется. На его поверхности появляются связанные заряды с плотностью ($<\sigma >_ Результирующее поле в присутствии диэлектрика можно записать как: Зная, что плотность связанных зарядов можно найти как: Подставим (1.5) в (1.4), получим: \[E=E_1-\varkappa E\ \left(1.6\right).\] Выразим из (1.6) напряженность поля E, получим: Следовательно, вектор электрической индукции в диэлектрике равен: Ответ: Вектор электрической индукции не изменится. Если по условию задачи, поток вектора электрического смещения ($Ф_D$) через замкнутую поверхность равен нулю: Но при этом сказано, что отличен от нуля поток вектора напряженности, но его поток равен сумме зарядов и свободных и связанных, следовательно, в диэлектрике присутствуют связанные заряды. Ответ: Свободных зарядов нет, связанные заряды есть и их сумма положительна. Получи деньги за свои студенческие работы Курсовые, рефераты или другие работы Автор этой статьи Дата последнего обновления статьи: 04 12 2021 Разобравшись с поведением диэлектрика на микроскопическом уровне, вернемся к плоскому конденсатору, изображенному на рис. 3.3. Откуда же взялись поляризационные заряды на поверхности диэлектрической пластины между обкладками? Теперь мы знаем, что во внешнем поле, создаваемом обкладками, единица объема диэлектрика приобретает дипольный момент Р. Скажем, положительные заряды смещаются по направлению поля (вверх на рис. 3.3), а отрицательные — вниз. При полной однородности поля и диэлектрика объемные нескомпенсированные заряды внутри диэлектрика не появляются. Но такой сдвиг приводит к возникновению нескомпенсированных зарядов на поверхности диэлектрической пластины. Дипольный момент пластины равен VР, где V = Sd — ее объем. С другой стороны, полный поверхностный заряд на пластине равен а расстояние между центрами положительных и отрицательных зарядов равно d (см. рис. 3.3). Поэтому дипольный момент пластины можно также записать как Сравнивая эти два выражения, находим связь поверхностной плотности поляризационных зарядов с вектором поляризации Напряженность Е суммарного поля внутри диэлектрика меньше напряженности поля E0, создаваемого обкладками. Именно поле Е действует на молекулы диэлектрика, именно его они «чувствуют», и потому для него справедливо соотношение (3.22) Используя связь (3.3) напряженности поля Е ‘ поляризационных зарядов с суммарным полем Е мы находим связь между диэлектрической проницаемостью и диэлектрической восприимчивостью В общем случае вектор поляризации Р не параллелен вектору напряженности суммарного поля Е: в анизотропных диэлектриках вектор поляризации может поворачиваться относительно напряженности поля. Однако всегда мы можем записать соотношение называется вектором электрического смещения (вектором электрической индукции). В частном случае линейной зависимости поляризации от напряженности поля вектор электрического смещения равен где имеет место для изотропных диэлектриков. В общем случае вектор D не параллелен Е. Поле вектора D можно графически изобразить линиями электрического смещения, которые определяются так же, как и линии напряженности электрического поля (рис 3.23 и 3.24). Рис. 3.23. Условия на плоской границе двух диэлектриков для напряженности и электрического смещения Рис. 3.24. Линии напряженности и электрического смещения электрического поля В СИ единицей измерения электрического смещения является: будет оставаться неизменной при переходе из одного вещества в другое. Выражение (3) является наиболее общим определение вектора электрической индукции (вектора электрического смещения). Для большинства диэлектриков (исключением являются, например, сегнетоэлектрики) вектор поляризации пропорционален напряженности поля: В таком случае от формулы (3) мы приходим к определению вектора электрической индукции вида (2). Поток вектора электрической индукции равен алгебраической сумме свободных зарядов, которые находятся внутри рассматриваемой замкнутой поверхности: Решение. За основу решения задачи примем определение вектора электрического смещения вида: Выразим вектор поляризации из (1.1): Так как по условию рассматриваемый диэлектрик является однородным и изотропным, то: \[\overline Задание. Между двумя бесконечными заряженными пластинами, несущими одинаковые по величине, но противоположные по модулю заряды поместили пластину из диэлектрика. Пластина сторонних зарядов не имеет. Каков поток вектора электрической индукции через поверхность, которая изображена на рис.2? Напряженность электростатического поля, зависит от свойств среды: в однородной изотропной среде напряженность поля Е обратно пропорциональна e. Е, переходя через границу диэлектриков, претерпевает скачкообразное изменение, создавая тем самым неудобства при расчетах электростатических полей. Поэтому оказалось необходимым помимо вектора напряженности характеризовать поле ещевектором электрического смещения, который для электрически изотропной среды, по определению, равен ε=æ+1. ε показывает, во сколько раз поле ослабляется диэлектриком, и характеризует количественно свойство диэлектрика поляризоваться в электрическом поле. Единица электрического смещения — кулон на метр в квадрате (Кл/м 2 ). Рассмотрим, с чем можно связать вектор электрического смещения. Связанные заряды появляются в диэлектрике при наличии внешнего электростатического поля, создаваемого системой свободных электрических зарядов, т. е. в диэлектрике на электростатическое поле свободных зарядов накладывается дополнительное поле связанных зарядов. Результирующее поле в диэлектрике описывается вектором напряженности Е, и потому он зависит от свойств диэлектрика. Вектором D описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, возникающие в диэлектрике, могут вызвать, однако, перераспределение свободных зарядов, создающих поле. Поэтому вектор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика. Аналогично, как и поле Е, поле D изображается с помощьюлиний электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности. Линии вектора Е могут начинаться и заканчиваться на любых зарядах — свободных и связанных, в то время как линии вектора D — только на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь. Для произвольной замкнутой поверхности S поток вектора D сквозь эту поверхность Теорема Гаусса дляэлектростатического поля в диэлектрике: Для вакуума Dn = e0En (e =1), тогда поток вектора напряженности Е сквозь произвольную замкнутую поверхность равен Связь вектора напряженности и вектора электрического смещения
Готовые работы на аналогичную тему
3.4. Вектор электрического смещения
— диэлектрическая проницаемость среды. Соотношение
от точечного заряда, расположенного на границе раздела двух диэлектриковВектор электрической индукции
Определение вектора электрической индукции
Физический смысл вектора электрической индукции
Примеры задач с решением
Вектор электрического смещения, восприимчивость и диэлектрическая проницаемость. Теорема Гаусса для векторов P и D.
. Также вектор электрического смещения можно выразить как
использую формулы диэлектрической проницаемости и восприимчивости.
где æ- диэлектрическая восприимчивость, характерезующая свойства диэлектриков(безразмерная величина). И другая безразмерная величина это диэлектрическая проницаемость среды (ε):
где Dn — проекция вектора D на нормаль n к площадке dS.
т. е. поток вектора смещения электростатического поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов. В такой форме теорема Гаусса справедлива для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.
где
— соответственно алгебраические суммы свободных и связанных зарядов, охватываемых замкнутой поверхностью S. Однако эта формула неприемлема для описания поля Е в диэлектрике, так как она выражает свойства неизвестного поля Е через связанные заряды, которые, в свою очередь, определяются им же. Это еще раз доказывает целесообразность введения вектора электрического смещения.