Что такое венозный возврат

Что такое венозный возврат

Этим термином обозначают объем венозной крови, протекающей по верхней и нижней (у животных, соответственно, по передней и задней) полым венам.

Количество крови, протекающей за единицу времени через артерии и вены, в устойчивом режиме функционирования системы кровообращения остается постоянным, поэтому в норме величина венозного возврата равна величине минутного объема крови, т. е. 4—6 л/мин у человека. Однако вследствие перераспределения массы крови от одной области к другой это равенство может временно нарушаться при переходных процессах в системе кровообращения, вызываемых различными воздействиями на организм как в норме (например, при мышечных нагрузках или перемене положения тела), так и при развитии патологии сердечно-сосудистой системы (например, недостаточности правых отделов сердца).

Что такое венозный возврат. Смотреть фото Что такое венозный возврат. Смотреть картинку Что такое венозный возврат. Картинка про Что такое венозный возврат. Фото Что такое венозный возврат

Величина общего или суммарного венозного возврата между полыми венами как у животных, так и у человека состоит примерно из 1/з объемного кровотока по верхней (или передней) полой вене и 2/3 — по нижней (или задней) полой вене. Величина кровотока у людей в верхней полой вене составляет примерно 42 %, а в нижней полой вене — 58 % общей величины венозного возврата.

Таблица 9.4. Комплекс факторов, участвующих в формировании величины венозного возврата Что такое венозный возврат. Смотреть фото Что такое венозный возврат. Смотреть картинку Что такое венозный возврат. Картинка про Что такое венозный возврат. Фото Что такое венозный возврат

Факторы, участвующие в формировании величины венозного возврата, условно делят на две группы (табл. 9.4) в соответствии с направлением действия сил, способствующих продвижению крови по сосудам большого круга кровообращения.

Первую группу представляет сила «vis a tergo» (т. е. действующая сзади), сообщаемая крови сердцем; она продвигает кровь по артериальным сосудам и участвует в обеспечении ее возврата к сердцу. Если в артериальном русле эта сила соответствует давлению 100 мм рт. ст., то в начале венул общее количество энергии, которой обладает кровь, прошедшая через капиллярное русло, составляет около 13 % от ее начальной энергии. Именно последняя величина энергии и образует «vis a tergo» и расходуется на приток венозной крови к сердцу. К силе, действующей «vis a tergo», относят также ряд других факторов, способствующих продвижению крови к сердцу: сокращения скелетной мускулатуры (так называемый мышечный насос), способствующие «выжиманию» крови из вен; функционирование венозных клапанов (препятствующих обратному току крови); влияние уровня гидростатического давления в системе кровообращения (особенно в вертикальном положении тела).

Что такое венозный возврат. Смотреть фото Что такое венозный возврат. Смотреть картинку Что такое венозный возврат. Картинка про Что такое венозный возврат. Фото Что такое венозный возврат

Ко второй группе факторов, участвующих в венозном возврате, относят силы, действующие на кровоток в полых венах «vis a fronte» (т. е. спереди) и включающие, прежде всего, присасывающую функцию грудной клетки и сердца. Присасывающая функция грудной клетки обеспечивает поступление крови из периферических вен в грудные вследствие существования отрицательного давления в плевральной полости: во время вдоха отрицательное давление в последней еще более снижается, что приводит к ускорению кровотока в нижней полой вене, а во время выдоха давление, напротив, относительно исходного несколько возрастает и кровоток в этой вене замедляется. Для присасывающей функции правых отделов сердца характерно то, что силы, способствующие поступлению в него крови, развиваются не только во время диастолы сердца (вследствие понижения давления в правом предсердии), но также и во время систолы (в результате смещения атриовентрикулярного кольца увеличивается объем предсердия и быстрое падение в нем давления способствует наполнению сердца кровью из полых вен). Однако не все исследователи разделяют мнение о важной роли присасывающей функции грудной клетки и правой половины сердца в формировании величины венозного возврата.

Наряду с этим важное значение имеют взаимоотношения встречных потоков по полым венам, которые при переходных процессах в системе могут изменяться неоднократно, а также констрикторные реакции венозных сосудов, проявляющиеся при действии на систему кровообращения нейрогенных или гуморальных стимулов; изменения транскапиллярного обмена жидкости, обеспечивающие ее переход из интерстиция в кровоток вен.

Повышение артериального давления сопровождается возрастанием величины венозного возврата, что проявляется при прессорных рефлексах (синокаротидном — вызываемом снижением давления в каротидных синусах, при стимуляции афферентных волокон соматических нервов), увеличении объема циркулирующей крови, внутривенном введении вазоактив-ных веществ (адреналин, норадреналин, простагландин Р2, ангиотензин II). Гормон задней доли гипофиза вазопрессин вызывает на фоне повышения артериального давления уменьшение венозного возврата.

Источник

Физиология венозного оттока

Что такое венозный возврат. Смотреть фото Что такое венозный возврат. Смотреть картинку Что такое венозный возврат. Картинка про Что такое венозный возврат. Фото Что такое венозный возврат

При нормальном функционировании системы кровоснабжения процесс оттока крови из области нижних конечностей обеспечивается тремя взаимосвязанными системами, которые четко взаимодействуют между собой. В эту систему входят поверхностные и глубоки вены, а также коммуникантные вены, которые соединяют их между собой.

Отток 85-90% венозной крови проходит по глубокой венозной системе. Около 10-15% от общего объема кровотока осуществляется за счет поверхностных вен. Кровь собирается из надфасциальных тканей подкожными венами, а затем по большому количеству перфорантных вен она идет в глубокие магистрали. Проталкивающие силы:

Венозный тонус, который является активным компонентом. Различается собственный тонус, который возникает из-за возникшей спонтанно деполяризации гладкомышечных клеток, и тонус, который возникает под воздействием симпатических влияний.

Систоло-диастолическое движение прилежащих артерий.

Активность мышечно-венозной помпы. Когда человек находится в вертикальном положении, то скелетная мускулатура испытывает мышечное напряжение. В данном случае внутримышечное давление увеличивается на 50-60 мм. рт.ст. Такое давление ограничивает степень растяжения вен, и предотвращает ортостатических нарушения.

В состав мышечной помпы нижних конечностей входит система функциональных единиц, которые работают как последовательно, так и параллельно. В каждую из этих единиц включены отдельные миофасциальные образования, часть глубокой вены, имеющая клапаны и посредством коммуникантной вены связанная с соответствующим ей сегментом поверхностной вены. Когда мышцы находятся в расслабленном состоянии, клапаны открыты, и не мешают образованию между сердцем и стопой гидростатического столба. При этом как в глубоких, так и в поверхностных венах нижних конечностей давление на одном уровне является одинаковым. Из-за сокращения мышц возникает механическая компрессия, в результате которой и в глубоких, и в поверхностных венах интрамуральное давление увеличивается, а из-за клапанов возникает центрипетальное продвижение крови. Когда мышцы расслабляются, то уровень интрамурального давления в венах снижается. На определенной стадии расслабления уровень давления в глубокой вене снижается больше, чем в поверхностной вене, из-за чего кровь в эту часть глубокой вены начинает поступать не только из сегмента, который расположен немного ниже, но и из поверхностных вен с помощью коммуникантных вен.

Мышечно-венозная помпа по своему месту нахождения подразделяется на следующие виды: помпа стопы, помпа голени, помпа бедра, помпа брюшной стенки. Когда человек ходит, то мышцы голени, которые покрыты плотной фасцией, принимают на себя основную работу. При сокращении икроножной мышцы среднее давление в ней доходит до 70-100 мм рт.ст. в случае максимального напряжения икроножной мышцы давление может достичь 200 мм рт.ст. У мышц бедра плотное фасциальное покрытие отсутствует, поэтому во время сокращения, давление в них увеличивается до 20-30 мм рт.ст. Особенность плантарной помпы заключается в следующем: отток крови происходит не только из-за того, что сокращаются мышцы стопы, имеющие относительно небольшую массу, но из-за воздействия всего веса тела.

Мышечно-венозная помпа голени предназначена для поддержания нужного уровня венозного возврата к сердцу. Это можно показать на следующем примере. Во время испытаний в центрифуге в результате резкого увеличения силы тяжести от головы к ногам может снизиться острота зрения или произойти затемнение или даже потеря сознания. Данных явлений можно избежать, если испытуемый будет энергично работать ногами, например, перемещать тяжесть тела с одной ноги на другую, не отрывая их от опоры. Даже небольшая по объему работа ногами приводит к восстановлению сердечного выброса и увеличению кровотока в легких до тех показателей, которые можно наблюдать тогда, когда тело находится в горизонтальном положении.

Работа сердца. В тот момент, когда кровь изгоняется из сердца, происходит сдвигание вниз желудочков и атриовентрикулярных перегородок, тем самым приводя к увеличению емкости правого предсердия. В результате этого в нем быстро снижается давление и резко увеличивается приток крови из полых вен, который обусловлен возросшим градиентом давления. Проявление присасывающего действия желудочков тем меньше, чем дальше от сердца расположена та или иная область человеческого организма. Так, например, изменение венозного давления, связанного с сокращениями сердечной мышцы, не было обнаружено в брюшной полости ни в вертикальном, ни в горизонтальном положении тела. Присасывающая сила сердца перестает оказывать воздействие на уровень давления в нижней полой вене сразу под диафрагмой.

Источник

Что такое венозный возврат

Депрессорные системные изменения могут сопровождаться как уменьшением венозного возврата, так и возрастанием его величины. Совпадение направленности системной реакции с изменениями венозного возврата имеет место при депрессорном синокаротидном рефлексе (повышении давления в каротидных синусах), в ответ на ишемию миокарда, при уменьшении объема циркулирующей крови. Системная депрессорная реакция может сопровождаться и возрастанием притока крови к сердцу по полым венам, как это наблюдается, например, при гипоксии (дыхание газовой смесью с пониженным до 6—10 % содержанием в ней О2), гиперкапнии (6 % СО2), введении в сосудистое русло ацетилхолина, стимулятора р-адренорецепто-ров изопротеренола, местного гормона брадикинина, простагландина Е1.

Степень увеличения суммарного венозного возврата крови к сердцу при применении различных препаратов (или нервных влияний на систему) определяется не только величиной, но и направленностью изменений кровотока в каждой из полых вен. Кровоток по передней полой вене у животных в ответ на введение вазоактивных веществ (любой направленности действия) или при нейрогенных стимулах всегда увеличивается. Различная направленность изменений кровотока отмечена только в задней полой вене (рис. 9.19). Эта разнонаправленность изменений кровотока в полых венах и является фактором, обусловливающим относительно небольшое увеличение общего венозного возврата сравнительно с его изменениями при однонаправленных сдвигах кровотоков в полых венах.

Что такое венозный возврат. Смотреть фото Что такое венозный возврат. Смотреть картинку Что такое венозный возврат. Картинка про Что такое венозный возврат. Фото Что такое венозный возвратРис. 9.19. Разнонаправленные изменения венозного возврата по передней и задней полым венам при прессорном рефлексе. Сверху вниз: системное артериальное давление (мм рт. ст.), кровоток по передней полой вене, кровоток по задней полой вене, отметка времени (10 с), отметка раздражения. Исходная величина кровотока по передней полой вене — 52 мл/мин, по задней полой вене — 92,7 мл/мин.

Механизм разнонаправленных сдвигов кровотока в полых венах состоит в том, что в результате преобладающего влияния вазоконстрикторных препаратов на артериолы имеет место большая степень увеличения сопротивления сосудов бассейна брюшной аорты по сравнению с изменениями сопротивления сосудов бассейна плечеголовной артерии. Это приводит к перераспределению сердечного выброса между указанными сосудистыми руслами (увеличение доли сердечного выброса в направлении сосудов бассейна плечеголовной артерии и уменьшение — в направлении бассейна брюшной аорты) и вызывает соответствующие разнонаправленные изменения кровотока в полых венах.

Помимо вариабельности кровотока в задней полой вене, зависящей от гемодинамических факторов, на его величину оказывают существенное влияние другие системы организма (дыхательная, мышечная, нервная). Так, перевод животного на искусственное дыхание почти в 2 раза уменьшает кровоток по задней полой вене, а наркоз и открытая грудная клетка еще в большей степени снижают его величину.

Спланхническое сосудистое русло в результате изменений находящегося в нем объема крови вносит наибольший вклад (по сравнению с другими регионами системы кровообращения) в величину венозного возврата. Изменения емкости отдельных сосудистых регионов спланхнического русла неодинаковы, и их вклад в обеспечение венозного возврата различен. Например, при прессорном синокаротидном рефлексе имеет место уменьшение объема селезенки на 2,5 мл/кг массы тела, объема печени — на 1,1 мл/кг, а кишечника — лишь на 0,2 мл/кг (в целом спланхнический объем уменьшается на 3,8 мл/кг). Во время умеренной геморрагии (9 мл/кг) выброс крови из селезенки составляет 3,2 мл/кг (35 %), из печени — 1,3 мл/кг (14 %) и из кишечника — 0,6 мл/кг (7 %), что в сумме составляет 56 % величины изменений общего объема крови в организме.

Указанные изменения емкостной функции сосудов органов и тканей организма участвуют в величине венозного возврата крови к сердцу за счет сдвигов кровотока в нижней полой вене и, тем самым, в преднагрузке сердца (т. е. конечно-диастолическое давление), и в результате оказывают влияние на формирование величины сердечного выброса и уровня системного артериального давления.

Источник

Чурсин В.В. Клиническая физиология кровообращения (методические материалы к лекциям и практическим занятиям)

Информация

Содержит информацию о физиологии кровообращения, нарушениях кровообращения и их вариантах. Также представлена информация о методах клинической и инструментальной диагностики нарушений кровообращения.

Предназначается для врачей всех специальностей, курсантов ФПК и студентов медвузов.

Введение

Более образно это можно представить в следующем виде (рисунок 1).

Что такое венозный возврат. Смотреть фото Что такое венозный возврат. Смотреть картинку Что такое венозный возврат. Картинка про Что такое венозный возврат. Фото Что такое венозный возврат

Кровообращение – определение, классификация

Объем циркулирующей крови (ОЦК)

Что такое венозный возврат. Смотреть фото Что такое венозный возврат. Смотреть картинку Что такое венозный возврат. Картинка про Что такое венозный возврат. Фото Что такое венозный возврат

Основные свойства и резервы крови

Сердечно-сосудистая система

Сердце

Что такое венозный возврат. Смотреть фото Что такое венозный возврат. Смотреть картинку Что такое венозный возврат. Картинка про Что такое венозный возврат. Фото Что такое венозный возврат

Поскольку q и Q величины постоянные, можно пользоваться их произведением, вычисленным один раз и навсегда, что равно 2,05 кг * м/мл.

Функциональные резервы сердца и сердечная недостаточность

Факторы, определяющие нагрузку на сердце

Что такое венозный возврат. Смотреть фото Что такое венозный возврат. Смотреть картинку Что такое венозный возврат. Картинка про Что такое венозный возврат. Фото Что такое венозный возврат

Здесь также важен вопрос: можно ли усилить эффект закона Г. Анрепа и А. Хилла? Исследования E.H. Sonnenblick (1962-1965 г.г.) показали, что при чрезмерной постнагрузке миокард способен увеличивать мощность, скорость и силу сокращения под воздействием положительно инотропных средств.

Уменьшение постнагрузки.

Каппиляры

Реология крови

Регуляция кровообращения

Определение показателей центральной гемодинамики

Что такое венозный возврат. Смотреть фото Что такое венозный возврат. Смотреть картинку Что такое венозный возврат. Картинка про Что такое венозный возврат. Фото Что такое венозный возврат

Что такое венозный возврат. Смотреть фото Что такое венозный возврат. Смотреть картинку Что такое венозный возврат. Картинка про Что такое венозный возврат. Фото Что такое венозный возврат

Клиническая диагностика вариантов кровообращения

Клинические признаки дисфункции сердечно-сосудистой системы:

— Предположить наличие сердечно-сосудистой дисфункции можно, в первую очередь, на основании ненормальных АД, ЧСС, ЦВД. Однако нормальные величины этих показателей могут быть и при наличии скрытых – ещё компенсированных нарушений.

— Диурез – снижение или повышение мочеотделения также могут быть признаком дисфункции кровообращения.

— Наличие отеков и влажных хрипов в лёгких.

Функциональные показатели для оценки состояния кровообращения.

Физиологический прирост АД к ЧСС – в норме зависимость величины САД от ЧСС отражается следующим уравнением:

Соответственно при ЧСС 120 в минуту САД должно быть как минимум 150 мм рт.ст.

Индексы кровообращения (индексы Туркина). Первый из них определяется отношением СДД и ЧСС. Если это отношение равно 1 или близко к 1 (0,9-1,1), то СВ в норме. Второй определяется отношением СДД в мм рт.ст и ЦВД в мм вод.ст. Если это отношение равно 1 или близко к 1 (0,9-1,1), то артериальные и

Источник

2.2. Механизмы венозного возврата по системе нижней полой вены.

Венозный возврат в вертикальном положении.

Переход человека в вертикальное положение сопровождается падением ударного объема падает на 40-50 %, сердечного выброса – на 30 %, частота сердечных сокращений увеличивается на 10-20 ударов в минуту. Причиной этих изменений является перераспределение объема крови из интраторакального сосудистого ложа в нижние конечности. При этом количество крови в сердце и легочном круге падает примерно до 25 % (Heyman F., Strid K., 1994).

Perko G. et al. (1995) c помощью электрического импеданса определяли изменения объемов жидкостей тела человека в различных его положениях. Увеличение электрического импеданса на уровне груди и уменьшение на уровне нижних конечностей при вставании соответствует перемещению около 80 % крови из внутригрудного вместилища в нижние конечности. Точка индифферентности сосудистого объема располагалась между пупком и гребнем подвздошной кости и была независима от активации мышечно-венозной помпы.

Исследования Vanhoutte P.M. (1991) позволили определить, что при вставании появляется большой гидростатический градиент. В брюшной полости увеличение венозного гидростатического давления выравнивается увеличенным тканевым давлением, создаваемым висцеральной оболочкой брюшины. Висцеральные вены располагаются в идеальной позиции для модуляции сосудистой емкости. В конечностях артериальное и венозное давления увеличиваются одинаково при гидростатической нагрузке, так как в движущей силе кровотока изменений не происходит.

Повышение давления в венах нижних конечностей имеет два следствия. Одним из них является увеличение капиллярного давления, вызывающее повышенную фильтрацию, другим – скопление крови в венозном русле. Аккумуляция крови в венах нижних конечностей ограничивается механическими свойствами венозной стенки и при помощи клапанов, которые, по мнению автора, «подразбивают» столб крови на сегменты. Давление внутри таких сегментов меньше, чем, если бы не было клапанов. В результате повышения венозного давления в нижних конечностях аккумулируется дополнительно несколько сот мл крови.

Механизмы компенсации венозного возврата в условиях ортостаза были изучены при пассивном наклоне с переходом в вертикальное положение. Венозное кровообращение регистрировалось с помощью эходопплерокардиографии у 30 здоровых добровольцев в 4 положениях: в лежачем на спине, и при 20, 40, 60 градусах вертикального наклона (Guazzi M. et al. 1995). В указанных уровнях наклона часть исследуемых (20 человек) находилась по 10 минут, другая (10 человек) – по 45 минут. При 20 градусах наклона частота сердечных сокращений, артериальное давление, конечно-диастолический и ударный объемы были устойчивы. Однако диастолическая площадь правого желудочка была уменьшена на 18 %, пиковые трансмитральные и транстрикуспидальные Е скорости правого и левого желудочков были снижены на 14% и 17%, соответственно, и Е/А скоростное пиковое отношение желудочков уменьшилось на 6% и 13%, соответственно. Различие в предсердно-желудочковом давлении было снижено с обеих сторон, апредсердный вклад в желудочковое заполнение сохранялся. Полученные результаты при 20 градусах вертикального наклона могут быть объяснены с позиции диастолической желудочковой взаимозависимости: правопредсердное давление и правожелудочковый объем уменьшаются в ответ на уменьшенный венозный возврат; уменьшение объема правого желудочка будет увеличивать левожелудочковую диастолическую растяжимость и уменьшать левопредсердное давление, облегчая в действительности заполнение желудочка. Сразу после наклона, легочный бассейн крови поддерживает левожелудочковое заполнение и выброс, что компенсирует немедленное уменьшение в правожелудочковом ударном объеме, благодаря чему сохраняется нормальный ударный объем правого желудочка, несмотря на сниженную преднагрузку. Таким образом, нормальное сердце способно к компенсации небольшого или умеренного уменьшения венозного возврата, главным образом, за счет гемодинамического урегулирования в сердце и легких. При более значительных уровнях ограничения венозного возврата (при 40% и 60% вертикального наклона) это урегулирование было недостаточно, и уменьшение ударного объема частично компенсировалось увеличением частоты сердечных сокращений без инотропного эффекта. Адаптивные ответы при тех же уровнях наклона при продолжительности 45 минут не становились истощенными у нормальных людей, и были сопоставимы с таковыми для 10 минутной продолжительности.

ВЕНОЗНЫЙ ВОЗВРАТ ПРИ ДВИЖЕНИИ

При движении во время езды на велосипеде объем крови в нижних конечностях уменьшается приблизительно на 30 %, в то время как конечно-диастолический объем сердца увеличивается на 10 %, легочный объем крови – на 20 %. При повышении нагрузки объем крови в нижних конечностях уменьшается еще больше (до 23 %), снижается объем крови в брюшной полости, особенно в селезенке (около 50 %), почках (около 25 %), печени (около 20 %), а легочный объем крови продолжал увеличиваться (до 50 %) (Flamm S.D., Taki J., Moore R. et al., 1990) Эти исследования показали, что нагрузка в вертикальном положении приводит к перераспределению крови от нижних конечностей и брюшных органов к сердцу и легким отчетливо коррелируя в динамическом процессе с потреблением кислорода. На основании полученных данных можно утверждать, что в этих условиях легкие могут действовать как гемодинамический буфер в течение периодов остро увеличенного венозного возврата.

При нагрузке сердце получает повышенный приток крови в результате действия, главным образом, мышечных насосов нижних конечностей и других групп мышц верхних конечностей, груди и живота (Linden R.J., 1995). Показатели гемодинамики при физической нагрузке изменяются следующим образом: частота сердечных сокращений увеличивается в 2,5 раза по сравнению с покоем, сердечный выброс увеличивается 5-6 раз, но ударный объем максимально повышается только вдвое. Прирост ударного объема возникает как из-за увеличения конечно-диастолического объема, который, в свою очередь может повышаться не более чем на 50 %, так и за счет снижения конечно-систолического объема также не более чем на 50 %. Ограничение увеличения размеров сердца и объемов его полостей является функционально выгодным и поддерживается 3-мя механизмами: закон Франка-Старлинга, повышенная активность симпатических нервов, увеличение частоты сердечных сокращений. В соответствии с законом Франка-Старлинга, повышенный приток крови к сердцу увеличивает конечно-диастолическое давление и объем желудочка, что растягивает мышечные волокна и приводит к повышенной силе сокращения и увеличению ударного объема. Увеличение активности влияния симпатических нервов на сердечную мышцу приводит к уменьшению конечно-систолического объема и увеличению ударного объема сердца. Наиболее важным механизмом, контролирующим размеры сердца при увеличении венозного возврата, является изменение частоты сердечных сокращений. Этот механизм связан с возникновением сердечного рефлекса с участием предсердных рецепторов. Предсердные рецепторы располагаются в субэндокардиальном слое на уровне соединений верхней и нижней полых вен и правого предсердия, легочных вен и левого предсердия. Они оказываются чувствительны к изменениям размеров и давления в полости предсердий. Афферентным путем рефлекса являются блуждающие нервы, эфферентным – симпатические нервы сердца. Повышенный приток крови повышает давление в предсердиях, что увеличивает импульсацию предсердных рецепторов и заканчивается увеличением частоты сердечных сокращений. Увеличение частоты сердечных сокращений уменьшает время заполнения и поддерживает конечно-диастолический объем на относительно постоянном уровне, несмотря на повышение венозного возврата.

При движении в вертикальном положении начинает работать мышечно-венозная помпа голени. Этот насос работает следующим образом: во время мышечной систолы опорожняются мышечные вены, кровь из синусов выбрасывается в глубокие венозные магистрали, резко повышая в них объемную скорость кровотока. Дистальные клапаны в глубоких и коммуникантных венах вследствие возникающего гидростатического градиента закрываются, препятствуя возникновению ретроградного кровотока. В поверхностных венах происходит кратковременный стаз с повышением давления. Во время расслабления мышц венозная кровь поступает в синусы из мышечных вен, и, через арочные вены, из магистральных вен.

Нормально функционирующая мышечно-венозная помпа способна поддерживать венозный отток от нижних конечностей соответственно артериальному притоку при нагрузке, без дополнительного расширения вен нижних конечностей, довольно значимо снижая венозное давление стопы. Помимо снижения венозного давления важными механизмами работы помпы является снижение капиллярного давления, освобождение объемов крови, дополнительно скопившейся при переходе в вертикальное положение.

В исследованиях Alimi Y.S., Barthelemy P., Juhan C. (1994) представлены данные о нормальных взаимоотношениях давления в трех вместилищах мышечно-венозной помпы (поверхностном и глубоком; задних и переднем большеберцовом) и венозного давления в большой подкожной (БПВ) и подколенной (ПВ) венах в различных положениях тела при работе насоса. В покое в положении сидя и, особенно, стоя происходит повышение венозного давления только в БПВ и ПВ в результате гидростатической силы венозного столба крови без повышения давления в мышечных вместилищах, клапаны которых способны противодействовать этому воздействию. В положении на корточках давление в мышечных вместилищах значительно повышается и вызывает дополнительное повышение венозного давления в ПВ, хотя давление в БПВ незначительно падает. Во время приема Valsalva клапанная протекция мышечных вместилищ оказывается несостоятельной, что приводит к повышению давлений в заднем глубоком и переднем большеберцовом вместилищах. При этом важно отметить, что венозное давление в БПВ и ПВ во время приема Valsalva растет только тогда, когда тело полностью выпрямлено как в положении лежа или стоя. В положении на корточках такого дополнительного повышения за счет приема Valsalva не происходит вследствие, по всей вероятности, компрессии бедренной вены паховой связкой. В течение сгибания стопы действие мышечно-венозной помпы происходит, главным образом, благодаря сокращению переднего большеберцового вместилища, а разгибание – глубокого заднего вместилища. Большого значения действие поверхностного заднего вместилища не имеет. В течение каждого движения значительное повышение давления происходило в одном из вместилищ и вызывало повышение венозных давлений БПВ и ПВ. При этом давление в ПВ изменялось незначительно, демонстрируя хороший венозный отток в случае действия нормально функционирующей мышечно-венозной помпы. Давление в БПВ в течение сгибания стопы повышалось значительнее, чем при разгибании. Поэтому, создается впечатление, что мышечная активность имеет влияния главным образом на вариации давления в поверхностной венозной системе.

Таким образом, можно говорить о центральных и периферических механизмах венозного возврата. К центральным механизмам можно отнести деятельность сердца, легких и диафрагмы, функционирующих в тесном взаимодействии. К периферическим механизмам – реактивность и состояние венозных сосудов, тонус окружающих тканей и деятельность мышечно-венозной помпы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *