Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠ·ΠΌΠ°: ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, элСмСнты, Π²ΠΈΠ΄Ρ‹, Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ сСчСния

Π’ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ ΠΌΡ‹ рассмотрим ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅, основныС элСмСнты, Π²ΠΈΠ΄Ρ‹ ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ сСчСния ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½Π°Ρ информация сопровоТдаСтся наглядными рисунками для Π»ΡƒΡ‡ΡˆΠ΅Π³ΠΎ восприятия.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ·ΠΌΡ‹

ΠŸΡ€ΠΈΠ·ΠΌΠ° – это гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π° Π² пространствС; ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ с двумя ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ гранями (ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°ΠΌΠΈ), Π° Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π³Ρ€Π°Π½ΠΈ ΠΏΡ€ΠΈ этом ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°ΠΌΠΈ.

На рисункС Π½ΠΈΠΆΠ΅ прСдставлСн ΠΎΠ΄ΠΈΠ½ ΠΈΠ· самых распространСнных Π²ΠΈΠ΄ΠΎΠ² ΠΏΡ€ΠΈΠ·ΠΌΡ‹ – Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ прямая (ΠΈΠ»ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄). Π”Ρ€ΡƒΠ³ΠΈΠ΅ разновидности Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ рассмотрСны Π² послСднСм Ρ€Π°Π·Π΄Π΅Π»Π΅ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π Π°Π·Π²Ρ‘Ρ€Ρ‚ΠΊΠ° ΠΏΡ€ΠΈΠ·ΠΌΡ‹ – Ρ€Π°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ всСх Π³Ρ€Π°Π½Π΅ΠΉ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости (Ρ‡Π°Ρ‰Π΅ всСго, ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· оснований). Π’ качСствС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° – для ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ прямой ΠΏΡ€ΠΈΠ·ΠΌΡ‹:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: свойства ΠΏΡ€ΠΈΠ·ΠΌΡ‹ прСдставлСны Π² ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΡƒΠ±Π»ΠΈΠΊΠ°Ρ†ΠΈΠΈ.

Π’Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ сСчСния ΠΏΡ€ΠΈΠ·ΠΌΡ‹

ΠŸΡ€ΠΈΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅: Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ сСчСния Π½Π΅ Ρ‚Π°ΠΊ распространСны, поэтому ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎ Π½Π° Π½ΠΈΡ… ΠΎΡΡ‚Π°Π½Π°Π²Π»ΠΈΠ²Π°Ρ‚ΡŒΡΡ Π½Π΅ Π±ΡƒΠ΄Π΅ΠΌ.

Π’ΠΈΠ΄Ρ‹ ΠΏΡ€ΠΈΠ·ΠΌ

Рассмотрим разновидности Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ с Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ основаниСм.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ГСомСтрия. 10 класс

ΠšΠΎΠ½ΡΠΏΠ΅ΠΊΡ‚ ΡƒΡ€ΠΎΠΊΠ°

ГСомСтрия, 10 класс

ΠŸΠ΅Ρ€Π΅Ρ‡Π΅Π½ΡŒ вопросов, рассматриваСмых Π² Ρ‚Π΅ΠΌΠ΅:

ΠŸΡ€ΠΈΠ·ΠΌΠ° – ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, составлСнный ΠΈΠ· Ρ€Π°Π²Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², располоТСнных Π² ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостях, ΠΈ n ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠΎΠ².

Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ – всС Π³Ρ€Π°Π½ΠΈ, ΠΊΡ€ΠΎΠΌΠ΅ оснований.

Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° – ΠΎΠ±Ρ‰ΠΈΠ΅ стороны Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ.

Основания ΠΏΡ€ΠΈΠ·ΠΌΡ‹ – Ρ€Π°Π²Π½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, располоТСнныС Π² ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостях.

ΠŸΡ€ΡΠΌΠ°Ρ ΠΏΡ€ΠΈΠ·ΠΌΠ° – ΠΏΡ€ΠΈΠ·ΠΌΠ°, Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ пСрпСндикулярны основаниям.

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΈΠ·ΠΌΠ° – прямая ΠΏΡ€ΠΈΠ·ΠΌΠ°, Π² основании ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π»Π΅ΠΆΠΈΡ‚ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠ»Π½ΠΎΠΉ повСрхности ΠΏΡ€ΠΈΠ·ΠΌΡ‹ – сумма ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ всСх Π΅Π΅ Π³Ρ€Π°Π½Π΅ΠΉ.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности ΠΏΡ€ΠΈΠ·ΠΌΡ‹ – сумма ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ Π΅Π΅ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ.

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ – ΠΏΡ€ΠΈΠ·ΠΌΠ°, всС Π³Ρ€Π°Π½ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ – ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹.

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ – ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ Π² основании ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π»Π΅ΠΆΠΈΡ‚ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ.

Атанасян Π›. Π‘., Π‘ΡƒΡ‚ΡƒΠ·ΠΎΠ² Π’. Π€., ΠšΠ°Π΄ΠΎΠΌΡ†Π΅Π² Π‘. Π‘. ΠΈ Π΄Ρ€. ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°: Π°Π»Π³Π΅Π±Ρ€Π° ΠΈ Π½Π°Ρ‡Π°Π»Π° матСматичСского Π°Π½Π°Π»ΠΈΠ·Π°,

гСомСтрия. ГСомСтрия. 10–11 классы : ΡƒΡ‡Π΅Π±. Для ΠΎΠ±Ρ‰Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚. ΠΎΡ€Π³Π°Π½ΠΈΠ·Π°Ρ†ΠΈΠΉ : Π±Π°Π·ΠΎΠ²Ρ‹ΠΉ ΠΈ ΡƒΠ³Π»ΡƒΠ±Π». Π£Ρ€ΠΎΠ²Π½ΠΈ – М. : ΠŸΡ€ΠΎΡΠ²Π΅Ρ‰Π΅Π½ΠΈΠ΅, 2014. – 255 с.

ΠžΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹Π΅ элСктронныС рСсурсы:

ΠžΡ‚ΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΉ Π±Π°Π½ΠΊ Π·Π°Π΄Π°Π½ΠΈΠΉ ЀИПИ http://ege.fipi.ru/

ВСорСтичСский ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ изучСния

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΏΡ€ΠΈΠ·ΠΌΡ‹.

Рассмотрим Π΄Π²Π° Ρ€Π°Π²Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° А1А2. Аn ΠΈ Π’1Π’2. Π’n, располоТСнных Π² ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостях Ξ± ΠΈ Ξ² соотвСтствСнно Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ А1Π’1, А2Π’2. АnΠ’n, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠ΅ соотвСтствСнныС Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ (рис. 1).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π”Π°Π΄ΠΈΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠŸΡ€ΠΈΠ·ΠΌΠ° – ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, составлСнный ΠΈΠ· Ρ€Π°Π²Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², располоТСнных Π² ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостях, ΠΈ n ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠΎΠ².

ΠŸΡ€ΠΈ этом Ρ€Π°Π²Π½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, располоТСнныС Π² ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостях, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ основаниями ΠΏΡ€ΠΈΠ·ΠΌΡ‹, Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ – Π±ΠΎΠΊΠΎΠ²Ρ‹ΠΌΠΈ гранями ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠžΠ±Ρ‰ΠΈΠ΅ стороны Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ Π±ΡƒΠ΄Π΅ΠΌ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ Π±ΠΎΠΊΠΎΠ²Ρ‹ΠΌΠΈ Ρ€Π΅Π±Ρ€Π°ΠΌΠΈ ΠΏΡ€ΠΈΠ·ΠΌΡ‹.

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Ρ€Π°Π²Π½Ρ‹ ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ (ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹Π΅ стороны ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠΎΠ²).

ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ· ΠΊΠ°ΠΊΠΎΠΉ-Π½ΠΈΠ±ΡƒΠ΄ΡŒ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ основания ΠΊ плоскости Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ основания, называСтся высотой ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ всС высоты ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Ρ€Π°Π²Π½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ основания располоТСны Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостях. Π’Π°ΠΊΠΆΠ΅ высота ΠΏΡ€ΠΈΠ·ΠΌΡ‹ ΠΌΠΎΠΆΠ΅Ρ‚ Π»Π΅ΠΆΠ°Ρ‚ΡŒ Π²Π½Π΅ ΠΏΡ€ΠΈΠ·ΠΌΡ‹ (рис. 2).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Рисунок 2 – Наклонная ΠΏΡ€ΠΈΠ·ΠΌΠ°

Если Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹ пСрпСндикулярны основаниям, Ρ‚ΠΎ ΠΏΡ€ΠΈΠ·ΠΌΠ° называСтся прямой. Π’ ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠΌ случаС, ΠΏΡ€ΠΈΠ·ΠΌΠ° называСтся Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ.

Высота прямой ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Ρ€Π°Π²Π½Π° Π΅Π΅ Π±ΠΎΠΊΠΎΠ²ΠΎΠΌΡƒ Ρ€Π΅Π±Ρ€Ρƒ.

На рисункС 3 ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ прямых ΠΏΡ€ΠΈΠ·ΠΌ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Рисунок 3 – Π’ΠΈΠ΄Ρ‹ ΠΏΡ€ΠΈΠ·ΠΌ.

ΠŸΡ€ΡΠΌΠ°Ρ ΠΏΡ€ΠΈΠ·ΠΌΠ° называСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ, Ссли Π΅Π΅ основаниС – ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Π’ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΈΠ·ΠΌΠ΅ всС Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ – Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ.

Иногда Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΏΡ€ΠΈΠ·ΠΌΡƒ, Π³Ρ€Π°Π½ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ΠΎΠΌ. Π˜Π·Π²Π΅ΡΡ‚Π½Ρ‹ΠΉ Π²Π°ΠΌ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ – это ΠΊΡƒΠ±.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠ»Π½ΠΎΠΉ повСрхности ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности ΠΏΡ€ΠΈΠ·ΠΌΡ‹.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ ΠΏΠΎΠ»Π½ΠΎΠΉ повСрхности ΠΏΡ€ΠΈΠ·ΠΌΡ‹ (SΠΏΠΎΠ»Π½) называСтся сумма ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ всСх Π΅Π΅ Π³Ρ€Π°Π½Π΅ΠΉ, Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности (SΠ±ΠΎΠΊ) ΠΏΡ€ΠΈΠ·ΠΌΡ‹ – сумма ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ Π΅Π΅ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π²Π΅Ρ€Π½ΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ равСнство: SΠΏΠΎΠ»Π½= SΠ±ΠΎΠΊ+2Sосн, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠ»Π½ΠΎΠΉ повСрхности Π΅ΡΡ‚ΡŒ сумма ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности ΠΈ ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠΉ ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ основания.

Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности прямой ΠΏΡ€ΠΈΠ·ΠΌΡ‹?

Π’Π΅ΠΎΡ€Π΅ΠΌΠ°. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности прямой ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€Π° основания Π½Π° высоту ΠΏΡ€ΠΈΠ·ΠΌΡ‹.

Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ прямой ΠΏΡ€ΠΈΠ·ΠΌΡ‹ – ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, основания ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… – стороны основания ΠΏΡ€ΠΈΠ·ΠΌΡ‹, Π° высоты Ρ€Π°Π²Π½Ρ‹ высотС ΠΏΡ€ΠΈΠ·ΠΌΡ‹ – h. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Ρ€Π°Π²Π½Π° суммС ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ². ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ высоты h ΠΈ стороны основания. ΠŸΡ€ΠΎΡΡƒΠΌΠΌΠΈΡ€ΡƒΠ΅ΠΌ эти ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΈ вынСсСм ΠΌΠ½ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒ h Π·Π° скобки. Π’ скобках ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ сумму всСх сторон основания, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ основания P. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ SΠ±ΠΎΠΊ=Pоснh.

ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½Π°Ρ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°

ΠŸΡ€ΡΠΌΠΎΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄, основаниС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ – ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ называСтся ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ.

Π’Π΅ΠΎΡ€Π΅ΠΌΠ°. ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ Π΄Π»ΠΈΠ½Ρ‹ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° Ρ€Π°Π²Π΅Π½ суммС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π΄Π»ΠΈΠ½ Ρ‚Ρ€Π΅Ρ… Π΅Π³ΠΎ Ρ€Π΅Π±Π΅Ρ€, исходящих ΠΈΠ· ΠΎΠ΄Π½ΠΎΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Рисунок 4 – ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄

Рассмотрим ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ ABCDA1B1C1D1 ΠΈ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π΄Π»ΠΈΠ½Ρ‹ Π΅Π³ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ А1Π‘.

Для этого рассмотрим Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ А1АБ:

Π Π΅Π±Ρ€ΠΎ АА1 пСрпСндикулярно плоскости основания (ABC) (Ρ‚.ΠΊ. ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ прямой), Π·Π½Π°Ρ‡ΠΈΡ‚ АА1 пСрпСндикулярна любой прямой, Π»Π΅ΠΆΠ°Ρ‰Π΅ΠΉ Π² плоскости основания, Π² Ρ‚ΠΎΠΌ числС АБ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΔА1АБ – ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ.

По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ: А1Π‘ 2 =АА1 2 +АБ 2 (1).

Π’Π°ΠΊ ΠΊΠ°ΠΊ Π² основании ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, Ρ‚ΠΎ Π’Π‘=АD.

Π§Ρ‚ΠΎ ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ

Доказанная Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° являСтся Π°Π½Π°Π»ΠΎΠ³ΠΎΠΌ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π° (для ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°), поэтому Π΅Π΅ ΠΈΠ½ΠΎΠ³Π΄Π° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ пространствСнной Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠΎΠΉ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ ΠΈ Ρ€Π°Π·Π±ΠΎΡ€ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Π½ΠΈΠΉ Ρ‚Ρ€Π΅Π½ΠΈΡ€ΠΎΠ²ΠΎΡ‡Π½ΠΎΠ³ΠΎ модуля

НайдитС для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΈ ΠΏΠ°Ρ€Ρƒ

1)Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹2) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹3) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

4)Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹5) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

6) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

ВсС изобраТСния ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹: ΠΏΡ€ΠΈΠ·ΠΌΡ‹ ΠΈ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ. Вспомним, Ρ‡Ρ‚ΠΎ основаниСм ΠΏΡ€ΠΈΠ·ΠΌΡ‹ являСтся ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ количСство Π²Π΅Ρ€ΡˆΠΈΠ½ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² Π² основаниях ΠΏΡ€ΠΈΠ·ΠΌ ΠΈ ΡΠΎΠΏΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ΠΈΡ… с Π½ΡƒΠΆΠ½Ρ‹ΠΌ ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ ΠΎΡ‚Π²Π΅Ρ‚: 1 ΠΈ 3, 2 ΠΈ 4, 5 ΠΈ 6.

КакиС ΠΈΠ· пСрСчислСнных ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ элСмСнтами ΠΏΡ€ΠΈΠ·ΠΌΡ‹?

1) ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ плоскости

Вспомним сначала, ΠΊΠ°ΠΊΠΈΠ΅ элСмСнты Π΅ΡΡ‚ΡŒ Ρƒ ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π­Ρ‚ΠΎ Ρ€Π΅Π±Ρ€Π°, Π³Ρ€Π°Π½ΠΈ, Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹, основания, высота, диагональ.

Π Π΅Π±Ρ€Π°, высота ΠΈ диагональ ΠΏΡ€ΠΈΠ·ΠΌΡ‹ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ. Π“Ρ€Π°Π½ΠΈ ΠΈ основания – это ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ части плоскостСй. Π’Π΅Ρ€ΡˆΠΈΠ½Ρ‹ – Ρ‚ΠΎΡ‡ΠΊΠΈ. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, подходят Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ 2, 3,4.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΠΏΡ€ΠΈΠ·ΠΌΠ° β€” ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ разновидности ΠΏΡ€ΠΈΠ·ΠΌ

ЗдравствуйтС, ΡƒΠ²Π°ΠΆΠ°Π΅ΠΌΡ‹Π΅ Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»ΠΈ Π±Π»ΠΎΠ³Π° KtoNaNovenkogo.ru. БСгодня ΠΌΡ‹ расскаТСм ΠΎ Ρ‚Π°ΠΊΠΎΠΉ интСрСсной гСомСтричСской Ρ„ΠΈΠ³ΡƒΡ€Π΅, ΠΊΠ°ΠΊ ΠŸΠ Π˜Π—ΠœΠ.

Школьники ΡΡ‚Π°Π»ΠΊΠΈΠ²Π°ΡŽΡ‚ΡΡ с Π½Π΅ΠΉ Π½Π° ΡƒΡ€ΠΎΠΊΠ°Ρ… Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² 10 классС. БоотвСтствСнно, Ρ‚Π΅, ΠΊΡ‚ΠΎ Ρ€Π΅ΡˆΠΈΠ» ΡƒΠΉΡ‚ΠΈ послС 9-Π³ΠΎ класса Π² ΠΊΠΎΠ»Π»Π΅Π΄ΠΆ, этих Π·Π½Π°Π½ΠΈΠΉ Π»ΠΈΡˆΠ΅Π½Ρ‹. И ΠΌΡ‹ восполним этот ΠΏΡ€ΠΎΠ±Π΅Π».

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

А ΡΡ‚Π°Ρ€ΡˆΠ΅ΠΊΠ»Π°ΡΡΠ½ΠΈΠΊΠ°ΠΌ наша ΡΡ‚Π°Ρ‚ΡŒΡ (ΠΎΡ‡Π΅Π½ΡŒ Π½Π° это надССмся) ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ ΠΊ сдачС Π•Π“Π­. На экзамСнах ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΏΠΎΠΏΠ°Π΄Π°ΡŽΡ‚ΡΡ нСсколько вопросов, связанных с ΠŸΠ Π˜Π—ΠœΠΠœΠ˜.

ΠŸΡ€ΠΈΠ·ΠΌΠ° – это гСомСтричСская Ρ„ΠΈΠ³ΡƒΡ€Π°, которая прСдставляСт собой ΠΎΠ±ΡŠΠ΅ΠΌΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ. Π”Π²Π΅ Π΅Π³ΠΎ стороны Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… основаниях ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ. А Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ – это ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‚ΡΡ с основаниями.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Выглядит классичСская ΠΏΡ€ΠΈΠ·ΠΌΠ° Ρ‚Π°ΠΊ, ΠΊΠ°ΠΊ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° рисункС Π²Ρ‹ΡˆΠ΅.

На этом рисункС Ρ‡Π΅Ρ‚ΠΊΠΎ Π²ΠΈΠ΄Π½Ρ‹ всС элСмСнты ΠΏΡ€ΠΈΠ·ΠΌΡ‹:

Π’ зависимости ΠΎΡ‚ Π²ΠΈΠ΄Π° основания ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Π±Ρ‹Π²Π°ΡŽΡ‚:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π Π°Π·Π½ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ ΠΏΡ€ΠΈΠ·ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ бСсконСчным. ΠœΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π² основании ΠΈ 10-ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΈ 20-ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΈ Π΄Π°ΠΆΠ΅ 100-ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ. Но, ΠΊ ΡΡ‡Π°ΡΡ‚ΡŒΡŽ, Ρ‚Π°ΠΊΠΈΠ΅ Ρ„ΠΈΠ³ΡƒΡ€Ρ‹ ΠΏΠΎΠΏΠ°Π΄Π°ΡŽΡ‚ΡΡ ΠΊΡ€Π°ΠΉΠ½Π΅ Ρ€Π΅Π΄ΠΊΠΎ. И ΠΈΡ… Ρ‚ΠΎΡ‡Π½ΠΎ Π½Π΅ ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‚ Π² школС.

Π˜ΡΡ‚ΠΎΡ€ΠΈΡ изучСния ΠΏΡ€ΠΈΠ·ΠΌΡ‹

О сущСствовании ΠΏΡ€ΠΈΠ·ΠΌ Π·Π½Π°Π»ΠΈ Π΅Ρ‰Π΅ Π² Π”Ρ€Π΅Π²Π½Π΅ΠΌ Π•Π³ΠΈΠΏΡ‚Π΅ ΠΈ Π”Ρ€Π΅Π²Π½Π΅ΠΌ Π’Π°Π²ΠΈΠ»ΠΎΠ½Π΅. Об этом ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΡŽΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ архСологичСскиС Π½Π°Ρ…ΠΎΠ΄ΠΊΠΈ, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, остатки Π·Π΄Π°Π½ΠΈΠΉ ΠΈ памятников.

Но Π½Π°ΡƒΡ‡Π½ΠΎΠ΅ описаниС ΠΏΡ€ΠΈΠ·ΠΌ – это заслуга дрСвнСгрСчСских ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠ². Π’ ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, АристотСля. Он Π΄Π°ΠΆΠ΅ Ρ†Π΅Π»ΠΎΠ΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π½Π°ΡƒΠΊΠΈ ΠΏΡ€ΠΈΠ΄ΡƒΠΌΠ°Π» – стСрСомСтриСй. Π’ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π΅ с грСчСского это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ пространства (Β«ΠΌΠ΅Ρ‚Ρ€ΠΈΠΎΒ» β€” ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅, «стСрСос» β€” пространство).

И Π² Ρ€Π°ΠΌΠΊΠ°Ρ… этой Π½Π°ΡƒΠΊΠΈ ΠΡ€ΠΈΡΡ‚ΠΎΡ‚Π΅Π»ΡŒ занимался ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΈΠ·ΠΌ, ΠΊΡƒΠ±ΠΎΠ², ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ΠΎΠ² ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… ΠΎΠ±ΡŠΠ΅ΠΌΠ½Ρ‹Ρ… гСомСтричСских Ρ„ΠΈΠ³ΡƒΡ€.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

ЕстСствСнно, Π½Π΅ обошСл своим Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΈΠ·ΠΌΡ‹ ΠΈ Π·Π½Π°ΠΌΠ΅Π½ΠΈΡ‚Ρ‹ΠΉ дрСвнСгрСчСский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ ΠΈ ΡƒΡ‡Π΅Π½Ρ‹ΠΉ – Π•Π²ΠΊΠ»ΠΈΠ΄. Π’ своих Ρ‚Ρ€ΡƒΠ΄Π°Ρ… ΠΎΠ½ Π΄Π°Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ описаниС:

ΠŸΡ€ΠΈΠ·ΠΌΠ° – это тСлСсная (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ пространствСнная) Ρ„ΠΈΠ³ΡƒΡ€Π°, которая Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½Π° ΠΌΠ΅ΠΆΠ΄Ρƒ нСсколькими плоскостями. Π”Π²Π΅ ΠΈΠ· Π½ΠΈΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ, Ρ€Π°Π²Π½Ρ‹ ΠΈ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹. А Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π² любом количСствС ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹.

Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ‹ ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Рассмотрим для ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° Ρ‚Π°ΠΊΡƒΡŽ Π²ΠΎΡ‚ ΠΏΡ€ΠΈΠ·ΠΌΡƒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Она ΠΏΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½Π°Ρ ΠΈ состоит ΠΈΠ· ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΡ… элСмСнтов:

ΠŸΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ элСмСнты Π΅ΡΡ‚ΡŒ Ρƒ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΏΡ€ΠΈΠ·ΠΌΡ‹, нСзависимо ΠΎΡ‚ Π΅Π΅ Π²ΠΈΠ΄Π°.

Разновидности ΠΏΡ€ΠΈΠ·ΠΌ

ВсС ΠΏΡ€ΠΈΠ·ΠΌΡ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄Π΅Π»ΠΈΡ‚ΡŒ Π½Π° Ρ‚Ρ€ΠΈ ΠΊΠ°Ρ‚Π΅Π³ΠΎΡ€ΠΈΠΈ:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

ВмСсто Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ

Π‘Π»ΠΎΠ²ΠΎ ΠŸΠ Π˜Π—ΠœΠ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ, хотя ΠΈΠΌΠ΅Π½Π½ΠΎ это Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ считаСтся Π³Π»Π°Π²Π½Ρ‹ΠΌ. И ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠ½ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ записано Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… словарях. Но Π΅ΡΡ‚ΡŒ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹:

А Π΅Ρ‰Π΅ Β«ΠŸΡ€ΠΈΠ·ΠΌΠ°Β» β€” это ΠΊΠΎΠ΄ΠΎΠ²ΠΎΠ΅ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ совСтской радиостанции 5-АК. Π•ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΎΠΉ Ρ…ΠΎΠΊΠΊΠ΅ΠΉΠ½Ρ‹ΠΉ ΠΊΠ»ΡƒΠ± Π² Π›Π°Ρ‚Π²ΠΈΠΈ – Β«ΠŸΡ€ΠΈΠ·ΠΌΠ°-Π ΠΈΠ³Π°Β». И Π½Π°ΠΊΠΎΠ½Π΅Ρ†, Π² Ѐинляндии сущСствуСт ΡΠ΅Ρ‚ΡŒ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Π³Π°Π·ΠΈΠ½ΠΎΠ² Β«PRISMAΒ».

Π£Π΄Π°Ρ‡ΠΈ Π²Π°ΠΌ! Π”ΠΎ скорых встрСч Π½Π° страницах Π±Π»ΠΎΠ³Π° KtoNaNovenkogo.ru

Π­Ρ‚Π° ΡΡ‚Π°Ρ‚ΡŒΡ относится ΠΊ Ρ€ΡƒΠ±Ρ€ΠΈΠΊΠ°ΠΌ:

ΠšΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΈ ΠΈ ΠΎΡ‚Π·Ρ‹Π²Ρ‹ (2)

Бпасибо! Π₯ΠΎΡ€ΠΎΡˆΠ°Ρ ΡΡ‚Π°Ρ‚ΡŒΡ.

Π‘Π΅Π΄Π½Ρ‹Π΅ Π΄Π΅Ρ‚ΠΈ, Π·Π°Ρ‡Π΅ΠΌ ΠΈΠΌ Π·Π°Π±ΠΈΠ²Π°ΡŽΡ‚ Π³ΠΎΠ»ΠΎΠ²Ρƒ всякими гСомСтричСскими ΠΏΡ€ΠΈΠ·ΠΌΠ°ΠΌΠΈ? Π’ΠΎΠΎΠ±Ρ‰Π΅, Ссли провСсти опрос срСди взрослых, понадобилось Π»ΠΈ ΠΊΠΎΠΌΡƒ-Π½ΠΈΠ±ΡƒΠ΄ΡŒ это Π·Π½Π°Π½ΠΈΠ΅, ΡƒΠ²Π΅Ρ€Π΅Π½, ΠΌΡ‹ Π½Π΅ ΡƒΡΠ»Ρ‹ΡˆΠΈΠΌ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π°.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΡ€ΠΈΠ·ΠΌΠ° ΠΈ Π΅Π΅ элСмСнты. CΠΏΡ€Π°Π²ΠΎΡ‡Π½ΠΈΠΊ Ρ€Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€Π°

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹ΠŸΡ€ΠΈΠ·ΠΌΠ° β€” ΠΎΠ΄Π½Π° ΠΈΠ· разновидностСй ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠ°. Π•Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ€Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π²Π²ΠΎΠ΄ΠΈΡ‚ Π½Π° ΠΎΠΏΠΈΡΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΡƒΡ€ΠΎΠ²Π½Π΅: рассмотрим Π΄Π²Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ плоскости Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹Π² ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½ΠΈΡ…. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Ρ‡Π΅Ρ€Π΅Π· всС Π΅Π³ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС Π΄ΠΎ пСрСсСчСния с Π΄Ρ€ΡƒΠ³ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒΡŽ Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹ΠœΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° призмыназываСтся n-ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΈΠ·ΠΌΠΎΠΉ.

ΠŸΠ°ΠΌΡΡ‚ΠΊΠ° Ρ€Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π½Π° ΠΏΡ€ΠΈΠ·ΠΌΡƒ :Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

МоТно Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ основныС понятия, связанныС с Π΄Π°Π½Π½Ρ‹ΠΌ ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊΠΎΠΌ. К Π½ΠΈΠΌ относятся:

Высота ΠΏΡ€ΠΈΠ·ΠΌΡ‹ β€” любой ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹, пСрпСндикулярный ΠΊ плоскостям основания, Ρ‚Π°ΠΊΠΎΠΉ, Ρ‡Ρ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹, Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹
Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒ ΠΏΡ€ΠΈΠ·ΠΌΡ‹ β€” это ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π΄Π²Π΅ Π»ΡŽΠ±Ρ‹Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΡ€ΠΈΠ·ΠΌΡ‹ ΠΈ Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ Π½ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π΅Π΅ Π³Ρ€Π°Π½Π΅ΠΉ.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠ»Π½ΠΎΠΉ повСрхности β€” сумма ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ всСх Π³Ρ€Π°Π½Π΅ΠΉ ΠΏΡ€ΠΈΠ·ΠΌΡ‹.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности β€” сумма ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ.

ΠŸΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹Π΅ сСчСниС β€” сСчСниС, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ пСрпСндикулярно с Π±ΠΎΠΊΠΎΠ²ΠΎΠΌΡƒ Ρ€Π΅Π±Ρ€Ρƒ ΠΏΡ€ΠΈΠ·ΠΌΡ‹.

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ β€” это ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, проходящая Ρ‡Π΅Ρ€Π΅Π· Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ ΠΈ диагональ основания. ΠœΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Π² Π΅Π΅ пСрСсСчСнии с ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒΠ½Ρ‹ΠΌ сСчСниСм.

Π—Π°ΠΌΠ΅Ρ‚ΠΊΠ° Ρ€Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€Π° ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ : МоТно ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ для диагонального сСчСния β€” сСчСниС, содСрТащСС Π΄Π²Π΅ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ: диагональ ΠΏΡ€ΠΈΠ·ΠΌΡ‹ ΠΈ диагональ Π΅Π΅ основания.

НСслоТно ΠΏΠΎΠ΄ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ количСство Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρƒ n-ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Оно вычисляСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

ΠŸΡ€ΡΠΌΠ°Ρ ΠΏΡ€ΠΈΠ·ΠΌΠ° β€” такая ΠΏΡ€ΠΈΠ·ΠΌΠ°, Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ пСрпСндикулярны основаниям
Если этого Π½Π΅ происходит, Ρ‚ΠΎ ΠΏΡ€ΠΈΠ·ΠΌΠ° называСтся Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ. Π£ прямой ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Π΄Π»ΠΈΠ½Π° высоты Ρ€Π°Π²Π½Π° Π΄Π»ΠΈΠ½Π΅ Π±ΠΎΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π°.

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΈΠ·ΠΌΠ° β€” такая прямая ΠΏΡ€ΠΈΠ·ΠΌΠ°, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π² основаниях Π»Π΅ΠΆΠ°Ρ‚ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ. Π•Π΅ высота Ρ€Π°Π²Π½Π° Π±ΠΎΠΊΠΎΠ²ΠΎΠΌΡƒ Ρ€Π΅Π±Ρ€Ρƒ.

ОбъСм ΠΏΡ€ΠΈΠ·ΠΌΡ‹:

1) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹, Π³Π΄Π΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹β€” ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ основания, Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹β€” высота.
2) Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹, Π³Π΄Π΅ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹β€” ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠ³ΠΎ сСчСния, Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹β€” Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности:
ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒΡŽ повСрхности ΠΏΡ€ΠΈΠ·ΠΌΡ‹ называСтся сумма ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ всСх Π΅Π΅ Π³Ρ€Π°Π½Π΅ΠΉ.

ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности ΠΏΡ€ΠΈΠ·ΠΌΡ‹ β€” это сумма ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ всСх Π΅Π΅ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ. Для прямой ΠΏΡ€ΠΈΠ·ΠΌΡ‹ боковая ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ вычислСна ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅: Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹, Π³Π΄Π΅ P β€” ΠΏΠ΅Ρ€ΠΈΠΌΠ΅Ρ‚Ρ€ основания.

ΠŸΡ€ΠΈ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ ΠΊ Π•Π“Π­ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ особоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° Ρ€Π°Π·Π½ΠΈΡ†Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ понятиями ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΈ прямая ΠΏΡ€ΠΈΠ·ΠΌΠ°. Π˜Ρ… часто ΠΏΡƒΡ‚Π°ΡŽΡ‚.Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹ Если Π²Ρ‹ Ρ€Π΅ΡˆΠ°Π΅Ρ‚Π΅ Π·Π°Π΄Π°Ρ‡Ρƒ ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ β€” Π²Π²ΠΎΠ΄ΠΈΡ‚Π΅ систСму Oxyz Ρ‚Π°ΠΊ, ΠΊΠ°ΠΊ это ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° рисункС справа (ΠΊΠ»ΠΈΠΊΠ½ΠΈΡ‚Π΅ для увСличСния). На рисункС: Π½Π°Ρ‡Π°Π»ΠΎ отсчСта являСтся сСрСдиной Ρ€Π΅Π±Ρ€Π° основания, ось абсцисс Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π° вдоль стороны основания, ось ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΏΠΎ высотС основания, Π° ось Π°ΠΏΠΏΠ»ΠΈΠΊΠ°Ρ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ высотС.

Π Π΅ΠΏΠ΅Ρ‚ΠΈΡ‚ΠΎΡ€ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π² МосквС (Π‘Ρ‚Ρ€ΠΎΠ³ΠΈΠ½ΠΎ). Колпаков А.Н.

Бпасибо Π·Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π», всС ΠΎΡ‡Π΅Π½ΡŒ доступно объяснСно.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΡ€ΠΈΠ·ΠΌΠ°. Π’ΠΈΠ΄Ρ‹ ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Если Π²Ρ‹ ΡƒΠΆΠ΅ Π·Π½Π°ΠΊΠΎΠΌΡ‹ с ΠΏΡ€ΠΈΠ·ΠΌΠΎΠΉ, ΠΈ Ρ…ΠΎΡ‚ΠΈΡ‚Π΅ для сСбя просто Ρ‡Ρ‚ΠΎ-Ρ‚ΠΎ ΡƒΡ‚ΠΎΡ‡Π½ΠΈΡ‚ΡŒ, Ρ‚ΠΎ Π²Π°ΠΌ Π²ΠΏΠΎΠ»Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Ρ…Π²Π°Ρ‚ΠΈΡ‚ΡŒ Ρ‚Π°Π±Π»ΠΈΡ†Ρ‹, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π° Π² ΠΊΠΎΠ½Ρ†Π΅ ΡΡ‚Π°Ρ‚ΡŒΠΈ.

ΠœΡ‹ ΠΆΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅ΠΌ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹ΠΉ Ρ€Π°Π·Π³ΠΎΠ²ΠΎΡ€.

ΠŸΡ€ΠΈΠ·ΠΌΠΎΠΉ (n-ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΈΠ·ΠΌΠΎΠΉ) называСтся ΠΌΠ½ΠΎΠ³ΠΎΠ³Ρ€Π°Π½Π½ΠΈΠΊ, составлСнный ΠΈΠ· Π΄Π²ΡƒΡ… Ρ€Π°Π²Π½Ρ‹Ρ… ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹, Π»Π΅ΠΆΠ°Ρ‰ΠΈΡ… Π² ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… плоскостях, ΠΈ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠΎΠ² Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ – всС Π³Ρ€Π°Π½ΠΈ, ΠΊΡ€ΠΎΠΌΠ΅ оснований ( ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°ΠΌΠΈ ).

Π‘ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° – ΠΎΠ±Ρ‰ΠΈΠ΅ стороны Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… Π³Ρ€Π°Π½Π΅ΠΉ ( ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой ΠΈ Ρ€Π°Π²Π½Ρ‹ ).

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒ – ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π΄Π²Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΡ€ΠΈΠ·ΠΌΡ‹, Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΠΎΠ΄Π½ΠΎΠΉ Π³Ρ€Π°Π½ΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Высота ΠΏΡ€ΠΈΠ·ΠΌΡ‹ – пСрпСндикуляр, ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹ΠΉ ΠΈΠ· ΠΊΠ°ΠΊΠΎΠΉ-Π½ΠΈΠ±ΡƒΠ΄ΡŒ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ основания ΠΊ плоскости Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ основания.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒΠ½Π°Ρ ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ – ΠΏΠ»ΠΎΡΠΊΠΎΡΡ‚ΡŒ, проходящая Ρ‡Π΅Ρ€Π΅Π· Π±ΠΎΠΊΠΎΠ²ΠΎΠ΅ Ρ€Π΅Π±Ρ€ΠΎ ΠΏΡ€ΠΈΠ·ΠΌΡ‹ ΠΈ диагональ основания.

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅ сСчСниС –пСрСсСчСниС ΠΏΡ€ΠΈΠ·ΠΌΡ‹ ΠΈ диагональной плоскости.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

ΠŸΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΠΎΠ΅ сСчСниС – пСрСсСчСниС ΠΏΡ€ΠΈΠ·ΠΌΡ‹ ΠΈ плоскости, пСрпСндикулярной Π΅Π΅ Π±ΠΎΠΊΠΎΠ²ΠΎΠΌΡƒ Ρ€Π΅Π±Ρ€Ρƒ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π Π°Π·Π»ΠΈΡ‡Π°ΡŽΡ‚ ΠΏΡ€ΠΈΠ·ΠΌΡ‹ прямыС (Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Ρ€Π΅Π±Ρ€Π° пСрпСндикулярны плоскости основания) ΠΈ Π½Π°ΠΊΠ»ΠΎΠ½Π½Ρ‹Π΅ (Π½Π΅ прямыС).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π‘Ρ€Π΅Π΄ΠΈ прямых ΠΏΡ€ΠΈΠ·ΠΌ Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹Π΅.

ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΈΠ·ΠΌΠ° – это прямая ΠΏΡ€ΠΈΠ·ΠΌΠ°, основаниСм ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ являСтся ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΌΠ½ΠΎΠ³ΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ (равносторонний Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ, ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΡˆΠ΅ΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠΈ Ρ‚.ΠΏ.).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ – это ΠΏΡ€ΠΈΠ·ΠΌΠ°, основаниями ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΡ‹.

Π‘Ρ€Π΅Π΄ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ΠΎΠ² Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ Π½Π°ΠΊΠ»ΠΎΠ½Π½Ρ‹Π΅, прямыС ΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Ρ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

ΠŸΡ€ΡΠΌΠΎΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ β€” это ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ 4 Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ β€” ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ.

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ β€” это ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ всС Π³Ρ€Π°Π½ΠΈ β€” ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ (ΠΈΠ»ΠΈ прямой ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ с ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠΌ Π² основании).

Наклонный ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄ β€” это ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄, Π±ΠΎΠΊΠΎΠ²Ρ‹Π΅ Π³Ρ€Π°Π½ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π½Π΅ пСрпСндикулярны основаниям.

Частный случай ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° – ΠΊΡƒΠ±.

ΠšΡƒΠ± – ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄, всС Π³Ρ€Π°Π½ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ – ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π”Π°Π»Π΅Π΅ – обСщанная Ρ‚Π°Π±Π»ΠΈΡ†Π°, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ собраны всС основныС Π²ΠΈΠ΄Ρ‹ ΠΏΡ€ΠΈΠ·ΠΌΡ‹, с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ приходится Π²ΡΡ‚Ρ€Π΅Ρ‡Π°Ρ‚ΡŒΡΡ Π½Π° Π•Π“Π­ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΡ€ΠΈΠ·ΠΌΡ‹Π‘ΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅ Ρ‚Π°ΠΊΠΆΠ΅ «ОбъСм ΠΏΡ€ΠΈΠ·ΠΌΡ‹. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности ΠΏΡ€ΠΈΠ·ΠΌΡ‹Β».

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π΅ ΠΏΠΎΡ‚Π΅Ρ€ΡΡ‚ΡŒ страничку, Π²Ρ‹ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ ΡΠΎΡ…Ρ€Π°Π½ΠΈΡ‚ΡŒ Π΅Π΅ Ρƒ сСбя:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *