Что такое вещественные числа примеры
Числа. Действительные числа.
Вещественное, или действительное число возникло из необходимости измерений геометрической и физической величин мира. Кроме того, для проведения операций извлечения корня, вычисления логарифма, решения алгебраических уравнений и т.д.
Натуральные числа образовались с развитием счета, а рациональные с потребностью управлять частями целого, то вещественные числа (действительные) используются для измерений непрерывных величин. Т.о., расширение запаса чисел, которые рассматриваются, привело к множеству вещественных чисел, которое кроме рациональных чисел состоит из других элементов, называемых иррациональные числа.
Множество вещественных чисел обозначают и зачастую называют вещественной или числовой прямой. Вещественные числа состоят из простых объектов: целых и рациональных чисел.
Всякое рациональное число легко представить как конечную дробь либо бесконечную периодическую десятичную дробь.
Бесконечная десятичная дробь, это десятичная дробь, у которой после запятой есть бесконечное число цифр.
Числа, которые нельзя представить в виде , являются иррациональными числами.
Пример:
Всякое иррациональное число легко представить как бесконечную непериодическую десятичную дробь.
Рациональные и иррациональные числа создают множество действительных чисел. Всем действительным числам соответствует одна точка координатной прямой, которая называется числовая прямая.
Для числовых множеств используются обозначения:
Теория бесконечных десятичных дробей.
Вещественное число определяется как бесконечная десятичная дробь, т.е.:
где ± есть один из символов + или −, знак числа,
a0 — целое положительное число,
a1,a2,…an,… — последовательность десятичных знаков, т.е. элементов числового множества <0,1,…9>.
Бесконечную десятичную дробь можно объяснить как число, которое на числовой прямой находится между рациональными точками типа:
Сравнение вещественных чисел как бесконечных десятичных дробей происходит поразрядно. Например, предположим даны 2 положительны числа:
Если a00, то α b0 то α>β. Когда a0=b0 переходим к сравнению следующего разряда. И т.д. Когда α≠β, значит после конечного количества шагов встретится первый разряд n, такой что an≠bn. Если ann, то α bn то α>β.
Арифметические операции с бесконечными десятичными дробями это непрерывное продолжение соответствующих операций с рациональными числами. Например, суммой вещественных чисел α и β является вещественное число α+β, которое удовлетворяет таким условиям:
Аналогично определяет операция умножения бесконечных десятичных дробей.
2.6. Вещественные числа¶
Вещественные, или действительные, числа — это, грубо говоря, и целые и дробные. Они, конечно, нередко возникают в задачах, но при работе с ними возникают серьезные проблемы, которые не в каждой книге по программированию будут описаны.
На самом деле эта тема неожиданно сложная. Постарайтесь понять всё, что написано в этом разделе, но если что-то не поймете по началу, это не страшно. Главное — два правила работы с вещественными числами, которые я напишу ниже.
2.6.1. Запись чисел с плавающей точкой¶
Вы точно знаете, что вещественные числа можно записывать в виде «12.34» — это «двенадцать целых тридцать четыре сотых».
Иногда вместо точки используется запятая, но даже в обычной жизни сейчас, кажется, чаще используют точку, а уж в программировании и подавно почти всегда используется точка. Вообще, в контексте записи вещественных чисел слова «точка» и «запятая» являются синонимами, например, можно сказать, что в числе 12.34 две цифры после запятой, хотя на самом деле я там написал точку. Или, например, фразы «с плавающей точкой» и «с плавающей запятой» обозначают одно и то же.
Но есть также и другой формат записи — так называемая запись чисел «с плавающей точкой». (По идее это должны проходить в школе классе эдак в 8, поэтому я описываю тут это в первую очередь для младшеклассников, а также для тех, кто успел забыть; ну и чтобы четко обозначить термины «мантисса» и «экспонента».)
При записи чисел с плавающей точкой запись имеет следующий вид: 1.234e1. Она состоит из двух частей, разделенных английской буквой e (может использоваться как маленькая, так и заглавная буква, хотя сейчас вроде чаще используют маленькую). Такая запись обозначает: «возьми число 1.234 и сдвинь в нем точку на 1 позицию направо» — соответственно, получается то же 12.34. Аналогично, возможна запись 0.1234e2 — взять число 0.1234 и сдвинуть точку на две позиции направо, это будет то же 12.34. Число после e может быть быть нулем, это значит, что точку сдвигать не надо: 12.34e0 — это то же самое, что 12.34. Число может быть отрицательным, что значит, что точку надо сдвигать влево, а не вправо: 123.4e-1 или 1234e-2 — это все тоже 12.34. (Обратите внимание, что в записи 1234e-2 вообще отсутствует точка — она тогда, конечно, неявно подразумевается на конце записи числа 1234, точно так же, как 1234 и 1234.0 — это одно и то же.)
То есть еще раз: 0.1234e2, 1.234e1, 12.34e0, 12.34, 123.4e-1, 1234e-2, и даже 123400e-4 и 0.001234e4 — это все записи одного и того же числа 12.34. Записи разные, число одно и то же.
Видно, что одно и то же число можно записать разными способами. Чаще пишут так, чтобы либо перед точкой была ровно одна ненулевая цифра (1.234e1), или чтобы перед точкой был ноль, зато сразу после точки шла ненулевая цифра (0.1234e2), но в целом любая из приведенных в предыдущем абзаце записей является правильной, и есть много правильных записей, которые не приведены выше.
Еще примеры: 1.3703599907444e2 и 13703599907444e-11 — это 137.03599907444.
Запись чисел с плавающей точкой особенно удобна, когда вам надо хранить очень большие или очень маленькие числа. Например, расстояние от Земли до Солнца примерно 147 миллионов километров, т.е. 147000000000 метров. Так записывать очень неудобно, потому что надо тщательно считать нолики. Намного удобнее написать 147e9 — сразу понятно, что будет девять ноликов, и сразу понятно, что это 147 миллиардов. Или, например, атом водорода весит примерно 1.66e-24 грамм, т.е. 0.00000000000000000000000166 грамм (если я не ошибся в количестве ноликов 🙂 ). Ясно, что первая запись намного удобнее.
2.6.2. Как компьютер хранит вещественные числа¶
Вещественные числа, с которыми может иметь дело компьютер, могут быть как очень большими, так и очень маленькими. С другой стороны, вещественные числа в принципе невозможно хранить абсолютно точно, т.к. в них могут быть очень много знаков (даже бесконечно много) после точки.
Поэтому компьютер хранит числа в записи с плавающей точкой, при этом он хранит мантиссу и экспоненту по отдельности (но рядом в памяти, конечно, и в конечном счете, конечно, для вас как для программиста это будет одна переменная, хранящая вещественное число, а не две отдельных переменных, хранящих мантиссу и экспоненту). Более того, поскольку вообще говоря в вещественных числах в мантиссе может быть бесконечно много цифр, компьютер хранит лишь несколько первых цифр мантиссы.
Вообще, на самом деле компьютер хранит числа в двоичной системе счисления (т.е. на самом деле компьютер хранит не десятичную экспоненту, как это было описано выше, а двоичную), но это вам будет пока не особенно важно, потому что весь ввод-вывод вещественных чисел использует все-таки десятичную экспоненту.
2.6.3. Типы данных¶
Все современные компьютеры умеют работать со следующими тремя типами данных:
Уточню, что значит «столько-то цифр мантиссы» и «такая-то экспонента». Как я писал выше, в мантиссе хранится только несколько первых цифр. Собственно, в single хранится только 7-8 цифр, в double 15-16, в expended 19-20. То есть например, если вы попытаетесь в single записать число 1.234567890123456789e20, то на самом деле запишется примерно 1.234567e20, остальные цифры будут отброшены. (На самом деле все немного сложнее из-за того, что числа хранятся в двоичной системе счисления, собственно поэтому я и пишу 7-8 цифр, потому что на самом деле как повезет в плане двоичной системы счисления.)
Ограничение же на экспоненту обозначает, что числа со слишком большой экспонентой вы просто не сможете записать в нужный тип (например, 1.23e100 не влезет в single), будет или ошибка, или получится специальное значение «бесконечность»; а числа со слишком большой отрицательной экспонентой просто будут считаться равными нулю (если вы попробуете записать 1.23e-100 в single, то получится 0).
Эти типы поддерживаются процессором (т.е. процессор умеет выполнять команду «сложить два числа типа single» или «вычесть два числа типа extended» и т.п.). Поэтому эти типы присутствуют (возможно, с другими названиями) почти во всех существующих языках программирования.
К сожалению, конкретно в питоне нет простой возможности выбрать один из этих трех типов, можно работать только с double, причем в питоне вместо слова double используется название float (что вообще странно, потому что в других языках float — это single, а вовсе не double). Таким образом,
Стандартные вещественные числа в питоне называются float, хранят 15-16 цифр в мантиссе и экспоненту до примерно ±300.
2.6.4. Про «значащие цифры»¶
Как мы видели, одно и то же число можно записать с плавающей точкой по-разному. Чисто 12.34 можно записать как 0.0000000001234e11, и как 1234000000000e-11, и т.п. Конечно, компьютер будет хранить число каким-то конкретным образом. Более того, если, например, попробовать записать 0.0000000001234e11 например в single, то вы можете сказать, что будут записаны только нули (потому что мантисса хранит только 7-8 цифр).
На самом деле компьютер хранит числа чуть сложнее. В первом приближении можно считать, что компьютер хранит числа так, чтобы до точки была ровно одна ненулевая цифра (про это я писал выше), т.е. число 12.34 компьютер будет хранить как 1.234e-1 и никак иначе, а например расстояние от Земли до Солнца в метрах — как 1.47e11 и не иначе. (А на самом деле еще сложнее из-за двоичной системы счисления).
Поэтому компьютер никогда не будет хранить в мантиссе ведущих нулей. В этом смысле говорят о «значащих цифрах» — это цифры в записи числа, начиная с первой ненулевой цифры. Например, в числе 12.3405 значащие цифры — это 1, 2, 3, 4, 0, 5, а в числе 0.00000000000000000000000000166 значащие цифры — это 1, 6 и 6 (и компьютер будет хранить это число как 1.66e-27).
Поэтому говорят, что тип single хранит 7-8 значащих цифр, double — 15-16 значащих цифр, extended — 19-20.
2.6.5. Про дырки между числами¶
(Понимание про «дырки» для начальных задач не особо нужно, но в дальнейшем бывает полезно.)
Из-за того, что компьютер хранит строго определенное количество значащих цифр, получается, что между соседними числами конкретного типа есть «дыры». Например, пусть мы возьмем тип single. В него невозможно записать число 1.2345678901234 — можно записать только 1.234567 или 1.234568. Получается, что между числами 1.234567 или 1.234568 есть целая «дыра» длиной 0.000001, в которой нет ни одного числа, которое может храниться в single.
Когда сами числа не очень большие, то и «дыры» не очень длинные. Но когда числа становятся большими, то и «дыры» тоже становятся больше. Например, число 123456789 тоже невозможно записать в single, можно записать только 123456700 или 123456800 — «дыра» получается уже длины 100!
(На самом деле конкретные числа, которые возможно записать — они немного другие, опять же из-за двоичной системы счисления, и соответственно размеры «дырок» тоже другие, они будут степенями двойки, а не десятки, но качественно все описанное выше верно.)
2.6.6. Базовые операции¶
С вещественными числами доступны все привычные уже вам операции: +-*/, abs, sqrt, ввод-вывод через float(input()), map(float, …) и print. Также работает деление с остатком (// и %).
2.6.7. Про вывод подробнее¶
Часто в наших задачах вы можете встретить фразу «выведите ответ с точностью до 5 знаков после запятой», или «с пятью верными знаками» и т.п. Такие фразы почти всегда обозначают, что ваш ответ должен содержать 5 верных цифр после запятой, но они не запрещают вам выводить больше цифр. Вы можете вывести хоть 20 цифр — если первые пять из них верные, то ответ будет зачтен. И наоборот, вы можете вывести меньше цифр — если невыведенные цифры — нули, то ответ тоже будет зачтен. Вообще, строго говоря, такая фраза в условии просто обозначает, что ваш ответ должен отличаться от верного не более чем на 1e-5.
Пример: если правильный ответ на задачу — 0.123456789, то вы можете вывести 0.12345, или 0.123459876, или даже 1.2345e-1 (т.к. это то же самое, что и 0.12345). А если правильный ответ — 0.10000023, то вы можете вывести 0.10000, 0.10000987 или даже просто 0.1 или 1e-001 (т.к. это то же самое, что и 0.10000).
В частности, это обозначает, что вы можете пользоваться стандартной функцией вывода (print) без каких-либо особых ухищрений; не надо округлять число, не надо форматировать вывод и т.д.
Вот если в задаче строго сказано «вывести ровно с 5 знаками после запятой», то это другое дело. Но на приличных олимпиадах такое бывает очень редко.
2.6.8. Полезные функции¶
В питоне есть несколько функций, которые вам будут полезны при работе с вещественными числами. Для ряда из этих функций надо в самом начале программы написать from math import * (как вы уже писали для квадратного корня). Кроме того, имейте в виду, что с этими функциями также могут возникать проблемы погрешностей (см. ниже).
Пример программы, использующей эти функции:
2.6.9. Погрешности¶
2.6.9.1. Два правила работы с вещественными числами¶
Сначала напишу два главных правила работы с вещественными числами:
Правило первое: не работайте с вещественными числами. А именно, если возможно какую-то задачу решить без применения вещественных чисел, и это не очень сложно, то лучше ее решать без вещественных чисел.
[1] | (1, 2) за исключением случаев, когда вам не важно, что произойдет в случае точного равенства, см. ниже |
Ниже я разъясняю оба этих правила.
2.6.9.2. Необходимость использования eps ¶
Как уже говорилось выше, компьютер не может хранить все цифры числа, он хранит только несколько первых значащих цифр. Поэтому, если, например, разделить 1 на 3, то получится не 0.33333… (бесконечно много цифр), а, например, 0.33333333 (только несколько первых цифр). Если потом умножить результат обратно на 3, то получится не ровно 1, а 0.99999999. (Аналогичный эффект есть на простых калькуляторах; на продвинутых калькуляторах он тоже есть, но проявляется сложнее.)
(Вы можете попробовать потестировать, правда ли, что (1/3)*3 равно 1, и обнаружить, что проверка if (1 / 3) * 3 == 1 выполняется. Да, тут повезло — опять-таки из-за двоичной системы получилось округление в правильную сторону. Но с другими числами это может не пройти, например, проверка if (1 / 49) * 49 == 1 не срабатывает.)
На самом деле все еще хуже: компьютер работает в двоичной системе счисления, поэтому даже числа, в которых в десятичной системе счисления имеют конечное число цифр, в компьютере могут представляться неточно. Поэтому, например, сравнение if 0.3 + 0.6 == 0.9 тоже не сработает: если сложить 0.3 и 0.6, то получится не ровно 0.9, а слегка отличающее число (0.899999 или 0.900001 и т.п.)
Действительно, напишите и запустите следующую программу:
и вы увидите, что она выводит Fail.
(Более того, print(0.3+0.6) выводит у меня 0.8999999999999999.)
Итак, погрешности, возникающие при любых вычислениях, — это основная проблема работы с вещественными числами. Поэтому если вам надо сравнить два вещественных числа, то надо учитывать, что, даже если на самом деле они должны быть равны, в программе они могут оказаться не равны.
Итак, именно поэтому получаем
(Первое правило будет дальше 🙂 )
2.6.9.3. Выбор eps ¶
(И вообще, конечно, вариантов много — подошло бы любое число, которое существенно меньше 1e-3 и существенно больше 1e-12. Вот это и есть «хорошая» ситуация, когда варианты «равны» и «не равны» разделены очень сильно. А если бы они не были бы так разделены, то весь фокус с eps не прошел бы. Это то, про что я писал немного выше.).
В частности, поэтому на олимпиадах очень не любят давать задачи, которые реально требуют вычислений с вещественными числами — никто, даже само жюри, не может быть уверено в том, что у них eps выбрано верно. Но иногда такие задачи все-таки дают, т.к. никуда не денешься.
И поэтому получаем
В частности, в будущем вы заметите, что во многих задачах, которые, казалось бы, подразумевают вещественные входные данные (например, задачи на геометрию), входные данные тем не менее обычно целочисленны. Это сделано именно для того, чтобы можно было написать решение полностью в целых числах, и не иметь проблем с погрешностью. (Не всегда такое решение возможно, и уж тем более не всегда оно простое, но тем не менее.) Поэтому если вы можете написать такое решение, лучше написать именно его.
2.6.10. Дополнительный материал. «Грубые» задачи: когда eps не нужно¶
Здесь мы сравниваем два вещественных числа, чтобы найти максимум из них. Казалось бы, в соответствии со сказанным выше, в сравнении нужен eps … но нет! Ведь если два числа на самом деле равны, то нам все равно, в какую из веток if мы попадем — обе ветки будут верными! Поэтому eps тут не нужен.
Так иногда бывает — когда вам все равно, в какую ветку if’а вы попадете, если два сравниваемых числа на самом деле равны между собой. В таком случае eps использовать не надо. Но каждый раз тщательно думайте: а правда ли все равно? Всегда лучше перестраховаться и написать eps (выше с eps тоже все работало бы), за исключением совсем уж простых случаев типа приведенного выше вычисления максимума.
Еще пример: считаем сумму положительных элементов массива
Еще пример, где уже eps необходим: определим, какое из двух чисел больше:
Вообще, тут полезно следующее понятие. Назовем задачу (или фрагмент кода) грубым, если ответ на задачу (или результат работы этого фрагмента) меняется не очень сильно (не скачком) при небольшом изменении входных данных, и негрубым в противоположном случае. (Понятие грубости пришло из физики.)
Тогда в задаче (фрагменте кода) eps нужен, если задача является негрубой: тогда существуют такие входные данные, которые вам важно отличить от очень близких им. Например, если надо определить, какое из двух чисел больше, то при входных данных «0.3 0.3» надо ответить «они равны», но при очень небольшом изменении входных данных, например, на «0.300001 0.3» ответ резко меняется: надо отвечать «первое больше».
Если же задача (или фрагмент кода) является грубым, то, скорее всего, в нем можно обойтись без eps : если вы чуть-чуть ошибетесь при вычислениях, ответ тоже изменится не очень сильно. Например, если вы вычисляете максимум из двух чисел, то на входных данных «0.3 0.3» ответ 0.3, а на входных данных «0.300001 0.3» ответ 0.300001, т.е. изменился не очень сильно.
Но, конечно, все приведенное выше рассуждение про грубые задачи — очень примерно, и в каждой задаче надо отдельно думать.
2.6.11. Примеры решения задач¶
Приведу несколько примеров задач, аналогичных тем, которые встречаются на олимпиадах и в моем курсе.
Маша наблюдает из дома за грозой. Она увидела молнию, а через \(T\) секунд услышала гром от молнии. Она знает, что в той стороне, где была молния, есть одинокое дерево, и боится, не попала ли молния в это дерево. Расстояние от Машиного дома до дерева равно \(L\) метров, скорость звука равна \(V\) метров в секунду, скорость света считаем бесконечной. Определите, могла ли молния попасть в дерево.
Пример:
Итоговый код получается такой:
Выбор eps тут в существенной мере произвольный, подробнее про выбор eps описано выше в основной части теории.
Пример:
Что такое вещественные числа?
Веще́ственное, или действи́тельное число [1] — математическая абстракция, возникшая из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких операций как извлечение корня, вычисление логарифмов, решение алгебраических уравнений [2].
Если натуральные числа возникли в процессе счета, рациональные — из потребности оперировать частями целого, то вещественные числа предназначены для измерения непрерывных величин. Таким образом, расширение запаса рассматриваемых чисел привело к множеству вещественных чисел, которое помимо чисел рациональных включает также другие элементы, называемые иррациональными числами.
Наглядно понятие вещественного числа можно представить себе при помощи числовой прямой. Если на прямой выбрать направление, начальную точку и единицу длины для измерения отрезков, то каждому вещественному числу можно поставить в соответствие определённую точку на этой прямой, и обратно, каждая точка будет представлять некоторое, и притом только одно, вещественное число. Вследствие этого соответствия термин числовая прямая обычно употребляется в качестве синонима множества вещественных чисел.
С точки зрения современной математики, множество вещественных чисел — непрерывное упорядоченное поле. Это определение, или эквивалентная система аксиом, в точности определяет понятие вещественного числа в том смысле, что существует только одно, с точностью до изоморфизма, непрерывное упорядоченное поле.
Множество вещественных чисел имеет стандартное обозначение — R («полужирное R»), или (англ. blackboard bold «R») от лат. realis — действительный.
Виды чисел.
У нас есть числа натуральные, целые, рациональные и иррациональные, а также вещественные или действительные и еще есть другие, но в школьной программе в основном используют эти числа.
Натуральные числа ( N ) − это числа, используемые для счета предметов. Нуль не является натуральным числом.
Например: 1; 2; 3; 132; 168; 326; 548; 10050…
Целые числа ( Z ) — множество чисел, получающееся в результате арифметических операций сложения (+) и вычитания (−) натуральных чисел.
Например: …−3; −2; 1; 0; 548; 10050…
Рациональные числа ( Q ) – это положительные и отрицательные числа можно представить в виде обыкновенной несократимой дроби вида:
где m−целое число (числитель), n – натуральное число (знаменатель).
Например:
Иррациональные числа ( I ) − числа, которые не представимыми в виде дроби вида
Например: √2; √5; π; e
Вещественные (действительные) числа ( R ).
Рациональные числа и иррациональные числа образуют множество действительных чисел.
Изобразим это множество чисел в виде рисунка:
Видно их вложенность друг в друга.
Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
Что такое вещественные числа примеры
Форма записи числа с фиксированной точкой точно определяет положение точки между целой и дробной частью. Запись числа с фиксированной точкой обычно имеет знаковый и цифровой разряды. Фиксированная точка означает, что на этапе конструирования было определено, сколько и какие разряды машинного слова отведены под изображение целой и дробной частей числа. Точка в разрядкой сетке может быть зафиксирована, в принципе, после любого разряда.
Как частный случай числа с фиксированной точкой может быть рассмотрена запись целого числа (в этом случае все разряды, кроме знакового, используются для записи целой части). К достоинствам использования чисел с фиксированной точкой относятся простота выполнения арифметических операций и высокая точность изображения чисел. К недостаткам — небольшой диапазон представления чисел.
Для представления чисел с плавающей точкой (ЧПТ) используется следующая форма записи числа:
где q — основание системы счисления, p — порядок числа, m — мантисса числа N, представляющая собой правильную положительную дробь.
Для установления однозначности при записи чисел введем ограничение — в первом разряде мантиссы стоит отличная от нуля цифра.
Рассмотрим примеры представления чисел в нормализованной форме.
Представление чисел в нормализованной форме для десятичной системы счисления не вызывает затруднений, что касается представления двоичных чисел, то необходимо помнить, что порядок числа — двоичное число. Например, число 10111.01 2 имеет порядок, равный 5 (10111) в десятичной системе, но в двоичной —5 10 = 101 2
Для представления чисел в машинном слове выделяют группы разрядов для изображения мантиссы, порядка, знака порядка и знака числа (рис. 2.41). В этом случае машинное слово делится на два основных поля. В одном записывается мантисса числа, во втором — указывается порядок числа.
Таким образом, числа с плавающей точкой позволяют увеличить диапазон обрабатываемых чисел по сравнению с диапазоном чисел с фиксированной точкой. Однако быстродействие компьютера при обработке чисел с плаваю щей точкой гораздо ниже, чем при обработке чисел с фиксированной точкой.